pybind.cc 41.3 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

7
http://www.apache.org/licenses/LICENSE-2.0
8 9 10 11 12 13

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
L
lgone2000 已提交
14
#include <Python.h>
C
chengduoZH 已提交
15 16
#include <algorithm>
#include <map>
S
sneaxiy 已提交
17
#include <memory>
C
chengduoZH 已提交
18 19 20 21 22
#include <mutex>  // NOLINT // for call_once
#include <string>
#include <unordered_map>
#include <utility>
#include <vector>
23

Y
Yi Wang 已提交
24 25 26
#include "paddle/fluid/framework/executor.h"
#include "paddle/fluid/framework/feed_fetch_method.h"
#include "paddle/fluid/framework/framework.pb.h"
27
#include "paddle/fluid/framework/ir/pass_builder.h"
Y
Yi Wang 已提交
28 29 30
#include "paddle/fluid/framework/lod_rank_table.h"
#include "paddle/fluid/framework/lod_tensor.h"
#include "paddle/fluid/framework/lod_tensor_array.h"
31
#include "paddle/fluid/framework/op_registry.h"
Y
Yu Yang 已提交
32
#include "paddle/fluid/framework/parallel_executor.h"
Y
Yi Wang 已提交
33
#include "paddle/fluid/framework/prune.h"
Y
Refine  
Yu Yang 已提交
34
#include "paddle/fluid/framework/reader.h"
Y
Yi Wang 已提交
35
#include "paddle/fluid/framework/selected_rows.h"
X
Xin Pan 已提交
36
#include "paddle/fluid/framework/version.h"
Y
Refine  
Yu Yang 已提交
37
#include "paddle/fluid/memory/allocation/allocator_strategy.h"
D
dzhwinter 已提交
38
#include "paddle/fluid/operators/activation_op.h"
S
sneaxiy 已提交
39
#include "paddle/fluid/operators/reader/lod_tensor_blocking_queue.h"
Y
Yu Yang 已提交
40
#include "paddle/fluid/platform/cpu_info.h"
Y
Yi Wang 已提交
41
#include "paddle/fluid/platform/enforce.h"
42
#include "paddle/fluid/platform/init.h"
Y
Yi Wang 已提交
43 44
#include "paddle/fluid/platform/place.h"
#include "paddle/fluid/platform/profiler.h"
W
Wang Guibao 已提交
45
#include "paddle/fluid/pybind/async_executor_py.h"
Y
Yi Wang 已提交
46 47
#include "paddle/fluid/pybind/const_value.h"
#include "paddle/fluid/pybind/exception.h"
X
Xin Pan 已提交
48
#include "paddle/fluid/pybind/imperative.h"
49 50
#include "paddle/fluid/pybind/protobuf.h"
#include "paddle/fluid/pybind/pybind.h"  // NOLINT
Y
Yu Yang 已提交
51
#include "paddle/fluid/pybind/recordio.h"
Y
Yi Wang 已提交
52
#include "paddle/fluid/pybind/tensor_py.h"
Y
Yu Yang 已提交
53

54
#include "paddle/fluid/string/to_string.h"
55

D
Dong Zhihong 已提交
56
#ifdef PADDLE_WITH_CUDA
P
peizhilin 已提交
57
#ifndef _WIN32
Y
Yi Wang 已提交
58
#include "paddle/fluid/operators/nccl/nccl_gpu_common.h"
P
peizhilin 已提交
59
#endif
Y
Yi Wang 已提交
60 61
#include "paddle/fluid/platform/cuda_profiler.h"
#include "paddle/fluid/platform/gpu_info.h"
D
Dong Zhihong 已提交
62 63
#endif

M
minqiyang 已提交
64 65
#include "pybind11/stl.h"

66 67 68 69
DEFINE_bool(reader_queue_speed_test_mode, false,
            "If set true, the queue.pop will only get data from queue but not "
            "remove the data from queue for speed testing");

Q
Qiao Longfei 已提交
70 71 72
// disable auto conversion to list in Python
PYBIND11_MAKE_OPAQUE(paddle::framework::LoDTensorArray);

73
namespace paddle {
74
namespace pybind {
75
bool IsCompiledWithCUDA() {
76
#ifndef PADDLE_WITH_CUDA
Q
qijun 已提交
77 78 79 80 81 82
  return false;
#else
  return true;
#endif
}

Y
update  
Yancey1989 已提交
83
bool IsCompiledWithDIST() {
Y
Yancey1989 已提交
84
#ifdef PADDLE_WITH_DISTRIBUTE
Y
update  
Yancey1989 已提交
85 86 87 88 89 90
  return true;
#else
  return false;
#endif
}

91
PYBIND11_MODULE(core, m) {
Y
Yu Yang 已提交
92 93 94
  // Not used, just make sure cpu_info.cc is linked.
  paddle::platform::CpuTotalPhysicalMemory();

Y
Refine  
Yu Yang 已提交
95
  paddle::memory::allocation::UseAllocatorStrategyGFlag();
96
  m.doc() = "C++ core of PaddlePaddle";
97

98 99 100 101
  // using framework in this function. Since it is inside a function, it will
  // not cause namespace pollution.
  using namespace paddle::framework;  // NOLINT

102
  BindException(&m);
Y
Yu Yang 已提交
103

X
Xin Pan 已提交
104 105 106 107 108 109 110 111 112 113
  py::class_<imperative::VariableBase>(m, "VariableBase",
                                       R"DOC()DOC")
      .def_property(
          "desc",
          [](const imperative::VariableBase &self) { return self.var_desc_; },
          [](imperative::VariableBase &self, framework::VarDesc *var_desc) {
            self.var_desc_ = var_desc;
          },
          py::return_value_policy::reference);

X
Xin Pan 已提交
114 115
  py::class_<imperative::Layer, PyLayer /* <--- trampoline*/> layer(m, "Layer");
  layer.def(py::init<>())
X
Xin Pan 已提交
116 117 118 119 120
      .def("forward",
           [](imperative::Layer &self,
              const std::vector<imperative::VariableBase> &inputs) {
             return self.Forward(inputs);
           })
X
Xin Pan 已提交
121
      .def("backward", &imperative::Layer::Backward);
X
Xin Pan 已提交
122
  BindTracer(&m);
X
Xin Pan 已提交
123

