pybind.cc 40.6 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

7
http://www.apache.org/licenses/LICENSE-2.0
8 9 10 11 12 13

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
L
lgone2000 已提交
14
#include <Python.h>
C
chengduoZH 已提交
15 16
#include <algorithm>
#include <map>
S
sneaxiy 已提交
17
#include <memory>
C
chengduoZH 已提交
18 19 20 21 22
#include <mutex>  // NOLINT // for call_once
#include <string>
#include <unordered_map>
#include <utility>
#include <vector>
23

Y
Yi Wang 已提交
24 25 26
#include "paddle/fluid/framework/executor.h"
#include "paddle/fluid/framework/feed_fetch_method.h"
#include "paddle/fluid/framework/framework.pb.h"
27
#include "paddle/fluid/framework/ir/pass_builder.h"
Y
Yi Wang 已提交
28 29 30
#include "paddle/fluid/framework/lod_rank_table.h"
#include "paddle/fluid/framework/lod_tensor.h"
#include "paddle/fluid/framework/lod_tensor_array.h"
31
#include "paddle/fluid/framework/op_registry.h"
Y
Yu Yang 已提交
32
#include "paddle/fluid/framework/parallel_executor.h"
Y
Yi Wang 已提交
33
#include "paddle/fluid/framework/prune.h"
Y
Refine  
Yu Yang 已提交
34
#include "paddle/fluid/framework/reader.h"
Y
Yi Wang 已提交
35
#include "paddle/fluid/framework/selected_rows.h"
X
Xin Pan 已提交
36
#include "paddle/fluid/framework/version.h"
Y
Refine  
Yu Yang 已提交
37
#include "paddle/fluid/memory/allocation/allocator_strategy.h"
D
dzhwinter 已提交
38
#include "paddle/fluid/operators/activation_op.h"
S
sneaxiy 已提交
39
#include "paddle/fluid/operators/reader/lod_tensor_blocking_queue.h"
Y
Yu Yang 已提交
40
#include "paddle/fluid/platform/cpu_info.h"
Y
Yi Wang 已提交
41
#include "paddle/fluid/platform/enforce.h"
42
#include "paddle/fluid/platform/init.h"
Y
Yi Wang 已提交
43 44
#include "paddle/fluid/platform/place.h"
#include "paddle/fluid/platform/profiler.h"
W
Wang Guibao 已提交
45
#include "paddle/fluid/pybind/async_executor_py.h"
Y
Yi Wang 已提交
46 47
#include "paddle/fluid/pybind/const_value.h"
#include "paddle/fluid/pybind/exception.h"
X
Xin Pan 已提交
48
#include "paddle/fluid/pybind/imperative.h"
49 50
#include "paddle/fluid/pybind/protobuf.h"
#include "paddle/fluid/pybind/pybind.h"  // NOLINT
Y
Yu Yang 已提交
51
#include "paddle/fluid/pybind/recordio.h"
Y
Yi Wang 已提交
52
#include "paddle/fluid/pybind/tensor_py.h"
Y
Yu Yang 已提交
53

54
#include "paddle/fluid/string/to_string.h"
55

D
Dong Zhihong 已提交
56
#ifdef PADDLE_WITH_CUDA
P
peizhilin 已提交
57
#ifndef _WIN32
Y
Yi Wang 已提交
58
#include "paddle/fluid/operators/nccl/nccl_gpu_common.h"
P
peizhilin 已提交
59
#endif
Y
Yi Wang 已提交
60 61
#include "paddle/fluid/platform/cuda_profiler.h"
#include "paddle/fluid/platform/gpu_info.h"
D
Dong Zhihong 已提交
62 63
#endif

M
minqiyang 已提交
64 65
#include "pybind11/stl.h"

66 67 68 69
DEFINE_bool(reader_queue_speed_test_mode, false,
            "If set true, the queue.pop will only get data from queue but not "
            "remove the data from queue for speed testing");

Q
Qiao Longfei 已提交
70 71 72
// disable auto conversion to list in Python
PYBIND11_MAKE_OPAQUE(paddle::framework::LoDTensorArray);

73
namespace paddle {
74
namespace pybind {
75
bool IsCompiledWithCUDA() {
76
#ifndef PADDLE_WITH_CUDA
Q
qijun 已提交
77 78 79 80 81 82
  return false;
#else
  return true;
#endif
}

Y
update  
Yancey1989 已提交
83
bool IsCompiledWithDIST() {
Y
Yancey1989 已提交
84
#ifdef PADDLE_WITH_DISTRIBUTE
Y
update  
Yancey1989 已提交
85 86 87 88 89 90
  return true;
#else
  return false;
#endif
}

91
PYBIND11_MODULE(core, m) {
Y
Yu Yang 已提交
92 93 94
  // Not used, just make sure cpu_info.cc is linked.
  paddle::platform::CpuTotalPhysicalMemory();

Y
Refine  
Yu Yang 已提交
95
  paddle::memory::allocation::UseAllocatorStrategyGFlag();
96
  m.doc() = "C++ core of PaddlePaddle";
97

98 99 100 101
  // using framework in this function. Since it is inside a function, it will
  // not cause namespace pollution.
  using namespace paddle::framework;  // NOLINT

102
  BindException(&m);
Y
Yu Yang 已提交
103

X
Xin Pan 已提交
104 105 106 107
  py::class_<imperative::Layer, PyLayer /* <--- trampoline*/> layer(m, "Layer");
  layer.def(py::init<>())
      .def("forward", &imperative::Layer::Forward)
      .def("backward", &imperative::Layer::Backward);
X
Xin Pan 已提交
108
  BindTracer(&m);
X
Xin Pan 已提交
109

