grid_sampler_op.cc 9.0 KB
Newer Older
1
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dengkaipeng 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14 15

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/operators/grid_sampler_op.h"
16
#include <memory>
D
dengkaipeng 已提交
17 18 19 20 21 22 23 24 25 26 27
#include "paddle/fluid/framework/op_registry.h"
#ifdef PADDLE_WITH_CUDA
#include "paddle/fluid/platform/cudnn_helper.h"
#endif

namespace paddle {
namespace operators {

using Tensor = framework::Tensor;

class GridSampleOp : public framework::OperatorWithKernel {
28 29 30
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;
  void InferShape(framework::InferShapeContext* ctx) const override {
31 32 33 34 35 36 37 38 39 40
    PADDLE_ENFORCE_EQ(ctx->HasInput("X"), true,
                      platform::errors::NotFound(
                          "Input(X) of GridSampleOp should not be null."));
    PADDLE_ENFORCE_EQ(ctx->HasInput("Grid"), true,
                      platform::errors::NotFound(
                          "Input(Grid) of GridSampleOp should not be null."));
    PADDLE_ENFORCE_EQ(
        ctx->HasOutput("Output"), true,
        platform::errors::NotFound(
            "Output(Output) of GridSampleOp should not be null."));
41 42 43

    auto x_dims = ctx->GetInputDim("X");
    auto grid_dims = ctx->GetInputDim("Grid");
44 45 46 47 48 49 50 51 52 53
    PADDLE_ENFORCE_EQ(x_dims.size(), 4,
                      platform::errors::InvalidArgument(
                          "Input(X) of GridSampleOp should be 4-D Tensor, but "
                          "received X dimension size(%d)",
                          x_dims.size()));
    PADDLE_ENFORCE_EQ(grid_dims.size(), 4,
                      platform::errors::InvalidArgument(
                          "Input(Grid) of GridSampleOp should be 4-D Tensor, "
                          "but received X dimension size(%d)",
                          grid_dims.size()));
54
    if (ctx->IsRuntime() || grid_dims[3] > 0) {
55 56 57 58 59
      PADDLE_ENFORCE_EQ(
          grid_dims[3], 2,
          platform::errors::InvalidArgument(
              "Input(Grid) dimension[3] should be 2, but received %d",
              grid_dims[3]));
60
    }
61
    if (ctx->IsRuntime()) {
62 63 64 65 66 67
      PADDLE_ENFORCE_EQ(
          grid_dims[0], x_dims[0],
          platform::errors::InvalidArgument(
              "Input(X) and Input(Grid) dimension[0] should be equal, but "
              "received X dimension[0](%d) != Grid dimension[0](%d)",
              x_dims[0], grid_dims[0]));
68 69
      PADDLE_ENFORCE_EQ(
          grid_dims[1], x_dims[2],
70 71 72 73
          platform::errors::InvalidArgument(
              "Input(X) dims[2] and Input(Grid) dims[1] should be equal, but "
              "received X dimension[2](%d) != Grid dimension[1](%d)",
              x_dims[2], grid_dims[1]));
74 75
      PADDLE_ENFORCE_EQ(
          grid_dims[2], x_dims[3],
76 77 78 79
          platform::errors::InvalidArgument(
              "Input(X) dims[3] and Input(Grid) dims[2] should be equal, but "
              "received X dimension[3](%d) != Grid dimension[2](%d)",
              x_dims[3], grid_dims[2]));
80
    }
81 82 83 84 85 86 87 88 89

    ctx->SetOutputDim("Output", x_dims);
    ctx->ShareLoD("X", "Output");
  }

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
    framework::LibraryType library_{framework::LibraryType::kPlain};
D
dengkaipeng 已提交
90
#ifdef PADDLE_WITH_CUDA
91 92
    if (platform::CanCUDNNBeUsed(ctx)) {
      library_ = framework::LibraryType::kCUDNN;
D
dengkaipeng 已提交
93
    }
94
#endif
95 96 97
    return framework::OpKernelType(
        OperatorWithKernel::IndicateVarDataType(ctx, "X"), ctx.GetPlace(),
        framework::DataLayout::kAnyLayout, library_);
98
  }
D
dengkaipeng 已提交
99 100 101
};

class GridSampleOpMaker : public framework::OpProtoAndCheckerMaker {
102 103 104 105 106 107 108 109 110
 public:
  void Make() override {
    AddInput("X",
             "(Tensor) The input data of GridSampleOp, "
             "This is a 4-D tensor with shape of [N, C, H, W]");
    AddInput(
        "Grid",
        "(Tensor) The input grid of GridSampleOp generated by AffineGridOp, "
        "This is a 4-D tensor with shape of [N, H, W, 2] is the concatenation "
T
tianshuo78520a 已提交
111
        "of x and y coordinates with shape [N, H, W] in last dimension");
112 113 114 115 116 117 118 119
    AddOutput("Output", "(Tensor) Output tensor with shape [N, C, H, W]");
    AddAttr<bool>(
        "use_cudnn",
        "(bool, default true) Only used in cudnn kernel, need install cudnn")
        .SetDefault(true);