124 125 126
  py::class_<Tensor>(m, "Tensor", py::buffer_protocol())
      .def_buffer(
          [](Tensor &self) -> py::buffer_info { return CastToPyBuffer(self); })
Y
yuyang18 已提交
127
      .def("_get_dims",
128
           [](const Tensor &self) { return vectorize(self.dims()); })
Y
yuyang18 已提交
129
      .def("_set_dims",
Q
qijun 已提交
130
           [](Tensor &self, const std::vector<int64_t> &dim) {
Y
Yu Yang 已提交
131
             self.Resize(make_ddim(dim));
Y
Yu Yang 已提交
132
           })
Y
yuyang18 已提交
133
      .def("_set_layout",
D
dzhwinter 已提交
134 135 136
           [](Tensor &self, const std::string &layout) {
             self.set_layout(StringToDataLayout(layout));
           })
Y
yuyang18 已提交
137
      .def("_alloc_float",
D
dzhwinter 已提交
138
           [](Tensor &self, paddle::platform::CUDAPlace &place) {
Q
qijun 已提交
139
             self.mutable_data<float>(place);
Y
Yu Yang 已提交
140
           })
Y
yuyang18 已提交
141
      .def("_alloc_float",
Y
Yu Yang 已提交
142
           [](Tensor &self, paddle::platform::CPUPlace &place) {
Q
qijun 已提交
143
             self.mutable_data<float>(place);
Y
Yu Yang 已提交
144
           })
Y
yuyang18 已提交
145
      .def("_alloc_int",
Y
Yu Yang 已提交
146
           [](Tensor &self, paddle::platform::CPUPlace &place) {
Q
qijun 已提交
147
             self.mutable_data<int>(place);
Y
Yu Yang 已提交
148
           })
Y
yuyang18 已提交
149
      .def("_alloc_int",
D
dzhwinter 已提交
150
           [](Tensor &self, paddle::platform::CUDAPlace &place) {
Q
qijun 已提交
151
             self.mutable_data<int>(place);
Q
qijun 已提交
152
           })
Y
yuyang18 已提交
153
      .def("_alloc_int",
C
chengduoZH 已提交
154 155 156
           [](Tensor &self, paddle::platform::CUDAPinnedPlace &place) {
             self.mutable_data<int>(place);
           })
Y
yuyang18 已提交
157
      .def("_alloc_float",
C
chengduoZH 已提交
158 159 160
           [](Tensor &self, paddle::platform::CUDAPinnedPlace &place) {
             self.mutable_data<float>(place);
           })
Y
Yu Yang 已提交
161
      .def("set", PyCPUTensorSetFromArray<float>)
X
Xin Pan 已提交
162
      .def("set_float", PyCPUTensorSetFromArray<float>)
Y
Yu Yang 已提交
163
      .def("set", PyCPUTensorSetFromArray<int>)
164
      .def("set", PyCPUTensorSetFromArray<double>)
165
      .def("set", PyCPUTensorSetFromArray<int64_t>)
Y
Yu Yang 已提交
166
      .def("set", PyCPUTensorSetFromArray<bool>)
167
      .def("set", PyCPUTensorSetFromArray<uint16_t>)
F
fengjiayi 已提交
168
      .def("set", PyCPUTensorSetFromArray<uint8_t>)
Q
qingqing01 已提交
169
      .def("set", PyCPUTensorSetFromArray<int8_t>)
170
#ifdef PADDLE_WITH_CUDA
Y
Yu Yang 已提交
171 172
      .def("set", PyCUDATensorSetFromArray<float>)
      .def("set", PyCUDATensorSetFromArray<int>)
173
      .def("set", PyCUDATensorSetFromArray<double>)
174
      .def("set", PyCUDATensorSetFromArray<int64_t>)
Y
Yu Yang 已提交
175
      .def("set", PyCUDATensorSetFromArray<bool>)
176
      .def("set", PyCUDATensorSetFromArray<uint16_t>)
F
fengjiayi 已提交
177
      .def("set", PyCUDATensorSetFromArray<uint8_t>)
Q
qingqing01 已提交
178
      .def("set", PyCUDATensorSetFromArray<int8_t>)
C
chengduoZH 已提交
179 180 181 182 183 184
      .def("set", PyCUDAPinnedTensorSetFromArray<float>)
      .def("set", PyCUDAPinnedTensorSetFromArray<int>)
      .def("set", PyCUDAPinnedTensorSetFromArray<double>)
      .def("set", PyCUDAPinnedTensorSetFromArray<int64_t>)
      .def("set", PyCUDAPinnedTensorSetFromArray<bool>)
      .def("set", PyCUDAPinnedTensorSetFromArray<uint16_t>)
F
fengjiayi 已提交
185
      .def("set", PyCUDAPinnedTensorSetFromArray<uint8_t>)
Q
qingqing01 已提交
186
      .def("set", PyCUDAPinnedTensorSetFromArray<int8_t>)
Q
qijun 已提交
187
#endif
188
      .def("shape", [](Tensor &self) { return vectorize(self.dims()); })
Y
yuyang18 已提交
189 190 191 192 193
      .def("_set_float_element", TensorSetElement<float>)
      .def("_get_float_element", TensorGetElement<float>)
      .def("_set_double_element", TensorSetElement<double>)
      .def("_get_double_element", TensorGetElement<double>)
      .def("_dtype", [](Tensor &self) { return ToDataType(self.type()); });
Y
Yu Yang 已提交
194

X
Xin Pan 已提交
195 196 197 198 199 200 201 202 203 204 205 206 207
  py::class_<LoDTensor, Tensor>(m, "LoDTensor", R"DOC(
    LoDTensor is a Tensor with optional LoD information.

    np.array(lod_tensor) can convert LoDTensor to numpy array.
    lod_tensor.lod() can retrieve the LoD information.

    LoD is short for Level of Details and is usually used for varied sequence
    length. You can skip the following comment if you don't need optional LoD.

  For example:
     A LoDTensor X can look like the example below. It contains 2 sequences.
     The first has length 2 and the second has length 3, as described by x.lod.

X
fix doc  
Xin Pan 已提交
208
     The first tensor dimension 5=2+3 is calculated from LoD if it's available.
X
Xin Pan 已提交
209
     It means the total number of sequence element. In X, each element has 2
X
fix doc  
Xin Pan 已提交
210
     columns, hence [5, 2].
X
Xin Pan 已提交
211 212 213

      x.lod  = [[2, 3]]
      x.data = [[1, 2], [3, 4],
X
fix doc  
Xin Pan 已提交
214 215
                [5, 6], [7, 8], [9, 10]]
      x.shape = [5, 2]
X
Xin Pan 已提交
216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238

      LoD can have multiple levels (for example, a paragraph can have multiple
      sentences and a sentence can have multiple words). In the following
      LodTensor Y, the lod_level is 2. It means there are 2 sequence, the
      first sequence length is 2 (has 2 sub-sequences), the second one's
      length is 1. The first sequence's 2 sub-sequences have length 2 and 2,
      respectively. And the second sequence's 1 sub-sequence has length 3.

      y.lod = [[2 1], [2 2 3]]
      y.shape = [2+2+3, ...]

  Note:
      In above description, LoD is length-based. In Paddle internal
      implementation, lod is offset-based. Hence, internally,
      y.lod is represented as [[0, 2, 3], [0, 2, 4, 7]] (length-based
      equivlent would be [[2-0, 3-2], [2-0, 4-2, 7-4]]).