110 111 112
  py::class_<Tensor>(m, "Tensor", py::buffer_protocol())
      .def_buffer(
          [](Tensor &self) -> py::buffer_info { return CastToPyBuffer(self); })
Y
yuyang18 已提交
113
      .def("_get_dims",
114
           [](const Tensor &self) { return vectorize(self.dims()); })
Y
yuyang18 已提交
115
      .def("_set_dims",
Q
qijun 已提交
116
           [](Tensor &self, const std::vector<int64_t> &dim) {
Y
Yu Yang 已提交
117
             self.Resize(make_ddim(dim));
Y
Yu Yang 已提交
118
           })
Y
yuyang18 已提交
119
      .def("_set_layout",
D
dzhwinter 已提交
120 121 122
           [](Tensor &self, const std::string &layout) {
             self.set_layout(StringToDataLayout(layout));
           })
Y
yuyang18 已提交
123
      .def("_alloc_float",
D
dzhwinter 已提交
124
           [](Tensor &self, paddle::platform::CUDAPlace &place) {
Q
qijun 已提交
125
             self.mutable_data<float>(place);
Y
Yu Yang 已提交
126
           })
Y
yuyang18 已提交
127
      .def("_alloc_float",
Y
Yu Yang 已提交
128
           [](Tensor &self, paddle::platform::CPUPlace &place) {
Q
qijun 已提交
129
             self.mutable_data<float>(place);
Y
Yu Yang 已提交
130
           })
Y
yuyang18 已提交
131
      .def("_alloc_int",
Y
Yu Yang 已提交
132
           [](Tensor &self, paddle::platform::CPUPlace &place) {
Q
qijun 已提交
133
             self.mutable_data<int>(place);
Y
Yu Yang 已提交
134
           })
Y
yuyang18 已提交
135
      .def("_alloc_int",
D
dzhwinter 已提交
136
           [](Tensor &self, paddle::platform::CUDAPlace &place) {
Q
qijun 已提交
137
             self.mutable_data<int>(place);
Q
qijun 已提交
138
           })
Y
yuyang18 已提交
139
      .def("_alloc_int",
C
chengduoZH 已提交
140 141 142
           [](Tensor &self, paddle::platform::CUDAPinnedPlace &place) {
             self.mutable_data<int>(place);
           })
Y
yuyang18 已提交
143
      .def("_alloc_float",
C
chengduoZH 已提交
144 145 146
           [](Tensor &self, paddle::platform::CUDAPinnedPlace &place) {
             self.mutable_data<float>(place);
           })
Y
Yu Yang 已提交
147 148
      .def("set", PyCPUTensorSetFromArray<float>)
      .def("set", PyCPUTensorSetFromArray<int>)
149
      .def("set", PyCPUTensorSetFromArray<double>)
150
      .def("set", PyCPUTensorSetFromArray<int64_t>)
Y
Yu Yang 已提交
151
      .def("set", PyCPUTensorSetFromArray<bool>)
152
      .def("set", PyCPUTensorSetFromArray<uint16_t>)
F
fengjiayi 已提交
153
      .def("set", PyCPUTensorSetFromArray<uint8_t>)
Q
qingqing01 已提交
154
      .def("set", PyCPUTensorSetFromArray<int8_t>)
155
#ifdef PADDLE_WITH_CUDA
Y
Yu Yang 已提交
156 157
      .def("set", PyCUDATensorSetFromArray<float>)
      .def("set", PyCUDATensorSetFromArray<int>)
158
      .def("set", PyCUDATensorSetFromArray<double>)
159
      .def("set", PyCUDATensorSetFromArray<int64_t>)
Y
Yu Yang 已提交
160
      .def("set", PyCUDATensorSetFromArray<bool>)
161
      .def("set", PyCUDATensorSetFromArray<uint16_t>)
F
fengjiayi 已提交
162
      .def("set", PyCUDATensorSetFromArray<uint8_t>)
Q
qingqing01 已提交
163
      .def("set", PyCUDATensorSetFromArray<int8_t>)
C
chengduoZH 已提交
164 165 166 167 168 169
      .def("set", PyCUDAPinnedTensorSetFromArray<float>)
      .def("set", PyCUDAPinnedTensorSetFromArray<int>)
      .def("set", PyCUDAPinnedTensorSetFromArray<double>)
      .def("set", PyCUDAPinnedTensorSetFromArray<int64_t>)
      .def("set", PyCUDAPinnedTensorSetFromArray<bool>)
      .def("set", PyCUDAPinnedTensorSetFromArray<uint16_t>)
F
fengjiayi 已提交
170
      .def("set", PyCUDAPinnedTensorSetFromArray<uint8_t>)
Q
qingqing01 已提交
171
      .def("set", PyCUDAPinnedTensorSetFromArray<int8_t>)
Q
qijun 已提交
172
#endif
173
      .def("shape", [](Tensor &self) { return vectorize(self.dims()); })
Y
yuyang18 已提交
174 175 176 177 178
      .def("_set_float_element", TensorSetElement<float>)
      .def("_get_float_element", TensorGetElement<float>)
      .def("_set_double_element", TensorSetElement<double>)
      .def("_get_double_element", TensorGetElement<double>)
      .def("_dtype", [](Tensor &self) { return ToDataType(self.type()); });
Y
Yu Yang 已提交
179

X
Xin Pan 已提交
180 181 182 183 184 185 186 187 188 189 190 191 192
  py::class_<LoDTensor, Tensor>(m, "LoDTensor", R"DOC(
    LoDTensor is a Tensor with optional LoD information.

    np.array(lod_tensor) can convert LoDTensor to numpy array.
    lod_tensor.lod() can retrieve the LoD information.

    LoD is short for Level of Details and is usually used for varied sequence
    length. You can skip the following comment if you don't need optional LoD.

  For example:
     A LoDTensor X can look like the example below. It contains 2 sequences.
     The first has length 2 and the second has length 3, as described by x.lod.

X
fix doc  
Xin Pan 已提交
193
     The first tensor dimension 5=2+3 is calculated from LoD if it's available.
X
Xin Pan 已提交
194
     It means the total number of sequence element. In X, each element has 2
X
fix doc  
Xin Pan 已提交
195
     columns, hence [5, 2].
X
Xin Pan 已提交
196 197 198

      x.lod  = [[2, 3]]
      x.data = [[1, 2], [3, 4],
X
fix doc  
Xin Pan 已提交
199 200
                [5, 6], [7, 8], [9, 10]]
      x.shape = [5, 2]
X
Xin Pan 已提交
201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223

      LoD can have multiple levels (for example, a paragraph can have multiple
      sentences and a sentence can have multiple words). In the following
      LodTensor Y, the lod_level is 2. It means there are 2 sequence, the
      first sequence length is 2 (has 2 sub-sequences), the second one's
      length is 1. The first sequence's 2 sub-sequences have length 2 and 2,
      respectively. And the second sequence's 1 sub-sequence has length 3.

      y.lod = [[2 1], [2 2 3]]
      y.shape = [2+2+3, ...]

  Note:
      In above description, LoD is length-based. In Paddle internal
      implementation, lod is offset-based. Hence, internally,
      y.lod is represented as [[0, 2, 3], [0, 2, 4, 7]] (length-based
      equivlent would be [[2-0, 3-2], [2-0, 4-2, 7-4]]).

      Sometimes LoD is called recursive_sequence_length to be more
      self-explanatory. In this case, it must be length-based. Due to history
      reasons. when LoD is called lod in public API, it might be offset-based.
      Users should be careful about it.

