pybind.cc 41.2 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

7
http://www.apache.org/licenses/LICENSE-2.0
8 9 10 11 12 13

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
L
lgone2000 已提交
14
#include <Python.h>
C
chengduoZH 已提交
15 16
#include <algorithm>
#include <map>
S
sneaxiy 已提交
17
#include <memory>
C
chengduoZH 已提交
18 19 20 21 22
#include <mutex>  // NOLINT // for call_once
#include <string>
#include <unordered_map>
#include <utility>
#include <vector>
23

Y
Yi Wang 已提交
24 25 26
#include "paddle/fluid/framework/executor.h"
#include "paddle/fluid/framework/feed_fetch_method.h"
#include "paddle/fluid/framework/framework.pb.h"
27
#include "paddle/fluid/framework/ir/pass_builder.h"
Y
Yi Wang 已提交
28 29 30
#include "paddle/fluid/framework/lod_rank_table.h"
#include "paddle/fluid/framework/lod_tensor.h"
#include "paddle/fluid/framework/lod_tensor_array.h"
31
#include "paddle/fluid/framework/op_registry.h"
Y
Yu Yang 已提交
32
#include "paddle/fluid/framework/parallel_executor.h"
Y
Yi Wang 已提交
33
#include "paddle/fluid/framework/prune.h"
Y
Refine  
Yu Yang 已提交
34
#include "paddle/fluid/framework/reader.h"
Y
Yi Wang 已提交
35
#include "paddle/fluid/framework/selected_rows.h"
X
Xin Pan 已提交
36
#include "paddle/fluid/framework/version.h"
Y
Refine  
Yu Yang 已提交
37
#include "paddle/fluid/memory/allocation/allocator_strategy.h"
D
dzhwinter 已提交
38
#include "paddle/fluid/operators/activation_op.h"
S
sneaxiy 已提交
39
#include "paddle/fluid/operators/reader/lod_tensor_blocking_queue.h"
Y
Yu Yang 已提交
40
#include "paddle/fluid/platform/cpu_info.h"
Y
Yi Wang 已提交
41
#include "paddle/fluid/platform/enforce.h"
42
#include "paddle/fluid/platform/init.h"
Y
Yi Wang 已提交
43 44
#include "paddle/fluid/platform/place.h"
#include "paddle/fluid/platform/profiler.h"
W
Wang Guibao 已提交
45
#include "paddle/fluid/pybind/async_executor_py.h"
Y
Yi Wang 已提交
46 47
#include "paddle/fluid/pybind/const_value.h"
#include "paddle/fluid/pybind/exception.h"
X
Xin Pan 已提交
48
#include "paddle/fluid/pybind/imperative.h"
49 50
#include "paddle/fluid/pybind/protobuf.h"
#include "paddle/fluid/pybind/pybind.h"  // NOLINT
Y
Yu Yang 已提交
51
#include "paddle/fluid/pybind/recordio.h"
Y
Yi Wang 已提交
52
#include "paddle/fluid/pybind/tensor_py.h"
Y
Yu Yang 已提交
53

54
#include "paddle/fluid/string/to_string.h"
55

D
Dong Zhihong 已提交
56
#ifdef PADDLE_WITH_CUDA
P
peizhilin 已提交
57
#ifndef _WIN32
Y
Yi Wang 已提交
58
#include "paddle/fluid/operators/nccl/nccl_gpu_common.h"
P
peizhilin 已提交
59
#endif
Y
Yi Wang 已提交
60 61
#include "paddle/fluid/platform/cuda_profiler.h"
#include "paddle/fluid/platform/gpu_info.h"
D
Dong Zhihong 已提交
62 63
#endif

M
minqiyang 已提交
64 65
#include "pybind11/stl.h"

66 67 68 69
DEFINE_bool(reader_queue_speed_test_mode, false,
            "If set true, the queue.pop will only get data from queue but not "
            "remove the data from queue for speed testing");

Q
Qiao Longfei 已提交
70 71 72
// disable auto conversion to list in Python
PYBIND11_MAKE_OPAQUE(paddle::framework::LoDTensorArray);