      Sometimes LoD is called recursive_sequence_length to be more
      self-explanatory. In this case, it must be length-based. Due to history
      reasons. when LoD is called lod in public API, it might be offset-based.
      Users should be careful about it.

        )DOC")
239 240
      .def_buffer(
          [](Tensor &self) -> py::buffer_info { return CastToPyBuffer(self); })
241 242 243 244 245 246 247 248 249 250 251 252 253 254
      .def("__init__",
           [](LoDTensor &instance, const std::vector<std::vector<size_t>>
                                       &recursive_sequence_lengths) {
             LoD new_lod;
             new_lod.reserve(recursive_sequence_lengths.size());
             std::copy(recursive_sequence_lengths.begin(),
                       recursive_sequence_lengths.end(),
                       std::back_inserter(new_lod));
             LoD new_offset_lod = ConvertToOffsetBasedLoD(new_lod);
             PADDLE_ENFORCE(
                 CheckLoD(new_offset_lod, -1),
                 "the provided recursive_sequence_lengths info is invalid");
             new (&instance) LoDTensor(new_offset_lod);
           })
Y
Yu Yang 已提交
255
      .def("__init__", [](LoDTensor &instance) { new (&instance) LoDTensor(); })
G
gongweibao 已提交
256 257 258 259 260
      // We implement offset based LOD in C++ while we use length based with
      // Python API. So we changed set_lod to set_recursive_sequence_lengths to
      // avoid misuse.
      // The discussion is here:
      // https://github.com/PaddlePaddle/Paddle/issues/10855
D
dangqingqing 已提交
261
      .def("set_lod",
262
           [](LoDTensor &self, const std::vector<std::vector<size_t>> &lod) {
263
             // the input lod is offset-based level-of-detail info
Y
Yu Yang 已提交
264
             LoD new_lod;
265 266
             new_lod.reserve(lod.size());
             std::copy(lod.begin(), lod.end(), std::back_inserter(new_lod));
267 268
             PADDLE_ENFORCE(CheckLoD(new_lod, vectorize(self.dims()).front()),
                            "the provided lod info is invalid");
269
             self.set_lod(new_lod);
D
dangqingqing 已提交
270
           })
271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295
      .def("set_recursive_sequence_lengths",
           [](LoDTensor &self, const std::vector<std::vector<size_t>>
                                   &recursive_sequence_lengths) {
             // the input recursive_sequence_lengths is length-based
             // level-of-detail info
             LoD new_lod;
             new_lod.reserve(recursive_sequence_lengths.size());
             std::copy(recursive_sequence_lengths.begin(),
                       recursive_sequence_lengths.end(),
                       std::back_inserter(new_lod));
             LoD new_offset_lod = ConvertToOffsetBasedLoD(new_lod);
             PADDLE_ENFORCE(
                 CheckLoD(new_offset_lod, vectorize(self.dims()).front()),
                 "the provided recursive_sequence_lengths info is invalid");
             self.set_lod(new_offset_lod);
           })
      .def("lod",
           [](LoDTensor &self) -> std::vector<std::vector<size_t>> {
             // output the offset-based lod info
             LoD lod = self.lod();
             std::vector<std::vector<size_t>> new_lod;
             new_lod.reserve(lod.size());
             std::copy(lod.begin(), lod.end(), std::back_inserter(new_lod));
             return new_lod;
           })
G
gongweibao 已提交
296
      // Set above comments of set_lod.
297 298 299 300 301 302 303 304 305 306 307 308 309
      .def("recursive_sequence_lengths",
           [](LoDTensor &self) -> std::vector<std::vector<size_t>> {
             // output the length-based lod info
             LoD lod = ConvertToLengthBasedLoD(self.lod());
             std::vector<std::vector<size_t>> new_lod;
             new_lod.reserve(lod.size());
             std::copy(lod.begin(), lod.end(), std::back_inserter(new_lod));
             return new_lod;
           })
      .def("has_valid_recursive_sequence_lengths", [](LoDTensor &self) -> bool {
        // Check that the lod info is valid and match the outermost
        // dimension of the LoDTensor data
        return CheckLoD(self.lod(), vectorize(self.dims()).front());
D
dangqingqing 已提交
310 311
      });

Q
qijun 已提交
312 313 314 315 316 317 318 319 320 321 322 323 324
  py::class_<SelectedRows>(m, "SelectedRows")
      .def("__init__",
           [](SelectedRows &instance) { new (&instance) SelectedRows(); })
      .def("__init__",
           [](SelectedRows &instance, const std::vector<int64_t> rows,
              const int64_t &height) {
             new (&instance) SelectedRows(rows, height);
           })
      .def("get_tensor",
           [](SelectedRows &self) { return self.mutable_value(); },
           py::return_value_policy::reference)
      .def("set_height", &SelectedRows::set_height)
      .def("height", &SelectedRows::height)
Q
qijun 已提交
325 326 327 328 329 330 331 332 333
      .def("set_rows",
           [](SelectedRows &self, std::vector<int64_t> rows) {
#ifndef PADDLE_WITH_CUDA
             self.set_rows(rows);
#else
        Vector<int64_t> new_rows(rows);
        self.set_rows(new_rows);
#endif
           })
334
      .def("sync_index", [](SelectedRows &instance) { instance.SyncIndex(); })
335
      .def("rows", [](SelectedRows &self) {
336 337 338 339 340
        auto rows = self.rows();
        std::vector<int64_t> new_rows;
        new_rows.reserve(rows.size());
        std::copy(rows.begin(), rows.end(), std::back_inserter(new_rows));
        return new_rows;
341
      });
Q
qijun 已提交
342

343
  py::class_<Variable>(m, "Variable", R"DOC(Variable Class.
344 345 346

All parameter, weight, gradient are variables in Paddle.
)DOC")
347
      .def("is_int", [](const Variable &var) { return var.IsType<int>(); })
348
      .def("set_int",
349 350
           [](Variable &var, int val) -> void { *var.GetMutable<int>() = val; })
      .def("get_int", [](const Variable &var) -> int { return var.Get<int>(); })
351 352 353 354 355 356 357
      .def("is_float", [](const Variable &var) { return var.IsType<float>(); })
      .def("set_float",
           [](Variable &var, float val) -> void {
             *var.GetMutable<float>() = val;
           })
      .def("get_float",
           [](const Variable &var) -> float { return var.Get<float>(); })
Y
Yu Yang 已提交
358
      .def("get_tensor",
359 360
           [](Variable &self) -> LoDTensor * {
             return self.GetMutable<LoDTensor>();
D
dangqingqing 已提交
361 362
           },
           py::return_value_policy::reference)
Y
Yu Yang 已提交
363 364 365
      .def("get_lod_rank_table",
           [](Variable &self) { return self.GetMutable<LoDRankTable>(); },
           py::return_value_policy::reference)
Q
qijun 已提交
366 367 368 369 370
      .def("get_selected_rows",
           [](Variable &self) -> SelectedRows * {
             return self.GetMutable<SelectedRows>();
           },
           py::return_value_policy::reference)
Y
Yu Yang 已提交
371 372 373
      .def("get_lod_tensor_array",
           [](Variable &self) { return self.GetMutable<LoDTensorArray>(); },
           py::return_value_policy::reference)
P
peizhilin 已提交
374
#if (defined(PADDLE_WITH_CUDA) && !defined(_WIN32))
D
Dong Zhihong 已提交
375 376 377 378 379
      .def("get_communicator",
           [](Variable &self) -> platform::Communicator * {
             return self.GetMutable<platform::Communicator>();
           },
           py::return_value_policy::reference)
Y
Yu Yang 已提交
380
#endif
Y
Refine  
Yu Yang 已提交
381 382 383 384 385
      .def("get_reader",
           [](Variable &self) -> framework::ReaderHolder * {
             PADDLE_ENFORCE(self.IsType<framework::ReaderHolder>());
             return self.GetMutable<framework::ReaderHolder>();
           },
W
wopeizl 已提交
386
           py::return_value_policy::reference);
387