        )DOC")
224 225
      .def_buffer(
          [](Tensor &self) -> py::buffer_info { return CastToPyBuffer(self); })
226 227 228 229 230 231 232 233 234 235 236 237 238 239
      .def("__init__",
           [](LoDTensor &instance, const std::vector<std::vector<size_t>>
                                       &recursive_sequence_lengths) {
             LoD new_lod;
             new_lod.reserve(recursive_sequence_lengths.size());
             std::copy(recursive_sequence_lengths.begin(),
                       recursive_sequence_lengths.end(),
                       std::back_inserter(new_lod));
             LoD new_offset_lod = ConvertToOffsetBasedLoD(new_lod);
             PADDLE_ENFORCE(
                 CheckLoD(new_offset_lod, -1),
                 "the provided recursive_sequence_lengths info is invalid");
             new (&instance) LoDTensor(new_offset_lod);
           })
Y
Yu Yang 已提交
240
      .def("__init__", [](LoDTensor &instance) { new (&instance) LoDTensor(); })
G
gongweibao 已提交
241 242 243 244 245
      // We implement offset based LOD in C++ while we use length based with
      // Python API. So we changed set_lod to set_recursive_sequence_lengths to
      // avoid misuse.
      // The discussion is here:
      // https://github.com/PaddlePaddle/Paddle/issues/10855
D
dangqingqing 已提交
246
      .def("set_lod",
247
           [](LoDTensor &self, const std::vector<std::vector<size_t>> &lod) {
248
             // the input lod is offset-based level-of-detail info
Y
Yu Yang 已提交
249
             LoD new_lod;
250 251
             new_lod.reserve(lod.size());
             std::copy(lod.begin(), lod.end(), std::back_inserter(new_lod));
252 253
             PADDLE_ENFORCE(CheckLoD(new_lod, vectorize(self.dims()).front()),
                            "the provided lod info is invalid");
254
             self.set_lod(new_lod);
D
dangqingqing 已提交
255
           })
256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280
      .def("set_recursive_sequence_lengths",
           [](LoDTensor &self, const std::vector<std::vector<size_t>>
                                   &recursive_sequence_lengths) {
             // the input recursive_sequence_lengths is length-based
             // level-of-detail info
             LoD new_lod;
             new_lod.reserve(recursive_sequence_lengths.size());
             std::copy(recursive_sequence_lengths.begin(),
                       recursive_sequence_lengths.end(),
                       std::back_inserter(new_lod));
             LoD new_offset_lod = ConvertToOffsetBasedLoD(new_lod);
             PADDLE_ENFORCE(
                 CheckLoD(new_offset_lod, vectorize(self.dims()).front()),
                 "the provided recursive_sequence_lengths info is invalid");
             self.set_lod(new_offset_lod);
           })
      .def("lod",
           [](LoDTensor &self) -> std::vector<std::vector<size_t>> {
             // output the offset-based lod info
             LoD lod = self.lod();
             std::vector<std::vector<size_t>> new_lod;
             new_lod.reserve(lod.size());
             std::copy(lod.begin(), lod.end(), std::back_inserter(new_lod));
             return new_lod;
           })
G
gongweibao 已提交
281
      // Set above comments of set_lod.
282 283 284 285 286 287 288 289 290 291 292 293 294
      .def("recursive_sequence_lengths",
           [](LoDTensor &self) -> std::vector<std::vector<size_t>> {
             // output the length-based lod info
             LoD lod = ConvertToLengthBasedLoD(self.lod());
             std::vector<std::vector<size_t>> new_lod;
             new_lod.reserve(lod.size());
             std::copy(lod.begin(), lod.end(), std::back_inserter(new_lod));
             return new_lod;
           })
      .def("has_valid_recursive_sequence_lengths", [](LoDTensor &self) -> bool {
        // Check that the lod info is valid and match the outermost
        // dimension of the LoDTensor data
        return CheckLoD(self.lod(), vectorize(self.dims()).front());
D
dangqingqing 已提交
295 296
      });

Q
qijun 已提交
297 298 299 300 301 302 303 304 305 306 307 308 309
  py::class_<SelectedRows>(m, "SelectedRows")
      .def("__init__",
           [](SelectedRows &instance) { new (&instance) SelectedRows(); })
      .def("__init__",
           [](SelectedRows &instance, const std::vector<int64_t> rows,
              const int64_t &height) {
             new (&instance) SelectedRows(rows, height);
           })
      .def("get_tensor",
           [](SelectedRows &self) { return self.mutable_value(); },
           py::return_value_policy::reference)
      .def("set_height", &SelectedRows::set_height)
      .def("height", &SelectedRows::height)
Q
qijun 已提交
310 311 312 313 314 315 316 317 318
      .def("set_rows",
           [](SelectedRows &self, std::vector<int64_t> rows) {
#ifndef PADDLE_WITH_CUDA
             self.set_rows(rows);
#else
        Vector<int64_t> new_rows(rows);
        self.set_rows(new_rows);
#endif
           })
319
      .def("sync_index", [](SelectedRows &instance) { instance.SyncIndex(); })
320
      .def("rows", [](SelectedRows &self) {
321 322 323 324 325
        auto rows = self.rows();
        std::vector<int64_t> new_rows;
        new_rows.reserve(rows.size());
        std::copy(rows.begin(), rows.end(), std::back_inserter(new_rows));
        return new_rows;
326
      });
Q
qijun 已提交
327

328
  py::class_<Variable>(m, "Variable", R"DOC(Variable Class.
329 330 331

All parameter, weight, gradient are variables in Paddle.
)DOC")
332
      .def("is_int", [](const Variable &var) { return var.IsType<int>(); })
333
      .def("set_int",
334 335
           [](Variable &var, int val) -> void { *var.GetMutable<int>() = val; })
      .def("get_int", [](const Variable &var) -> int { return var.Get<int>(); })
336 337 338 339 340 341 342
      .def("is_float", [](const Variable &var) { return var.IsType<float>(); })
      .def("set_float",
           [](Variable &var, float val) -> void {
             *var.GetMutable<float>() = val;
           })
      .def("get_float",
           [](const Variable &var) -> float { return var.Get<float>(); })
Y
Yu Yang 已提交
343
      .def("get_tensor",
344 345
           [](Variable &self) -> LoDTensor * {
             return self.GetMutable<LoDTensor>();
D
dangqingqing 已提交
346 347
           },
           py::return_value_policy::reference)
Y
Yu Yang 已提交
348 349 350
      .def("get_lod_rank_table",
           [](Variable &self) { return self.GetMutable<LoDRankTable>(); },
           py::return_value_policy::reference)
Q
qijun 已提交
351 352 353 354 355
      .def("get_selected_rows",
           [](Variable &self) -> SelectedRows * {
             return self.GetMutable<SelectedRows>();
           },
           py::return_value_policy::reference)
Y
Yu Yang 已提交
356 357 358
      .def("get_lod_tensor_array",
           [](Variable &self) { return self.GetMutable<LoDTensorArray>(); },
           py::return_value_policy::reference)
P
peizhilin 已提交
359
#if (defined(PADDLE_WITH_CUDA) && !defined(_WIN32))
D
Dong Zhihong 已提交
360 361 362 363 364
      .def("get_communicator",
           [](Variable &self) -> platform::Communicator * {
             return self.GetMutable<platform::Communicator>();
           },
           py::return_value_policy::reference)
Y
Yu Yang 已提交
365
#endif
Y
Refine  
Yu Yang 已提交
366 367 368 369 370
      .def("get_reader",
           [](Variable &self) -> framework::ReaderHolder * {
             PADDLE_ENFORCE(self.IsType<framework::ReaderHolder>());
             return self.GetMutable<framework::ReaderHolder>();
           },
W
wopeizl 已提交
371
           py::return_value_policy::reference);
372

