grid_sampler_op.cc 7.9 KB
Newer Older
1
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dengkaipeng 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14 15

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/operators/grid_sampler_op.h"
16
#include <memory>
D
dengkaipeng 已提交
17 18 19 20 21 22 23 24 25 26 27
#include "paddle/fluid/framework/op_registry.h"
#ifdef PADDLE_WITH_CUDA
#include "paddle/fluid/platform/cudnn_helper.h"
#endif

namespace paddle {
namespace operators {

using Tensor = framework::Tensor;

class GridSampleOp : public framework::OperatorWithKernel {
28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;
  void InferShape(framework::InferShapeContext* ctx) const override {
    PADDLE_ENFORCE(ctx->HasInput("X"),
                   "Input(X) of GridSampleOp should not be null.");
    PADDLE_ENFORCE(ctx->HasInput("Grid"),
                   "Input(Grid) of GridSampleOp should not be null.");
    PADDLE_ENFORCE(ctx->HasOutput("Output"),
                   "Output(Output) of GridSampleOp should not be null.");

    auto x_dims = ctx->GetInputDim("X");
    auto grid_dims = ctx->GetInputDim("Grid");
    PADDLE_ENFORCE(x_dims.size() == 4,
                   "Input(X) of GridSampleOp should be 4-D Tensor.");
    PADDLE_ENFORCE(grid_dims.size() == 4,
                   "Input(Grid) of GridSampleOp should be 4-D Tensor.");
44 45 46
    if (ctx->IsRuntime() || grid_dims[3] > 0) {
      PADDLE_ENFORCE(grid_dims[3] == 2, "Input(Grid) dims[3] should be 2.");
    }
47
    if (ctx->IsRuntime()) {
48 49
      PADDLE_ENFORCE_EQ(grid_dims[0], x_dims[0],
                        "Input(X) and Input(Grid) dims[0] should be equal.");
50 51 52 53 54 55 56
      PADDLE_ENFORCE_EQ(
          grid_dims[1], x_dims[2],
          "Input(X) dims[2] and Input(Grid) dims[1] should be equal.");
      PADDLE_ENFORCE_EQ(
          grid_dims[2], x_dims[3],
          "Input(X) dims[3] and Input(Grid) dims[2] should be equal.");
    }
57 58 59 60 61 62 63 64 65

    ctx->SetOutputDim("Output", x_dims);
    ctx->ShareLoD("X", "Output");
  }

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
    framework::LibraryType library_{framework::LibraryType::kPlain};
D
dengkaipeng 已提交
66
#ifdef PADDLE_WITH_CUDA
67 68
    if (platform::CanCUDNNBeUsed(ctx)) {
      library_ = framework::LibraryType::kCUDNN;
D
dengkaipeng 已提交
69
    }
70
#endif
71 72 73
    return framework::OpKernelType(
        OperatorWithKernel::IndicateVarDataType(ctx, "X"), ctx.GetPlace(),
        framework::DataLayout::kAnyLayout, library_);
74
  }
D
dengkaipeng 已提交
75 76 77
};

class GridSampleOpMaker : public framework::OpProtoAndCheckerMaker {
78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101
 public:
  void Make() override {
    AddInput("X",
             "(Tensor) The input data of GridSampleOp, "
             "This is a 4-D tensor with shape of [N, C, H, W]");
    AddInput(
        "Grid",
        "(Tensor) The input grid of GridSampleOp generated by AffineGridOp, "
        "This is a 4-D tensor with shape of [N, H, W, 2] is the concatenation "
        "of x and y coordinates with shape [N, H, W] in last dimention");
    AddOutput("Output", "(Tensor) Output tensor with shape [N, C, H, W]");
    AddAttr<bool>(
        "use_cudnn",
        "(bool, default true) Only used in cudnn kernel, need install cudnn")
        .SetDefault(true);

    AddComment(R"DOC(
      This operation samples input X by using bilinear interpolation based on 
      flow field grid, which is usually gennerated by affine_grid. The grid of
      shape [N, H, W, 2] is the concatenation of (grid_x, grid_y) coordinates 
      with shape [N, H, W] each, where grid_x is indexing the 4th dimension 
      (in width dimension) of input data x and grid_y is indexng the 3rd 
      dimention (in height dimension), finally results is the bilinear 
      interpolation value of 4 nearest corner points.
102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140

      Step 1:
        Get (x, y) grid coordinates and scale to [0, H-1/W-1].

        grid_x = 0.5 * (grid[:, :, :, 0] + 1) * (W - 1)
        grid_y = 0.5 * (grid[:, :, :, 1] + 1) * (H - 1)

      Step 2:
        Indices input data X with grid (x, y) in each [H, W] area, and bilinear 
        interpolate point value by 4 nearest points.