Y
Refine  
Yu Yang 已提交
388
  py::class_<framework::ReaderHolder>(m, "Reader", "")
389
      .def("reset", &framework::ReaderHolder::ResetAll);
Y
Refine  
Yu Yang 已提交
390

S
sneaxiy 已提交
391 392 393 394
  using LoDTensorBlockingQueue =
      ::paddle::operators::reader::LoDTensorBlockingQueue;
  using LoDTensorBlockingQueueHolder =
      ::paddle::operators::reader::LoDTensorBlockingQueueHolder;
S
sneaxiy 已提交
395 396
  py::class_<LoDTensorBlockingQueue, std::shared_ptr<LoDTensorBlockingQueue>>(
      m, "LoDTensorBlockingQueue", "")
S
sneaxiy 已提交
397
      .def("push",
S
sneaxiy 已提交
398
           [](LoDTensorBlockingQueue &self,
S
sneaxiy 已提交
399
              const std::vector<framework::LoDTensor> &lod_tensor_vec) {
S
sneaxiy 已提交
400
             pybind11::gil_scoped_release release;
S
sneaxiy 已提交
401
             return self.Push(lod_tensor_vec);
S
sneaxiy 已提交
402
           })
S
sneaxiy 已提交
403 404 405 406
      .def("size", &LoDTensorBlockingQueue::Size)
      .def("capacity", &LoDTensorBlockingQueue::Cap)
      .def("close", &LoDTensorBlockingQueue::Close)
      .def("is_closed", &LoDTensorBlockingQueue::IsClosed);
S
sneaxiy 已提交
407

S
sneaxiy 已提交
408
  m.def("init_lod_tensor_blocking_queue",
S
sneaxiy 已提交
409
        [](Variable &var, size_t capacity,
S
sneaxiy 已提交
410
           const std::vector<std::vector<int64_t>> &shapes)
S
sneaxiy 已提交
411
            -> std::shared_ptr<LoDTensorBlockingQueue> {
S
sneaxiy 已提交
412 413 414 415 416 417
              std::vector<DDim> dims(shapes.size());
              std::transform(shapes.begin(), shapes.end(), dims.begin(),
                             [](const std::vector<int64_t> &shape) {
                               return make_ddim(shape);
                             });
              auto *holder = var.GetMutable<LoDTensorBlockingQueueHolder>();
418 419
              holder->InitOnce(capacity, dims,
                               FLAGS_reader_queue_speed_test_mode);
S
sneaxiy 已提交
420
              return holder->GetQueue();
S
sneaxiy 已提交
421
            },
S
sneaxiy 已提交
422
        py::return_value_policy::copy);
S
sneaxiy 已提交
423

Q
Qiao Longfei 已提交
424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443
  py::class_<Scope>(m, "Scope", R"DOC(
    Scope is an association of a name to Variable. All variables belong to Scope.

    Variables in a parent scope can be retrieved from local scope.

    You need to specify a scope to run a Net, i.e., `exe.Run(&scope)`.
    One net can run in different scopes and update different variable in the
    scope.

    You can create var in a scope and get it from the scope.

    Examples:
        .. code-block:: python

          # create tensor from a scope and set value to it.
          param = scope.var('Param').get_tensor()
          param_array = np.full((height, row_numel), 5.0).astype("float32")
          param.set(param_array, place)

        )DOC")
D
dongzhihong 已提交
444
      .def("var",
445
           [](Scope &self, const std::string &name) -> Variable * {
D
dongzhihong 已提交
446
             return self.Var(name);
Y
Yu Yang 已提交
447
           },
448
           py::return_value_policy::reference)
449
      .def("find_var", &Scope::FindVar, py::return_value_policy::reference)
Y
Yu Yang 已提交
450
      .def(py::init<>())
451
      .def("new_scope", [](Scope &self) -> Scope * { return &self.NewScope(); },
452
           py::return_value_policy::reference)
Y
Yu Yang 已提交
453
      .def("drop_kids", &Scope::DropKids);
454