Y
Refine  
Yu Yang 已提交
373
  py::class_<framework::ReaderHolder>(m, "Reader", "")
374
      .def("reset", &framework::ReaderHolder::ResetAll);
Y
Refine  
Yu Yang 已提交
375

S
sneaxiy 已提交
376 377 378 379
  using LoDTensorBlockingQueue =
      ::paddle::operators::reader::LoDTensorBlockingQueue;
  using LoDTensorBlockingQueueHolder =
      ::paddle::operators::reader::LoDTensorBlockingQueueHolder;
S
sneaxiy 已提交
380 381
  py::class_<LoDTensorBlockingQueue, std::shared_ptr<LoDTensorBlockingQueue>>(
      m, "LoDTensorBlockingQueue", "")
S
sneaxiy 已提交
382
      .def("push",
S
sneaxiy 已提交
383
           [](LoDTensorBlockingQueue &self,
S
sneaxiy 已提交
384
              const std::vector<framework::LoDTensor> &lod_tensor_vec) {
S
sneaxiy 已提交
385
             pybind11::gil_scoped_release release;
S
sneaxiy 已提交
386
             return self.Push(lod_tensor_vec);
S
sneaxiy 已提交
387
           })
S
sneaxiy 已提交
388 389 390 391
      .def("size", &LoDTensorBlockingQueue::Size)
      .def("capacity", &LoDTensorBlockingQueue::Cap)
      .def("close", &LoDTensorBlockingQueue::Close)
      .def("is_closed", &LoDTensorBlockingQueue::IsClosed);
S
sneaxiy 已提交
392

S
sneaxiy 已提交
393
  m.def("init_lod_tensor_blocking_queue",
S
sneaxiy 已提交
394
        [](Variable &var, size_t capacity,
S
sneaxiy 已提交
395
           const std::vector<std::vector<int64_t>> &shapes)
S
sneaxiy 已提交
396
            -> std::shared_ptr<LoDTensorBlockingQueue> {
S
sneaxiy 已提交
397 398 399 400 401 402
              std::vector<DDim> dims(shapes.size());
              std::transform(shapes.begin(), shapes.end(), dims.begin(),
                             [](const std::vector<int64_t> &shape) {
                               return make_ddim(shape);
                             });
              auto *holder = var.GetMutable<LoDTensorBlockingQueueHolder>();
403 404
              holder->InitOnce(capacity, dims,
                               FLAGS_reader_queue_speed_test_mode);
S
sneaxiy 已提交
405
              return holder->GetQueue();
S
sneaxiy 已提交
406
            },
S
sneaxiy 已提交
407
        py::return_value_policy::copy);
S
sneaxiy 已提交
408

Q
Qiao Longfei 已提交
409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428
  py::class_<Scope>(m, "Scope", R"DOC(
    Scope is an association of a name to Variable. All variables belong to Scope.

    Variables in a parent scope can be retrieved from local scope.

    You need to specify a scope to run a Net, i.e., `exe.Run(&scope)`.
    One net can run in different scopes and update different variable in the
    scope.

    You can create var in a scope and get it from the scope.

    Examples:
        .. code-block:: python

          # create tensor from a scope and set value to it.
          param = scope.var('Param').get_tensor()
          param_array = np.full((height, row_numel), 5.0).astype("float32")
          param.set(param_array, place)

        )DOC")
D
dongzhihong 已提交
429
      .def("var",
430
           [](Scope &self, const std::string &name) -> Variable * {
D
dongzhihong 已提交
431
             return self.Var(name);
Y
Yu Yang 已提交
432
           },
433
           py::return_value_policy::reference)
434
      .def("find_var", &Scope::FindVar, py::return_value_policy::reference)
Y
Yu Yang 已提交
435
      .def(py::init<>())
436
      .def("new_scope", [](Scope &self) -> Scope * { return &self.NewScope(); },
437
           py::return_value_policy::reference)
Y
Yu Yang 已提交
438
      .def("drop_kids", &Scope::DropKids);
439