          wn ------- y_n ------- en
          |           |           |
          |          d_n          |
          |           |           |
         x_w --d_w-- grid--d_e-- x_e
          |           |           |
          |          d_s          |
          |           |           |
          ws ------- y_s ------- wn

        x_w = floor(x)              // west side x coord
        x_e = x_w + 1               // east side x coord
        y_n = floor(y)              // north side y coord
        y_s = y_s + 1               // south side y coord

        d_w = grid_x - x_w          // distance to west side
        d_e = x_e - grid_x          // distance to east side
        d_n = grid_y - y_n          // distance to north side
        d_s = y_s - grid_y          // distance to south side

        wn = X[:, :, y_n, x_w]      // north-west point value
        en = X[:, :, y_n, x_e]      // north-east point value
        ws = X[:, :, y_s, x_w]      // south-east point value
        es = X[:, :, y_s, x_w]      // north-east point value

        output = wn * d_e * d_s + en * d_w * d_s
               + ws * d_e * d_n + es * d_w * d_n
        )DOC");
141
  }
D
dengkaipeng 已提交
142 143 144
};

class GridSampleOpGrad : public framework::OperatorWithKernel {
145
 public:
D
dengkaipeng 已提交
146 147
  using framework::OperatorWithKernel::OperatorWithKernel;
  void InferShape(framework::InferShapeContext* ctx) const override {
148 149 150 151 152 153 154 155
    auto input_dims = ctx->GetInputDim("X");
    auto grid_dims = ctx->GetInputDim("Grid");
    if (ctx->HasOutput(framework::GradVarName("X"))) {
      ctx->SetOutputDim(framework::GradVarName("X"), input_dims);
    }
    if (ctx->HasOutput(framework::GradVarName("Grid"))) {
      ctx->SetOutputDim(framework::GradVarName("Grid"), grid_dims);
    }
D
dengkaipeng 已提交
156 157
  }

158 159 160 161
 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
    framework::LibraryType library_{framework::LibraryType::kPlain};
D
dengkaipeng 已提交
162
#ifdef PADDLE_WITH_CUDA
163 164
    if (platform::CanCUDNNBeUsed(ctx)) {
      library_ = framework::LibraryType::kCUDNN;
D
dengkaipeng 已提交
165
    }
166
#endif
167 168 169
    return framework::OpKernelType(
        OperatorWithKernel::IndicateVarDataType(ctx, "X"), ctx.GetPlace(),
        framework::DataLayout::kAnyLayout, library_);
170
  }
D
dengkaipeng 已提交
171 172
};

H
hong 已提交
173 174
template <typename T>
class GridSampleGradMaker : public framework::SingleGradOpMaker<T> {
175
 public:
H
hong 已提交
176
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;
177 178

 protected:
H
hong 已提交
179 180
  std::unique_ptr<T> Apply() const override {
    auto* op = new T();
181
    op->SetType("grid_sampler_grad");
H
hong 已提交
182 183 184
    op->SetInput("X", this->Input("X"));
    op->SetInput("Grid", this->Input("Grid"));
    op->SetInput(framework::GradVarName("Output"), this->OutputGrad("Output"));
185

H
hong 已提交
186
    op->SetAttrMap(this->Attrs());
187

H
hong 已提交
188 189 190
    op->SetOutput(framework::GradVarName("X"), this->InputGrad("X"));
    op->SetOutput(framework::GradVarName("Grid"), this->InputGrad("Grid"));
    return std::unique_ptr<T>(op);
191
  }
D
dengkaipeng 已提交
192 193
};

194 195
}  // namespace operators
}  // namespace paddle
D
dengkaipeng 已提交
196 197 198

namespace ops = paddle::operators;
REGISTER_OPERATOR(grid_sampler, ops::GridSampleOp, ops::GridSampleOpMaker,
H
hong 已提交
199 200
                  ops::GridSampleGradMaker<paddle::framework::OpDesc>,
                  ops::GridSampleGradMaker<paddle::imperative::OpBase>);
D
dengkaipeng 已提交
201 202 203 204 205 206 207 208 209 210
REGISTER_OPERATOR(grid_sampler_grad, ops::GridSampleOpGrad);

REGISTER_OP_CPU_KERNEL(
    grid_sampler,
    ops::GridSampleOpKernel<paddle::platform::CPUDeviceContext, float>,
    ops::GridSampleOpKernel<paddle::platform::CPUDeviceContext, double>);
REGISTER_OP_CPU_KERNEL(
    grid_sampler_grad,
    ops::GridSampleGradOpKernel<paddle::platform::CPUDeviceContext, float>,
    ops::GridSampleGradOpKernel<paddle::platform::CPUDeviceContext, double>);