Y
Yu Yang 已提交
455 456
  //! @note: Be careful! PyBind will return std::string as an unicode, not
  //! Python str. If you want a str object, you should cast them in Python.
Y
Yu Yang 已提交
457 458
  m.def("get_all_op_protos", []() -> std::vector<py::bytes> {
    std::vector<py::bytes> ret_values;
459 460 461 462 463 464 465 466 467 468
    for (auto &iter : OpInfoMap::Instance().map()) {
      auto &info = iter.second;
      if (info.HasOpProtoAndChecker()) {
        std::string str;
        PADDLE_ENFORCE(
            info.Proto().SerializeToString(&str),
            "Serialize OpProto Error. This could be a bug of Paddle.");
        ret_values.emplace_back(str);
      }
    }
Y
Yu Yang 已提交
469 470
    return ret_values;
  });
471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486
  m.def(
      "get_grad_op_desc", [](const OpDesc &op_desc,
                             const std::unordered_set<std::string> &no_grad_set,
                             const std::vector<BlockDesc *> &grad_sub_block) {
        std::unordered_map<std::string, std::string> grad_to_var;
        std::vector<std::unique_ptr<OpDesc>> grad_op_descs =
            framework::OpInfoMap::Instance()
                .Get(op_desc.Type())
                .GradOpMaker()(op_desc, no_grad_set, &grad_to_var,
                               grad_sub_block);
        std::vector<OpDesc *> grad_op_desc_ptrs(grad_op_descs.size());
        std::transform(grad_op_descs.begin(), grad_op_descs.end(),
                       grad_op_desc_ptrs.begin(),
                       [](std::unique_ptr<OpDesc> &p) { return p.release(); });
        return std::make_pair(grad_op_desc_ptrs, grad_to_var);
      });
Y
Yu Yang 已提交
487
  m.def("prune", [](const ProgramDesc &origin,
488
                    const std::vector<std::array<size_t, 2>> &targets) {
Y
Yu Yang 已提交
489
    ProgramDesc prog_with_targets(origin);
490
    for (const auto &t : targets) {
491
      prog_with_targets.MutableBlock(t[0])->Op(t[1])->SetIsTarget(true);
492
    }
493
    proto::ProgramDesc pruned_desc;
494
    Prune(*prog_with_targets.Proto(), &pruned_desc);
Y
Yu Yang 已提交
495
    return new ProgramDesc(pruned_desc);
496
  });
497 498 499 500
  m.def("empty_var_name",
        []() { return std::string(framework::kEmptyVarName); });
  m.def("grad_var_suffix",
        []() { return std::string(framework::kGradVarSuffix); });
501 502 503
  m.def_submodule(
       "var_names",
       "The module will return special predefined variable name in Paddle")
Y
Yi Wang 已提交
504 505
      .def("empty", []() { return kEmptyVarName; })
      .def("temp", []() { return kTempVarName; });
Q
qijun 已提交
506
  // clang-format off
Y
Yu Yang 已提交
507
  py::class_<paddle::platform::DeviceContext>(m, "DeviceContext")
Q
qijun 已提交
508 509
      .def_static("create",
                  [](paddle::platform::CPUPlace& place)
Q
qijun 已提交
510
                      -> paddle::platform::DeviceContext* {
Q
qijun 已提交
511 512 513
                    return new paddle::platform::CPUDeviceContext();
                  })
      .def_static("create",
D
dzhwinter 已提交
514
                  [](paddle::platform::CUDAPlace& place)
Q
qijun 已提交
515
                      -> paddle::platform::DeviceContext* {
516
#ifndef PADDLE_WITH_CUDA
D
dzhwinter 已提交
517
                    PADDLE_THROW("CUDAPlace is not supported in CPU device.");
Q
qijun 已提交
518
#else
Q
qijun 已提交
519
                    return new paddle::platform::CUDADeviceContext(place);
Q
qijun 已提交
520
#endif
C
chengduoZH 已提交
521 522 523 524 525 526 527 528 529 530 531
                  })
          .def_static("create",
                [](paddle::platform::CUDAPinnedPlace& place)
                        -> paddle::platform::DeviceContext* {
#ifndef PADDLE_WITH_CUDA
                  PADDLE_THROW(
                        "CUDAPinnedPlace is not supported in CPU device.");
#else
                  return new paddle::platform::CUDAPinnedDeviceContext(place);
#endif
                });;
D
Dong Zhihong 已提交
532
// clang-format on
P
peizhilin 已提交
533
#if (defined(PADDLE_WITH_CUDA) && !defined(_WIN32))
D
Dong Zhihong 已提交
534 535
  py::class_<platform::Communicator>(m, "Communicator").def(py::init<>());
#endif
D
dzhwinter 已提交
536
  py::class_<platform::CUDAPlace>(m, "CUDAPlace")
537
      .def(py::init<int>())
D
dzhwinter 已提交
538
      .def("__str__", string::to_string<const platform::CUDAPlace &>);
Q
qijun 已提交
539

540 541 542
  py::class_<paddle::platform::CPUPlace>(m, "CPUPlace")
      .def(py::init<>())
      .def("__str__", string::to_string<const platform::CPUPlace &>);
Y
Yu Yang 已提交
543

C
chengduoZH 已提交
544 545 546 547
  py::class_<paddle::platform::CUDAPinnedPlace>(m, "CUDAPinnedPlace")
      .def(py::init<>())
      .def("__str__", string::to_string<const platform::CUDAPinnedPlace &>);

Y
Yu Yang 已提交
548 549 550 551 552 553 554
  py::class_<platform::Place>(m, "Place")
      .def(py::init<>())
      .def("set_place",
           [](platform::Place &self, const platform::CPUPlace &cpu_place) {
             self = cpu_place;
           })
      .def("set_place",
D
dzhwinter 已提交
555
           [](platform::Place &self, const platform::CUDAPlace &gpu_place) {
Y
Yu Yang 已提交
556
             self = gpu_place;
C
chengduoZH 已提交
557 558
           })
      .def("set_place", [](platform::Place &self,
C
chengduoZH 已提交
559 560
                           const platform::CUDAPinnedPlace &cuda_pinned_place) {
        self = cuda_pinned_place;
C
chengduoZH 已提交
561
      });
Y
Yu Yang 已提交
562

Y
Yu Yang 已提交
563 564 565
  py::class_<OperatorBase>(m, "Operator")
      .def_static("create",
                  [](py::bytes protobin) {
566
                    proto::OpDesc desc;
Y
Yu Yang 已提交
567 568 569 570 571
                    PADDLE_ENFORCE(desc.ParsePartialFromString(protobin),
                                   "Cannot parse user input to OpDesc");
                    PADDLE_ENFORCE(desc.IsInitialized(),
                                   "User OpDesc is not initialized, reason %s",
                                   desc.InitializationErrorString());
572
                    return OpRegistry::CreateOp(desc);
Y
Yu Yang 已提交
573
                  })
574
      .def("run",
575
           [](OperatorBase &self, const Scope &scope,
D
dzhwinter 已提交
576 577 578
              const platform::CPUPlace &place) { self.Run(scope, place); })
      .def("run",
           [](OperatorBase &self, const Scope &scope,
D
dzhwinter 已提交
579
              const platform::CUDAPlace &place) { self.Run(scope, place); })
C
chengduoZH 已提交
580 581 582 583 584
      .def("run",
           [](OperatorBase &self, const Scope &scope,
              const platform::CUDAPinnedPlace &place) {
             self.Run(scope, place);
           })
Y
Yu Yang 已提交
585 586 587 588 589 590 591
      .def("type",
           [](const OperatorBase &op) -> std::string { return op.Type(); })
      .def("outputs",
           [](const OperatorBase &op)
               -> std::map<std::string, std::vector<std::string>> {
                 return op.Outputs();
               })
Q
qijun 已提交
592 593
      .def("output_vars",
           [](const OperatorBase &op) { return op.OutputVars(true); })
Y
Yu Yang 已提交
594
      .def("inputs", [](const OperatorBase &op) { return op.Inputs(); })
Q
qijun 已提交
595
      .def("input_vars", [](const OperatorBase &op) { return op.InputVars(); })
Y
Yu Yang 已提交
596 597 598 599
      .def("__str__", &OperatorBase::DebugString)
      .def("no_intermediate_outputs",
           [](const OperatorBase &op) { return op.OutputVars(false); })
      .def("support_gpu", &OperatorBase::SupportGPU);
Y
Yu Yang 已提交
600

F
fengjiayi 已提交
601
  py::class_<framework::Executor>(m, "Executor")
D
dzhwinter 已提交
602
      .def(py::init<const platform::Place &>())
Y
Yancey1989 已提交
603
      .def("close", &Executor::Close)
S
sneaxiy 已提交
604 605 606 607 608
      .def("run", [](Executor &self, const ProgramDesc &prog, Scope *scope,
                     int block_id, bool create_local_scope, bool create_vars) {
        pybind11::gil_scoped_release release;
        self.Run(prog, scope, block_id, create_local_scope, create_vars);
      });
S
sneaxiy 已提交
609