Y
Yu Yang 已提交
440 441
  //! @note: Be careful! PyBind will return std::string as an unicode, not
  //! Python str. If you want a str object, you should cast them in Python.
Y
Yu Yang 已提交
442 443
  m.def("get_all_op_protos", []() -> std::vector<py::bytes> {
    std::vector<py::bytes> ret_values;
444 445 446 447 448 449 450 451 452 453
    for (auto &iter : OpInfoMap::Instance().map()) {
      auto &info = iter.second;
      if (info.HasOpProtoAndChecker()) {
        std::string str;
        PADDLE_ENFORCE(
            info.Proto().SerializeToString(&str),
            "Serialize OpProto Error. This could be a bug of Paddle.");
        ret_values.emplace_back(str);
      }
    }
Y
Yu Yang 已提交
454 455
    return ret_values;
  });
456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471
  m.def(
      "get_grad_op_desc", [](const OpDesc &op_desc,
                             const std::unordered_set<std::string> &no_grad_set,
                             const std::vector<BlockDesc *> &grad_sub_block) {
        std::unordered_map<std::string, std::string> grad_to_var;
        std::vector<std::unique_ptr<OpDesc>> grad_op_descs =
            framework::OpInfoMap::Instance()
                .Get(op_desc.Type())
                .GradOpMaker()(op_desc, no_grad_set, &grad_to_var,
                               grad_sub_block);
        std::vector<OpDesc *> grad_op_desc_ptrs(grad_op_descs.size());
        std::transform(grad_op_descs.begin(), grad_op_descs.end(),
                       grad_op_desc_ptrs.begin(),
                       [](std::unique_ptr<OpDesc> &p) { return p.release(); });
        return std::make_pair(grad_op_desc_ptrs, grad_to_var);
      });
Y
Yu Yang 已提交
472
  m.def("prune", [](const ProgramDesc &origin,
473
                    const std::vector<std::array<size_t, 2>> &targets) {
Y
Yu Yang 已提交
474
    ProgramDesc prog_with_targets(origin);
475
    for (const auto &t : targets) {
476
      prog_with_targets.MutableBlock(t[0])->Op(t[1])->SetIsTarget(true);
477
    }
478
    proto::ProgramDesc pruned_desc;
479
    Prune(*prog_with_targets.Proto(), &pruned_desc);
Y
Yu Yang 已提交
480
    return new ProgramDesc(pruned_desc);
481
  });
482 483 484 485
  m.def("empty_var_name",
        []() { return std::string(framework::kEmptyVarName); });
  m.def("grad_var_suffix",
        []() { return std::string(framework::kGradVarSuffix); });
486 487 488
  m.def_submodule(
       "var_names",
       "The module will return special predefined variable name in Paddle")
Y
Yi Wang 已提交
489 490
      .def("empty", []() { return kEmptyVarName; })
      .def("temp", []() { return kTempVarName; });
Q
qijun 已提交
491
  // clang-format off
Y
Yu Yang 已提交
492
  py::class_<paddle::platform::DeviceContext>(m, "DeviceContext")
Q
qijun 已提交
493 494
      .def_static("create",
                  [](paddle::platform::CPUPlace& place)
Q
qijun 已提交
495
                      -> paddle::platform::DeviceContext* {
Q
qijun 已提交
496 497 498
                    return new paddle::platform::CPUDeviceContext();
                  })
      .def_static("create",
D
dzhwinter 已提交
499
                  [](paddle::platform::CUDAPlace& place)
Q
qijun 已提交
500
                      -> paddle::platform::DeviceContext* {
501
#ifndef PADDLE_WITH_CUDA
D
dzhwinter 已提交
502
                    PADDLE_THROW("CUDAPlace is not supported in CPU device.");
Q
qijun 已提交
503
#else
Q
qijun 已提交
504
                    return new paddle::platform::CUDADeviceContext(place);
Q
qijun 已提交
505
#endif
C
chengduoZH 已提交
506 507 508 509 510 511 512 513 514 515 516
                  })
          .def_static("create",
                [](paddle::platform::CUDAPinnedPlace& place)
                        -> paddle::platform::DeviceContext* {
#ifndef PADDLE_WITH_CUDA
                  PADDLE_THROW(
                        "CUDAPinnedPlace is not supported in CPU device.");
#else
                  return new paddle::platform::CUDAPinnedDeviceContext(place);
#endif
                });;
D
Dong Zhihong 已提交
517
// clang-format on
P
peizhilin 已提交
518
#if (defined(PADDLE_WITH_CUDA) && !defined(_WIN32))
D
Dong Zhihong 已提交
519 520
  py::class_<platform::Communicator>(m, "Communicator").def(py::init<>());
#endif
D
dzhwinter 已提交
521
  py::class_<platform::CUDAPlace>(m, "CUDAPlace")
522
      .def(py::init<int>())
D
dzhwinter 已提交
523
      .def("__str__", string::to_string<const platform::CUDAPlace &>);
Q
qijun 已提交
524

525 526 527
  py::class_<paddle::platform::CPUPlace>(m, "CPUPlace")
      .def(py::init<>())
      .def("__str__", string::to_string<const platform::CPUPlace &>);
Y
Yu Yang 已提交
528

C
chengduoZH 已提交
529 530 531 532
  py::class_<paddle::platform::CUDAPinnedPlace>(m, "CUDAPinnedPlace")
      .def(py::init<>())
      .def("__str__", string::to_string<const platform::CUDAPinnedPlace &>);

Y
Yu Yang 已提交
533 534 535 536 537 538 539
  py::class_<platform::Place>(m, "Place")
      .def(py::init<>())
      .def("set_place",
           [](platform::Place &self, const platform::CPUPlace &cpu_place) {
             self = cpu_place;
           })
      .def("set_place",
D
dzhwinter 已提交
540
           [](platform::Place &self, const platform::CUDAPlace &gpu_place) {
Y
Yu Yang 已提交
541
             self = gpu_place;
C
chengduoZH 已提交
542 543
           })
      .def("set_place", [](platform::Place &self,
C
chengduoZH 已提交
544 545
                           const platform::CUDAPinnedPlace &cuda_pinned_place) {
        self = cuda_pinned_place;
C
chengduoZH 已提交
546
      });
Y
Yu Yang 已提交
547

Y
Yu Yang 已提交
548 549 550
  py::class_<OperatorBase>(m, "Operator")
      .def_static("create",
                  [](py::bytes protobin) {
551
                    proto::OpDesc desc;
Y
Yu Yang 已提交
552 553 554 555 556
                    PADDLE_ENFORCE(desc.ParsePartialFromString(protobin),
                                   "Cannot parse user input to OpDesc");
                    PADDLE_ENFORCE(desc.IsInitialized(),
                                   "User OpDesc is not initialized, reason %s",
                                   desc.InitializationErrorString());
557
                    return OpRegistry::CreateOp(desc);
Y
Yu Yang 已提交
558
                  })
559
      .def("run",
560
           [](OperatorBase &self, const Scope &scope,
D
dzhwinter 已提交
561 562 563
              const platform::CPUPlace &place) { self.Run(scope, place); })
      .def("run",
           [](OperatorBase &self, const Scope &scope,
D
dzhwinter 已提交
564
              const platform::CUDAPlace &place) { self.Run(scope, place); })
C
chengduoZH 已提交
565 566 567 568 569
      .def("run",
           [](OperatorBase &self, const Scope &scope,
              const platform::CUDAPinnedPlace &place) {
             self.Run(scope, place);
           })
Y
Yu Yang 已提交
570 571 572 573 574 575 576
      .def("type",
           [](const OperatorBase &op) -> std::string { return op.Type(); })
      .def("outputs",
           [](const OperatorBase &op)
               -> std::map<std::string, std::vector<std::string>> {
                 return op.Outputs();
               })
Q
qijun 已提交
577 578
      .def("output_vars",
           [](const OperatorBase &op) { return op.OutputVars(true); })
Y
Yu Yang 已提交
579
      .def("inputs", [](const OperatorBase &op) { return op.Inputs(); })
Q
qijun 已提交
580
      .def("input_vars", [](const OperatorBase &op) { return op.InputVars(); })
Y
Yu Yang 已提交
581 582 583 584
      .def("__str__", &OperatorBase::DebugString)
      .def("no_intermediate_outputs",
           [](const OperatorBase &op) { return op.OutputVars(false); })
      .def("support_gpu", &OperatorBase::SupportGPU);
Y
Yu Yang 已提交
585

F
fengjiayi 已提交
586
  py::class_<framework::Executor>(m, "Executor")
D
dzhwinter 已提交
587
      .def(py::init<const platform::Place &>())
Y
Yancey1989 已提交
588
      .def("close", &Executor::Close)
S
sneaxiy 已提交
589 590 591 592 593
      .def("run", [](Executor &self, const ProgramDesc &prog, Scope *scope,
                     int block_id, bool create_local_scope, bool create_vars) {
        pybind11::gil_scoped_release release;
        self.Run(prog, scope, block_id, create_local_scope, create_vars);
      });
S
sneaxiy 已提交
594