    AddComment(R"DOC(
      This operation samples input X by using bilinear interpolation based on 
T
tianshuo78520a 已提交
120
      flow field grid, which is usually generated by affine_grid. The grid of
121 122
      shape [N, H, W, 2] is the concatenation of (grid_x, grid_y) coordinates 
      with shape [N, H, W] each, where grid_x is indexing the 4th dimension 
T
tianshuo78520a 已提交
123 124
      (in width dimension) of input data x and grid_y is indexing the 3rd 
      dimension (in height dimension), finally results is the bilinear 
125
      interpolation value of 4 nearest corner points.
126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164

      Step 1:
        Get (x, y) grid coordinates and scale to [0, H-1/W-1].

        grid_x = 0.5 * (grid[:, :, :, 0] + 1) * (W - 1)
        grid_y = 0.5 * (grid[:, :, :, 1] + 1) * (H - 1)

      Step 2:
        Indices input data X with grid (x, y) in each [H, W] area, and bilinear 
        interpolate point value by 4 nearest points.

          wn ------- y_n ------- en
          |           |           |
          |          d_n          |
          |           |           |
         x_w --d_w-- grid--d_e-- x_e
          |           |           |
          |          d_s          |
          |           |           |
          ws ------- y_s ------- wn

        x_w = floor(x)              // west side x coord
        x_e = x_w + 1               // east side x coord
        y_n = floor(y)              // north side y coord
        y_s = y_s + 1               // south side y coord

        d_w = grid_x - x_w          // distance to west side
        d_e = x_e - grid_x          // distance to east side
        d_n = grid_y - y_n          // distance to north side
        d_s = y_s - grid_y          // distance to south side

        wn = X[:, :, y_n, x_w]      // north-west point value
        en = X[:, :, y_n, x_e]      // north-east point value
        ws = X[:, :, y_s, x_w]      // south-east point value
        es = X[:, :, y_s, x_w]      // north-east point value

        output = wn * d_e * d_s + en * d_w * d_s
               + ws * d_e * d_n + es * d_w * d_n
        )DOC");
165
  }
D
dengkaipeng 已提交
166 167 168
};

class GridSampleOpGrad : public framework::OperatorWithKernel {
169
 public:
D
dengkaipeng 已提交
170 171
  using framework::OperatorWithKernel::OperatorWithKernel;
  void InferShape(framework::InferShapeContext* ctx) const override {
172 173 174 175 176 177 178 179
    auto input_dims = ctx->GetInputDim("X");
    auto grid_dims = ctx->GetInputDim("Grid");
    if (ctx->HasOutput(framework::GradVarName("X"))) {
      ctx->SetOutputDim(framework::GradVarName("X"), input_dims);
    }
    if (ctx->HasOutput(framework::GradVarName("Grid"))) {
      ctx->SetOutputDim(framework::GradVarName("Grid"), grid_dims);
    }
D
dengkaipeng 已提交
180 181
  }

182 183 184 185
 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
    framework::LibraryType library_{framework::LibraryType::kPlain};
D
dengkaipeng 已提交
186
#ifdef PADDLE_WITH_CUDA
187 188
    if (platform::CanCUDNNBeUsed(ctx)) {
      library_ = framework::LibraryType::kCUDNN;
D
dengkaipeng 已提交
189
    }
190
#endif
191 192 193
    return framework::OpKernelType(
        OperatorWithKernel::IndicateVarDataType(ctx, "X"), ctx.GetPlace(),
        framework::DataLayout::kAnyLayout, library_);
194
  }
D
dengkaipeng 已提交
195 196
};

H
hong 已提交
197 198
template <typename T>
class GridSampleGradMaker : public framework::SingleGradOpMaker<T> {
199
 public:
H
hong 已提交
200
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;
201 202

 protected:
203
  void Apply(GradOpPtr<T> op) const override {
204
    op->SetType("grid_sampler_grad");
H
hong 已提交
205 206 207
    op->SetInput("X", this->Input("X"));
    op->SetInput("Grid", this->Input("Grid"));
    op->SetInput(framework::GradVarName("Output"), this->OutputGrad("Output"));
208

H
hong 已提交
209
    op->SetAttrMap(this->Attrs());
210

H
hong 已提交
211 212
    op->SetOutput(framework::GradVarName("X"), this->InputGrad("X"));
    op->SetOutput(framework::GradVarName("Grid"), this->InputGrad("Grid"));
213
  }
D
dengkaipeng 已提交
214 215
};

216 217
}  // namespace operators
}  // namespace paddle
D
dengkaipeng 已提交
218 219 220

namespace ops = paddle::operators;
REGISTER_OPERATOR(grid_sampler, ops::GridSampleOp, ops::GridSampleOpMaker,
H
hong 已提交
221 222
                  ops::GridSampleGradMaker<paddle::framework::OpDesc>,
                  ops::GridSampleGradMaker<paddle::imperative::OpBase>);
D
dengkaipeng 已提交
223 224 225 226 227 228 229 230 231 232
REGISTER_OPERATOR(grid_sampler_grad, ops::GridSampleOpGrad);

REGISTER_OP_CPU_KERNEL(
    grid_sampler,
    ops::GridSampleOpKernel<paddle::platform::CPUDeviceContext, float>,
    ops::GridSampleOpKernel<paddle::platform::CPUDeviceContext, double>);
REGISTER_OP_CPU_KERNEL(
    grid_sampler_grad,
    ops::GridSampleGradOpKernel<paddle::platform::CPUDeviceContext, float>,
    ops::GridSampleGradOpKernel<paddle::platform::CPUDeviceContext, double>);