D
dzhwinter 已提交
610
  m.def("init_gflags", framework::InitGflags);
Y
Yang Yu 已提交
611
  m.def("init_glog", framework::InitGLOG);
X
Xin Pan 已提交
612 613
  m.def("init_devices",
        [](bool init_p2p) { framework::InitDevices(init_p2p); });
614

615
  m.def("is_compiled_with_cuda", IsCompiledWithCUDA);
Y
update  
Yancey1989 已提交
616
  m.def("is_compiled_with_dist", IsCompiledWithDIST);
617 618 619 620 621 622
#ifdef PADDLE_WITH_CUDA
  m.def("is_float16_supported", [](const platform::CUDAPlace &place) -> bool {
    // Only GPUs with Compute Capability >= 53 support float16
    return platform::GetCUDAComputeCapability(place.device) >= 53;
  });
#endif
623

624
  m.def("set_feed_variable", framework::SetFeedVariable);
Q
qijun 已提交
625
  m.def("get_fetch_variable", framework::GetFetchVariable);
X
Xin Pan 已提交
626
  m.def("get_variable_tensor", framework::GetVariableTensor);
Q
qijun 已提交
627

X
Xin Pan 已提交
628 629
  m.def("_is_program_version_supported", IsProgramVersionSupported);

630 631 632 633 634
  BindProgramDesc(&m);
  BindBlockDesc(&m);
  BindVarDsec(&m);
  BindOpDesc(&m);
  BindConstValue(&m);
Y
Yu Yang 已提交
635

Y
Yu Yang 已提交
636 637 638 639 640 641 642 643 644
  py::class_<framework::LoDRankTable>(m, "LodRankTable")
      .def("items", [](framework::LoDRankTable &table) {
        std::vector<std::pair<size_t, size_t>> res;
        for (auto &item : table.items()) {
          res.push_back({item.index, item.length});
        }
        return res;
      });

Y
Yu Yang 已提交
645
  py::class_<LoDTensorArray>(m, "LoDTensorArray")
S
sneaxiy 已提交
646 647
      .def("__init__",
           [](LoDTensorArray &instance) { new (&instance) LoDTensorArray(); })
Y
Yu Yang 已提交
648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663
      .def("__getitem__",
           [](LoDTensorArray &self, size_t i) { return &self.at(i); },
           py::return_value_policy::reference)
      .def("__len__", [](LoDTensorArray &self) { return self.size(); })
      .def("__setitem__",
           [](LoDTensorArray &self, size_t i, const LoDTensor &t) {
             PADDLE_ENFORCE_LT(i, self.size());
             self[i].ShareDataWith(t);
             self[i].set_lod(t.lod());
           })
      .def("append", [](LoDTensorArray &self, const LoDTensor &t) {
        self.emplace_back();
        self.back().ShareDataWith(t);
        self.back().set_lod(t.lod());
      });

D
dzhwinter 已提交
664 665 666
  m.def("IsInplace",
        [](std::string op) -> bool { return operators::IsInplace(op); });

Y
Yu Yang 已提交
667
  m.def("op_support_gpu", OpSupportGPU);
D
Dong Zhihong 已提交
668
#ifdef PADDLE_WITH_CUDA
D
Dong Zhihong 已提交
669
  m.def("get_cuda_device_count", platform::GetCUDADeviceCount);
D
dangqingqing 已提交
670

P
peizhilin 已提交
671
#ifndef _WIN32
D
dangqingqing 已提交
672 673 674
  m.def("nvprof_init", platform::CudaProfilerInit);
  m.def("nvprof_start", platform::CudaProfilerStart);
  m.def("nvprof_stop", platform::CudaProfilerStop);
D
Dong Zhihong 已提交
675
#endif
P
peizhilin 已提交
676
#endif
Y
Yu Yang 已提交
677

678 679 680 681
  py::enum_<platform::ProfilerState>(m, "ProfilerState", py::arithmetic())
      .value("kDisabled", platform::ProfilerState::kDisabled)
      .value("kCPU", platform::ProfilerState::kCPU)
      .value("kCUDA", platform::ProfilerState::kCUDA)
682
      .value("kAll", platform::ProfilerState::kAll)
683 684 685 686 687 688 689 690 691 692 693 694 695
      .export_values();

  py::enum_<platform::EventSortingKey>(m, "EventSortingKey", py::arithmetic())
      .value("kDefault", platform::EventSortingKey::kDefault)
      .value("kCalls", platform::EventSortingKey::kCalls)
      .value("kTotal", platform::EventSortingKey::kTotal)
      .value("kMin", platform::EventSortingKey::kMin)
      .value("kMax", platform::EventSortingKey::kMax)
      .value("kAve", platform::EventSortingKey::kAve)
      .export_values();

  m.def("enable_profiler", platform::EnableProfiler);
  m.def("disable_profiler", platform::DisableProfiler);
X
Xin Pan 已提交
696
  m.def("is_profiler_enabled", platform::IsProfileEnabled);
697
  m.def("reset_profiler", platform::ResetProfiler);
Y
Yu Yang 已提交
698

699 700
  py::class_<ir::Pass, std::shared_ptr<ir::Pass>> pass(m, "Pass");
  pass.def(py::init())
701 702 703 704 705
      .def(
          "set_str",
          [](ir::Pass &self, const std::string &name, const std::string &attr) {
            self.Set<std::string>(name, new std::string(attr));
          })
X
Xin Pan 已提交
706 707 708
      .def("set_int", [](ir::Pass &self, const std::string &name,
                         int val) { self.Set<const int>(name, new int(val)); })
      .def("type", &ir::Pass::Type);
709

X
fix  
Xin Pan 已提交
710 711
  py::class_<ir::PassBuilder, std::shared_ptr<ir::PassBuilder>> pb(
      m, "PassBuilder");
712 713 714 715 716 717 718 719 720 721 722 723 724 725
  pb.def(py::init())
      .def("append_pass",
           [](ir::PassBuilder &self,
              const std::string &pass_type) -> std::shared_ptr<ir::Pass> {
             return self.AppendPass(pass_type);
           })
      .def("all_passes", [](ir::PassBuilder &self) { return self.AllPasses(); })
      .def("insert_pass",
           [](ir::PassBuilder &self, size_t idx, const std::string &pass_type) {
             return self.InsertPass(idx, pass_type);
           })
      .def("remove_pass",
           [](ir::PassBuilder &self, size_t idx) { self.RemovePass(idx); });

Y
yuyang18 已提交
726
  // -- python binds for parallel executor.
Y
yuyang18 已提交
727
  py::class_<ParallelExecutor> pe(m, "ParallelExecutor");
C
chengduo 已提交
728 729 730 731
  py::class_<ExecutionStrategy> exec_strategy(pe, "ExecutionStrategy", R"DOC(
    ExecutionStrategy allows the user to more preciously control how to run
    the program in ParallelExecutor by setting the property.