D
dzhwinter 已提交
595
  m.def("init_gflags", framework::InitGflags);
Y
Yang Yu 已提交
596
  m.def("init_glog", framework::InitGLOG);
X
Xin Pan 已提交
597 598
  m.def("init_devices",
        [](bool init_p2p) { framework::InitDevices(init_p2p); });
599

600
  m.def("is_compiled_with_cuda", IsCompiledWithCUDA);
Y
update  
Yancey1989 已提交
601
  m.def("is_compiled_with_dist", IsCompiledWithDIST);
602 603 604 605 606 607
#ifdef PADDLE_WITH_CUDA
  m.def("is_float16_supported", [](const platform::CUDAPlace &place) -> bool {
    // Only GPUs with Compute Capability >= 53 support float16
    return platform::GetCUDAComputeCapability(place.device) >= 53;
  });
#endif
608

609
  m.def("set_feed_variable", framework::SetFeedVariable);
Q
qijun 已提交
610
  m.def("get_fetch_variable", framework::GetFetchVariable);
Q
qijun 已提交
611

X
Xin Pan 已提交
612 613
  m.def("_is_program_version_supported", IsProgramVersionSupported);

614 615 616 617 618
  BindProgramDesc(&m);
  BindBlockDesc(&m);
  BindVarDsec(&m);
  BindOpDesc(&m);
  BindConstValue(&m);
Y
Yu Yang 已提交
619

Y
Yu Yang 已提交
620 621 622 623 624 625 626 627 628
  py::class_<framework::LoDRankTable>(m, "LodRankTable")
      .def("items", [](framework::LoDRankTable &table) {
        std::vector<std::pair<size_t, size_t>> res;
        for (auto &item : table.items()) {
          res.push_back({item.index, item.length});
        }
        return res;
      });

Y
Yu Yang 已提交
629
  py::class_<LoDTensorArray>(m, "LoDTensorArray")
S
sneaxiy 已提交
630 631
      .def("__init__",
           [](LoDTensorArray &instance) { new (&instance) LoDTensorArray(); })
Y
Yu Yang 已提交
632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647
      .def("__getitem__",
           [](LoDTensorArray &self, size_t i) { return &self.at(i); },
           py::return_value_policy::reference)
      .def("__len__", [](LoDTensorArray &self) { return self.size(); })
      .def("__setitem__",
           [](LoDTensorArray &self, size_t i, const LoDTensor &t) {
             PADDLE_ENFORCE_LT(i, self.size());
             self[i].ShareDataWith(t);
             self[i].set_lod(t.lod());
           })
      .def("append", [](LoDTensorArray &self, const LoDTensor &t) {
        self.emplace_back();
        self.back().ShareDataWith(t);
        self.back().set_lod(t.lod());
      });

D
dzhwinter 已提交
648 649 650
  m.def("IsInplace",
        [](std::string op) -> bool { return operators::IsInplace(op); });

Y
Yu Yang 已提交
651
  m.def("op_support_gpu", OpSupportGPU);
D
Dong Zhihong 已提交
652
#ifdef PADDLE_WITH_CUDA
D
Dong Zhihong 已提交
653
  m.def("get_cuda_device_count", platform::GetCUDADeviceCount);
D
dangqingqing 已提交
654

P
peizhilin 已提交
655
#ifndef _WIN32
D
dangqingqing 已提交
656 657 658
  m.def("nvprof_init", platform::CudaProfilerInit);
  m.def("nvprof_start", platform::CudaProfilerStart);
  m.def("nvprof_stop", platform::CudaProfilerStop);
D
Dong Zhihong 已提交
659
#endif
P
peizhilin 已提交
660
#endif
Y
Yu Yang 已提交
661

662 663 664 665
  py::enum_<platform::ProfilerState>(m, "ProfilerState", py::arithmetic())
      .value("kDisabled", platform::ProfilerState::kDisabled)
      .value("kCPU", platform::ProfilerState::kCPU)
      .value("kCUDA", platform::ProfilerState::kCUDA)
666
      .value("kAll", platform::ProfilerState::kAll)
667 668 669 670 671 672 673 674 675 676 677 678 679
      .export_values();

  py::enum_<platform::EventSortingKey>(m, "EventSortingKey", py::arithmetic())
      .value("kDefault", platform::EventSortingKey::kDefault)
      .value("kCalls", platform::EventSortingKey::kCalls)
      .value("kTotal", platform::EventSortingKey::kTotal)
      .value("kMin", platform::EventSortingKey::kMin)
      .value("kMax", platform::EventSortingKey::kMax)
      .value("kAve", platform::EventSortingKey::kAve)
      .export_values();

  m.def("enable_profiler", platform::EnableProfiler);
  m.def("disable_profiler", platform::DisableProfiler);
X
Xin Pan 已提交
680
  m.def("is_profiler_enabled", platform::IsProfileEnabled);
681
  m.def("reset_profiler", platform::ResetProfiler);
Y
Yu Yang 已提交
682

683 684
  py::class_<ir::Pass, std::shared_ptr<ir::Pass>> pass(m, "Pass");
  pass.def(py::init())
685 686 687 688 689
      .def(
          "set_str",
          [](ir::Pass &self, const std::string &name, const std::string &attr) {
            self.Set<std::string>(name, new std::string(attr));
          })
X
Xin Pan 已提交
690 691 692
      .def("set_int", [](ir::Pass &self, const std::string &name,
                         int val) { self.Set<const int>(name, new int(val)); })
      .def("type", &ir::Pass::Type);
693

X
fix  
Xin Pan 已提交
694 695
  py::class_<ir::PassBuilder, std::shared_ptr<ir::PassBuilder>> pb(
      m, "PassBuilder");
696 697 698 699 700 701 702 703 704 705 706 707 708 709
  pb.def(py::init())
      .def("append_pass",
           [](ir::PassBuilder &self,
              const std::string &pass_type) -> std::shared_ptr<ir::Pass> {
             return self.AppendPass(pass_type);
           })
      .def("all_passes", [](ir::PassBuilder &self) { return self.AllPasses(); })
      .def("insert_pass",
           [](ir::PassBuilder &self, size_t idx, const std::string &pass_type) {
             return self.InsertPass(idx, pass_type);
           })
      .def("remove_pass",
           [](ir::PassBuilder &self, size_t idx) { self.RemovePass(idx); });

Y
yuyang18 已提交
710
  // -- python binds for parallel executor.
Y
yuyang18 已提交
711
  py::class_<ParallelExecutor> pe(m, "ParallelExecutor");
C
chengduo 已提交
712 713 714 715
  py::class_<ExecutionStrategy> exec_strategy(pe, "ExecutionStrategy", R"DOC(
    ExecutionStrategy allows the user to more preciously control how to run
    the program in ParallelExecutor by setting the property.