C
chengduo 已提交
732 733 734 735 736 737 738 739 740 741 742
    Examples:
        .. code-block:: python

          exec_strategy = fluid.ExecutionStrategy()
          exec_strategy.num_threads = 4

          train_exe = fluid.ParallelExecutor(use_cuda=True,
                                             loss_name=loss.name,
                                             exec_strategy=exec_strategy)

          train_loss, = train_exe.run([loss.name], feed=feed_dict)
C
chengduo 已提交
743 744 745

        )DOC");

Y
yuyang18 已提交
746
  exec_strategy.def(py::init())
Y
yuyang18 已提交
747 748 749 750 751
      .def_property(
          "num_threads",
          [](const ExecutionStrategy &self) { return self.num_threads_; },
          [](ExecutionStrategy &self, size_t num_threads) {
            self.num_threads_ = num_threads;
C
chengduo 已提交
752 753 754 755 756 757 758 759 760 761
          },
          R"DOC(The type is INT, num_threads represents the size of thread pool that
            used to run the operators of the current program in ParallelExecutor.
            If :math:`num\_threads=1`, all the operators will execute one by one,
            but the order maybe difference between iterations.
            If it is not set, it will be set in ParallelExecutor according to the
            device type and device count, for GPU, :math:`num\_threads=device\_count*4`, for CPU,
            :math:`num\_threads=CPU\_NUM*4`, the explanation of:math:`CPU\_NUM` is in ParallelExecutor.
            if it is not set, ParallelExecutor will get the cpu count by calling
            `multiprocessing.cpu_count()`. Default 0.)DOC")
Y
yuyang18 已提交
762
      .def_property(
763 764 765 766
          "use_cuda",
          [](const ExecutionStrategy &self) { return self.use_cuda_; },
          [](ExecutionStrategy &self, bool use_cuda) {
            self.use_cuda_ = use_cuda;
C
chengduo 已提交
767 768 769 770
          })  // FIXME(chengduo): Doesn't add doc for 'use_cuda', use_cuda may
      // make user confuse, because ParallelExecutor has a parameter named
      // 'use_cuda' too, in current implementation, ParallelExecutor's
      // 'use_cuda' will rewrite ExecutionStrategy's 'use_cuda'.
Y
yuyang18 已提交
771 772 773 774 775
      .def_property(
          "allow_op_delay",
          [](const ExecutionStrategy &self) { return self.allow_op_delay_; },
          [](ExecutionStrategy &self, bool allow_op_delay) {
            self.allow_op_delay_ = allow_op_delay;
C
chengduo 已提交
776 777 778 779
          },
          R"DOC(The type is BOOL, allow_op_delay represents whether to delay the
                communication operators to run, it may make the execution faster.
                Note that in some models, allow_op_delay may cause program hang. Default False.)DOC")
Y
yuyang18 已提交
780 781 782 783 784 785 786
      .def_property(
          "num_iteration_per_drop_scope",
          [](const ExecutionStrategy &self) {
            return self.num_iteration_per_drop_scope_;
          },
          [](ExecutionStrategy &self, size_t num_iteration_per_drop_scope) {
            self.num_iteration_per_drop_scope_ = num_iteration_per_drop_scope;
C
chengduo 已提交
787 788 789 790 791 792 793 794 795 796 797
          },
          R"DOC(The type is INT, num_iteration_per_drop_scope indicates how
                many iterations to clean up the temp variables which
                is generated during execution. It may make the execution faster,
                because the temp variable's shape maybe the same between two iterations. Default 100.

                NOTES:
                    1. If you fetch data when calling the 'run', the ParallelExecutor
                       will clean up the temp variables at the end of the current iteration.
                    2. In some NLP model, it may cause the GPU memory is insufficient,
                       in this case, you should reduce `num_iteration_per_drop_scope`.
798 799 800 801 802 803
              )DOC")
      .def_property("_dry_run",
                    [](const ExecutionStrategy &self) { return self.dry_run_; },
                    [](ExecutionStrategy &self, bool dry_run) {
                      self.dry_run_ = dry_run;
                    });
C
chengduo 已提交
804

Y
yuyang18 已提交
805
  exec_strategy.def_property(
Y
yuyang18 已提交
806 807 808 809 810 811 812
      "use_experimental_executor",
      [](const ExecutionStrategy &self) {
        return self.type_ == ExecutionStrategy::kExperimental;
      },
      [](ExecutionStrategy &self, bool experimental) {
        self.type_ = experimental ? ExecutionStrategy::kExperimental
                                  : ExecutionStrategy::kDefault;
Y
yuyang18 已提交
813 814
      });

C
chengduo 已提交
815 816 817 818
  py::class_<BuildStrategy> build_strategy(pe, "BuildStrategy", R"DOC(
    BuildStrategy allows the user to more preciously control how to
    build the SSA Graph in ParallelExecutor by setting the property.

C
chengduo 已提交
819 820 821 822 823 824 825 826 827 828 829
    Examples:
        .. code-block:: python

          build_strategy = fluid.BuildStrategy()
          build_strategy.reduce_strategy = fluid.BuildStrategy.ReduceStrategy.Reduce

          train_exe = fluid.ParallelExecutor(use_cuda=True,
                                             loss_name=loss.name,
                                             build_strategy=build_strategy)

          train_loss, = train_exe.run([loss.name], feed=feed_dict)
C
chengduo 已提交
830
)DOC");
Y
yuyang18 已提交
831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846

  py::enum_<BuildStrategy::ReduceStrategy>(build_strategy, "ReduceStrategy")
      .value("Reduce", BuildStrategy::ReduceStrategy::kReduce)
      .value("AllReduce", BuildStrategy::ReduceStrategy::kAllReduce);
  py::enum_<BuildStrategy::GradientScaleStrategy>(build_strategy,
                                                  "GradientScaleStrategy")
      .value("CoeffNumDevice",
             BuildStrategy::GradientScaleStrategy::kCoeffNumDevice)
      .value("One", BuildStrategy::GradientScaleStrategy::kOne)
      .value("Customized", BuildStrategy::GradientScaleStrategy::kCustomized);

  build_strategy.def(py::init())
      .def_property(
          "reduce_strategy",
          [](const BuildStrategy &self) { return self.reduce_; },
          [](BuildStrategy &self, BuildStrategy::ReduceStrategy strategy) {
X
Xin Pan 已提交
847
            PADDLE_ENFORCE(!self.IsFinalized(), "BuildStrategy is finlaized.");
Y
yuyang18 已提交
848
            self.reduce_ = strategy;
C
chengduo 已提交
849 850 851 852 853 854 855
          },
          R"DOC(The type is STR, there are two reduce strategies in ParallelExecutor,
                  'AllReduce' and 'Reduce'. If you want that all the parameters'
                  optimization are done on all devices independently, you should choose 'AllReduce';
                  if you choose 'Reduce', all the parameters' optimization will be evenly distributed
                  to different devices, and then broadcast the optimized parameter to other devices.
                  In some models, `Reduce` is faster. Default 'AllReduce'. )DOC")
Y
yuyang18 已提交
856 857 858 859 860
      .def_property(
          "gradient_scale_strategy",
          [](const BuildStrategy &self) { return self.gradient_scale_; },
          [](BuildStrategy &self,
             BuildStrategy::GradientScaleStrategy strategy) {
X
Xin Pan 已提交
861
            PADDLE_ENFORCE(!self.IsFinalized(), "BuildStrategy is finlaized.");
Y
yuyang18 已提交
862
            self.gradient_scale_ = strategy;
C
chengduo 已提交
863 864 865 866 867 868
          },
          R"DOC(The type is STR, there are three ways of defining :math:`loss@grad` in
                   ParallelExecutor, 'CoeffNumDevice', 'One' and 'Customized'. By default,
                   ParallelExecutor sets the :math:`loss@grad` according to the number of devices.
                   If you want to customize :math:`loss@grad`, you can choose 'Customized'.
                   Default 'CoeffNumDevice'.)DOC")
Y
yuyang18 已提交
869 870 871 872
      .def_property(
          "debug_graphviz_path",
          [](const BuildStrategy &self) { return self.debug_graphviz_path_; },
          [](BuildStrategy &self, const std::string &path) {
X
Xin Pan 已提交
873
            PADDLE_ENFORCE(!self.IsFinalized(), "BuildStrategy is finlaized.");
Y
yuyang18 已提交
874
            self.debug_graphviz_path_ = path;
C
chengduo 已提交
875 876 877 878
          },
          R"DOC(The type is STR, debug_graphviz_path indicate the path that
                    writing the SSA Graph to file in the form of graphviz, you.
                    It is useful for debugging. Default "")DOC")
F
fengjiayi 已提交
879 880 881
      .def_property(
          "enable_data_balance",
          [](const BuildStrategy &self) { return self.enable_data_balance_; },
C
chengduo 已提交
882
          [](BuildStrategy &self, bool b) {
X
Xin Pan 已提交
883
            PADDLE_ENFORCE(!self.IsFinalized(), "BuildStrategy is finlaized.");
C
chengduo 已提交
884 885
            self.enable_data_balance_ = b;
          })  // FIXME(chengudo): enable_data_balance seems not important
S
sneaxiy 已提交
886 887 888 889 890 891
      .def_property(
          "enable_sequential_execution",
          [](const BuildStrategy &self) {
            return self.enable_sequential_execution_;
          },
          [](BuildStrategy &self, bool b) {
X
Xin Pan 已提交
892
            PADDLE_ENFORCE(!self.IsFinalized(), "BuildStrategy is finlaized.");
S
sneaxiy 已提交
893 894 895 896 897 898 899 900 901
            self.enable_sequential_execution_ = b;
          },
          R"DOC(The type is BOOL. If set True, the execution order of ops would be the same as what is in the program. Default False.)DOC")
      .def_property(
          "remove_unnecessary_lock",
          [](const BuildStrategy &self) {
            return self.remove_unnecessary_lock_;
          },
          [](BuildStrategy &self, bool b) {
X
Xin Pan 已提交
902
            PADDLE_ENFORCE(!self.IsFinalized(), "BuildStrategy is finlaized.");
S
sneaxiy 已提交
903 904 905
            self.remove_unnecessary_lock_ = b;
          },
          R"DOC(The type is BOOL. If set True, some locks in GPU ops would be released and ParallelExecutor would run faster. Default False.)DOC")
906 907 908 909 910 911
      .def_property(
          "num_trainers",
          [](const BuildStrategy &self) { return self.num_trainers_; },
          [](BuildStrategy &self, int num_trainers) {
            self.num_trainers_ = num_trainers;
          })
C
chengduo 已提交
912 913 914 915 916 917
      .def_property(
          "fuse_elewise_add_act_ops",
          [](const BuildStrategy &self) {
            return self.fuse_elewise_add_act_ops_;
          },
          [](BuildStrategy &self, bool b) {
X
Xin Pan 已提交
918
            PADDLE_ENFORCE(!self.IsFinalized(), "BuildStrategy is finlaized.");
C
chengduo 已提交
919 920 921 922 923
            self.fuse_elewise_add_act_ops_ = b;
          },
          R"DOC(The type is BOOL, fuse_elewise_add_act_ops indicate whether
                     to fuse elementwise_add_op and activation_op,
                     it may make the execution faster. Default False)DOC")
924
      .def("_finalize_strategy_and_create_passes",
X
fix  
Xin Pan 已提交
925
           [](BuildStrategy &self) -> std::shared_ptr<ir::PassBuilder> {
926 927 928 929 930
             return self.CreatePassesFromStrategy(true);
           },
           R"DOC(Allow user to customized passes. Normally model-specific
                optimization passes should be defined in this way. BuildStrategy
                cannot be updated after being finalized.)DOC");
Y
yuyang18 已提交
931 932 933 934

  pe.def(py::init<const std::vector<platform::Place> &,
                  const std::unordered_set<std::string> &,
                  const std::unordered_set<std::string> &, const ProgramDesc &,
Y
yuyang18 已提交
935
                  const std::string &, Scope *, std::vector<Scope *> &,
936 937
                  const ExecutionStrategy &, const BuildStrategy &, size_t,
                  size_t>())
Y
Yu Yang 已提交
938 939 940 941
      // NOTE: even we return a vec<Scope*>* to Python use reference policy.
      // We still cannot get local_scope from this vector, since the element
      // of vec<Scope*> will be freed by Python GC. We can only return Scope*
      // one by one and mark them as reference.
942 943 944 945 946
      .def("local_scopes",
           [](ParallelExecutor &self) -> std::vector<Scope *> * {
             return &self.GetLocalScopes();
           },
           py::return_value_policy::reference)
Y
Yu Yang 已提交
947 948 949 950
      .def("feed_tensors_into_local_scopes",
           &ParallelExecutor::FeedTensorsIntoLocalScopes)
      .def("feed_and_split_tensor_into_local_scopes",
           &ParallelExecutor::FeedAndSplitTensorIntoLocalScopes)
S
sneaxiy 已提交
951 952 953 954 955 956
      .def("run", [](ParallelExecutor &self,
                     const std::vector<std::string> &fetch_tensors,
                     const std::string &fetched_var_name) {
        pybind11::gil_scoped_release release;
        self.Run(fetch_tensors, fetched_var_name);
      });
Y
Yu Yang 已提交
957

958
  BindRecordIOWriter(&m);
W
Wang Guibao 已提交
959
  BindAsyncExecutor(&m);
L
Luo Tao 已提交
960
}
961
}  // namespace pybind
962
}  // namespace paddle