C
chengduo 已提交
716 717 718 719 720 721 722 723 724 725 726
    Examples:
        .. code-block:: python

          exec_strategy = fluid.ExecutionStrategy()
          exec_strategy.num_threads = 4

          train_exe = fluid.ParallelExecutor(use_cuda=True,
                                             loss_name=loss.name,
                                             exec_strategy=exec_strategy)

          train_loss, = train_exe.run([loss.name], feed=feed_dict)
C
chengduo 已提交
727 728 729

        )DOC");

Y
yuyang18 已提交
730
  exec_strategy.def(py::init())
Y
yuyang18 已提交
731 732 733 734 735
      .def_property(
          "num_threads",
          [](const ExecutionStrategy &self) { return self.num_threads_; },
          [](ExecutionStrategy &self, size_t num_threads) {
            self.num_threads_ = num_threads;
C
chengduo 已提交
736 737 738 739 740 741 742 743 744 745
          },
          R"DOC(The type is INT, num_threads represents the size of thread pool that
            used to run the operators of the current program in ParallelExecutor.
            If :math:`num\_threads=1`, all the operators will execute one by one,
            but the order maybe difference between iterations.
            If it is not set, it will be set in ParallelExecutor according to the
            device type and device count, for GPU, :math:`num\_threads=device\_count*4`, for CPU,
            :math:`num\_threads=CPU\_NUM*4`, the explanation of:math:`CPU\_NUM` is in ParallelExecutor.
            if it is not set, ParallelExecutor will get the cpu count by calling
            `multiprocessing.cpu_count()`. Default 0.)DOC")
Y
yuyang18 已提交
746
      .def_property(
747 748 749 750
          "use_cuda",
          [](const ExecutionStrategy &self) { return self.use_cuda_; },
          [](ExecutionStrategy &self, bool use_cuda) {
            self.use_cuda_ = use_cuda;
C
chengduo 已提交
751 752 753 754
          })  // FIXME(chengduo): Doesn't add doc for 'use_cuda', use_cuda may
      // make user confuse, because ParallelExecutor has a parameter named
      // 'use_cuda' too, in current implementation, ParallelExecutor's
      // 'use_cuda' will rewrite ExecutionStrategy's 'use_cuda'.
Y
yuyang18 已提交
755 756 757 758 759
      .def_property(
          "allow_op_delay",
          [](const ExecutionStrategy &self) { return self.allow_op_delay_; },
          [](ExecutionStrategy &self, bool allow_op_delay) {
            self.allow_op_delay_ = allow_op_delay;
C
chengduo 已提交
760 761 762 763
          },
          R"DOC(The type is BOOL, allow_op_delay represents whether to delay the
                communication operators to run, it may make the execution faster.
                Note that in some models, allow_op_delay may cause program hang. Default False.)DOC")
Y
yuyang18 已提交
764 765 766 767 768 769 770
      .def_property(
          "num_iteration_per_drop_scope",
          [](const ExecutionStrategy &self) {
            return self.num_iteration_per_drop_scope_;
          },
          [](ExecutionStrategy &self, size_t num_iteration_per_drop_scope) {
            self.num_iteration_per_drop_scope_ = num_iteration_per_drop_scope;
C
chengduo 已提交
771 772 773 774 775 776 777 778 779 780 781
          },
          R"DOC(The type is INT, num_iteration_per_drop_scope indicates how
                many iterations to clean up the temp variables which
                is generated during execution. It may make the execution faster,
                because the temp variable's shape maybe the same between two iterations. Default 100.

                NOTES:
                    1. If you fetch data when calling the 'run', the ParallelExecutor
                       will clean up the temp variables at the end of the current iteration.
                    2. In some NLP model, it may cause the GPU memory is insufficient,
                       in this case, you should reduce `num_iteration_per_drop_scope`.
782 783 784 785 786 787
              )DOC")
      .def_property("_dry_run",
                    [](const ExecutionStrategy &self) { return self.dry_run_; },
                    [](ExecutionStrategy &self, bool dry_run) {
                      self.dry_run_ = dry_run;
                    });
C
chengduo 已提交
788

Y
yuyang18 已提交
789
  exec_strategy.def_property(
Y
yuyang18 已提交
790 791 792 793 794 795 796
      "use_experimental_executor",
      [](const ExecutionStrategy &self) {
        return self.type_ == ExecutionStrategy::kExperimental;
      },
      [](ExecutionStrategy &self, bool experimental) {
        self.type_ = experimental ? ExecutionStrategy::kExperimental
                                  : ExecutionStrategy::kDefault;
Y
yuyang18 已提交
797 798
      });

C
chengduo 已提交
799 800 801 802
  py::class_<BuildStrategy> build_strategy(pe, "BuildStrategy", R"DOC(
    BuildStrategy allows the user to more preciously control how to
    build the SSA Graph in ParallelExecutor by setting the property.

C
chengduo 已提交
803 804 805 806 807 808 809 810 811 812 813
    Examples:
        .. code-block:: python

          build_strategy = fluid.BuildStrategy()
          build_strategy.reduce_strategy = fluid.BuildStrategy.ReduceStrategy.Reduce

          train_exe = fluid.ParallelExecutor(use_cuda=True,
                                             loss_name=loss.name,
                                             build_strategy=build_strategy)

          train_loss, = train_exe.run([loss.name], feed=feed_dict)
C
chengduo 已提交
814
)DOC");
Y
yuyang18 已提交
815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830

  py::enum_<BuildStrategy::ReduceStrategy>(build_strategy, "ReduceStrategy")
      .value("Reduce", BuildStrategy::ReduceStrategy::kReduce)
      .value("AllReduce", BuildStrategy::ReduceStrategy::kAllReduce);
  py::enum_<BuildStrategy::GradientScaleStrategy>(build_strategy,
                                                  "GradientScaleStrategy")
      .value("CoeffNumDevice",
             BuildStrategy::GradientScaleStrategy::kCoeffNumDevice)
      .value("One", BuildStrategy::GradientScaleStrategy::kOne)
      .value("Customized", BuildStrategy::GradientScaleStrategy::kCustomized);

  build_strategy.def(py::init())
      .def_property(
          "reduce_strategy",
          [](const BuildStrategy &self) { return self.reduce_; },
          [](BuildStrategy &self, BuildStrategy::ReduceStrategy strategy) {
X
Xin Pan 已提交
831
            PADDLE_ENFORCE(!self.IsFinalized(), "BuildStrategy is finlaized.");
Y
yuyang18 已提交
832
            self.reduce_ = strategy;
C
chengduo 已提交
833 834 835 836 837 838 839
          },
          R"DOC(The type is STR, there are two reduce strategies in ParallelExecutor,
                  'AllReduce' and 'Reduce'. If you want that all the parameters'
                  optimization are done on all devices independently, you should choose 'AllReduce';
                  if you choose 'Reduce', all the parameters' optimization will be evenly distributed
                  to different devices, and then broadcast the optimized parameter to other devices.
                  In some models, `Reduce` is faster. Default 'AllReduce'. )DOC")
Y
yuyang18 已提交
840 841 842 843 844
      .def_property(
          "gradient_scale_strategy",
          [](const BuildStrategy &self) { return self.gradient_scale_; },
          [](BuildStrategy &self,
             BuildStrategy::GradientScaleStrategy strategy) {
X
Xin Pan 已提交
845
            PADDLE_ENFORCE(!self.IsFinalized(), "BuildStrategy is finlaized.");
Y
yuyang18 已提交
846
            self.gradient_scale_ = strategy;
C
chengduo 已提交
847 848 849 850 851 852
          },
          R"DOC(The type is STR, there are three ways of defining :math:`loss@grad` in
                   ParallelExecutor, 'CoeffNumDevice', 'One' and 'Customized'. By default,
                   ParallelExecutor sets the :math:`loss@grad` according to the number of devices.
                   If you want to customize :math:`loss@grad`, you can choose 'Customized'.
                   Default 'CoeffNumDevice'.)DOC")
Y
yuyang18 已提交
853 854 855 856
      .def_property(
          "debug_graphviz_path",
          [](const BuildStrategy &self) { return self.debug_graphviz_path_; },
          [](BuildStrategy &self, const std::string &path) {
X
Xin Pan 已提交
857
            PADDLE_ENFORCE(!self.IsFinalized(), "BuildStrategy is finlaized.");
Y
yuyang18 已提交
858
            self.debug_graphviz_path_ = path;
C
chengduo 已提交
859 860 861 862
          },
          R"DOC(The type is STR, debug_graphviz_path indicate the path that
                    writing the SSA Graph to file in the form of graphviz, you.
                    It is useful for debugging. Default "")DOC")
F
fengjiayi 已提交
863 864 865
      .def_property(
          "enable_data_balance",
          [](const BuildStrategy &self) { return self.enable_data_balance_; },
C
chengduo 已提交
866
          [](BuildStrategy &self, bool b) {
X
Xin Pan 已提交
867
            PADDLE_ENFORCE(!self.IsFinalized(), "BuildStrategy is finlaized.");
C
chengduo 已提交
868 869
            self.enable_data_balance_ = b;
          })  // FIXME(chengudo): enable_data_balance seems not important
S
sneaxiy 已提交
870 871 872 873 874 875
      .def_property(
          "enable_sequential_execution",
          [](const BuildStrategy &self) {
            return self.enable_sequential_execution_;
          },
          [](BuildStrategy &self, bool b) {
X
Xin Pan 已提交
876
            PADDLE_ENFORCE(!self.IsFinalized(), "BuildStrategy is finlaized.");
S
sneaxiy 已提交
877 878 879 880 881 882 883 884 885
            self.enable_sequential_execution_ = b;
          },
          R"DOC(The type is BOOL. If set True, the execution order of ops would be the same as what is in the program. Default False.)DOC")
      .def_property(
          "remove_unnecessary_lock",
          [](const BuildStrategy &self) {
            return self.remove_unnecessary_lock_;
          },
          [](BuildStrategy &self, bool b) {
X
Xin Pan 已提交
886
            PADDLE_ENFORCE(!self.IsFinalized(), "BuildStrategy is finlaized.");
S
sneaxiy 已提交
887 888 889
            self.remove_unnecessary_lock_ = b;
          },
          R"DOC(The type is BOOL. If set True, some locks in GPU ops would be released and ParallelExecutor would run faster. Default False.)DOC")
890 891 892 893 894 895
      .def_property(
          "num_trainers",
          [](const BuildStrategy &self) { return self.num_trainers_; },
          [](BuildStrategy &self, int num_trainers) {
            self.num_trainers_ = num_trainers;
          })
C
chengduo 已提交
896 897 898 899 900 901
      .def_property(
          "fuse_elewise_add_act_ops",
          [](const BuildStrategy &self) {
            return self.fuse_elewise_add_act_ops_;
          },
          [](BuildStrategy &self, bool b) {
X
Xin Pan 已提交
902
            PADDLE_ENFORCE(!self.IsFinalized(), "BuildStrategy is finlaized.");
C
chengduo 已提交
903 904 905 906 907
            self.fuse_elewise_add_act_ops_ = b;
          },
          R"DOC(The type is BOOL, fuse_elewise_add_act_ops indicate whether
                     to fuse elementwise_add_op and activation_op,
                     it may make the execution faster. Default False)DOC")
908
      .def("_finalize_strategy_and_create_passes",
X
fix  
Xin Pan 已提交
909
           [](BuildStrategy &self) -> std::shared_ptr<ir::PassBuilder> {
910 911 912 913 914
             return self.CreatePassesFromStrategy(true);
           },
           R"DOC(Allow user to customized passes. Normally model-specific
                optimization passes should be defined in this way. BuildStrategy
                cannot be updated after being finalized.)DOC");
Y
yuyang18 已提交
915 916 917 918

  pe.def(py::init<const std::vector<platform::Place> &,
                  const std::unordered_set<std::string> &,
                  const std::unordered_set<std::string> &, const ProgramDesc &,
Y
yuyang18 已提交
919
                  const std::string &, Scope *, std::vector<Scope *> &,
920 921
                  const ExecutionStrategy &, const BuildStrategy &, size_t,
                  size_t>())
Y
Yu Yang 已提交
922 923 924 925
      // NOTE: even we return a vec<Scope*>* to Python use reference policy.
      // We still cannot get local_scope from this vector, since the element
      // of vec<Scope*> will be freed by Python GC. We can only return Scope*
      // one by one and mark them as reference.
926 927 928 929 930
      .def("local_scopes",
           [](ParallelExecutor &self) -> std::vector<Scope *> * {
             return &self.GetLocalScopes();
           },
           py::return_value_policy::reference)
Y
Yu Yang 已提交
931 932 933 934
      .def("feed_tensors_into_local_scopes",
           &ParallelExecutor::FeedTensorsIntoLocalScopes)
      .def("feed_and_split_tensor_into_local_scopes",
           &ParallelExecutor::FeedAndSplitTensorIntoLocalScopes)
S
sneaxiy 已提交
935 936 937 938 939 940
      .def("run", [](ParallelExecutor &self,
                     const std::vector<std::string> &fetch_tensors,
                     const std::string &fetched_var_name) {
        pybind11::gil_scoped_release release;
        self.Run(fetch_tensors, fetched_var_name);
      });
Y
Yu Yang 已提交
941

942
  BindRecordIOWriter(&m);
W
Wang Guibao 已提交
943
  BindAsyncExecutor(&m);
L
Luo Tao 已提交
944
}
945
}  // namespace pybind
946
}  // namespace paddle