73
namespace paddle {
74
namespace pybind {
75
bool IsCompiledWithCUDA() {
76
#ifndef PADDLE_WITH_CUDA
Q
qijun 已提交
77 78 79 80 81 82
  return false;
#else
  return true;
#endif
}

Y
update  
Yancey1989 已提交
83
bool IsCompiledWithDIST() {
Y
Yancey1989 已提交
84
#ifdef PADDLE_WITH_DISTRIBUTE
Y
update  
Yancey1989 已提交
85 86 87 88 89 90
  return true;
#else
  return false;
#endif
}

91
PYBIND11_MODULE(core, m) {
Y
Yu Yang 已提交
92 93 94
  // Not used, just make sure cpu_info.cc is linked.
  paddle::platform::CpuTotalPhysicalMemory();

Y
Refine  
Yu Yang 已提交
95
  paddle::memory::allocation::UseAllocatorStrategyGFlag();
96
  m.doc() = "C++ core of PaddlePaddle";
97

98 99 100 101
  // using framework in this function. Since it is inside a function, it will
  // not cause namespace pollution.
  using namespace paddle::framework;  // NOLINT

102
  BindException(&m);
Y
Yu Yang 已提交
103

X
Xin Pan 已提交
104 105 106 107 108 109 110 111 112 113
  py::class_<imperative::VariableBase>(m, "VariableBase",
                                       R"DOC()DOC")
      .def_property(
          "desc",
          [](const imperative::VariableBase &self) { return self.var_desc_; },
          [](imperative::VariableBase &self, framework::VarDesc *var_desc) {
            self.var_desc_ = var_desc;
          },
          py::return_value_policy::reference);

X
Xin Pan 已提交
114 115
  py::class_<imperative::Layer, PyLayer /* <--- trampoline*/> layer(m, "Layer");
  layer.def(py::init<>())
X
Xin Pan 已提交
116 117 118 119 120
      .def("forward",
           [](imperative::Layer &self,
              const std::vector<imperative::VariableBase> &inputs) {
             return self.Forward(inputs);
           })
X
Xin Pan 已提交
121
      .def("backward", &imperative::Layer::Backward);
X
Xin Pan 已提交
122
  BindTracer(&m);
X
Xin Pan 已提交
123

124 125 126
  py::class_<Tensor>(m, "Tensor", py::buffer_protocol())
      .def_buffer(
          [](Tensor &self) -> py::buffer_info { return CastToPyBuffer(self); })
Y
yuyang18 已提交
127
      .def("_get_dims",
128
           [](const Tensor &self) { return vectorize(self.dims()); })
Y
yuyang18 已提交
129
      .def("_set_dims",
Q
qijun 已提交
130
           [](Tensor &self, const std::vector<int64_t> &dim) {
Y
Yu Yang 已提交
131
             self.Resize(make_ddim(dim));
Y
Yu Yang 已提交
132
           })
Y
yuyang18 已提交
133
      .def("_set_layout",
D
dzhwinter 已提交
134 135 136
           [](Tensor &self, const std::string &layout) {
             self.set_layout(StringToDataLayout(layout));
           })
Y
yuyang18 已提交
137
      .def("_alloc_float",
D
dzhwinter 已提交
138
           [](Tensor &self, paddle::platform::CUDAPlace &place) {
Q
qijun 已提交
139
             self.mutable_data<float>(place);
Y
Yu Yang 已提交
140
           })
Y
yuyang18 已提交
141
      .def("_alloc_float",
Y
Yu Yang 已提交
142
           [](Tensor &self, paddle::platform::CPUPlace &place) {
Q
qijun 已提交
143
             self.mutable_data<float>(place);
Y
Yu Yang 已提交
144
           })
Y
yuyang18 已提交
145
      .def("_alloc_int",
Y
Yu Yang 已提交
146
           [](Tensor &self, paddle::platform::CPUPlace &place) {
Q
qijun 已提交
147
             self.mutable_data<int>(place);
Y
Yu Yang 已提交
148
           })
Y
yuyang18 已提交
149
      .def("_alloc_int",
D
dzhwinter 已提交
150
           [](Tensor &self, paddle::platform::CUDAPlace &place) {
Q
qijun 已提交
151
             self.mutable_data<int>(place);
Q
qijun 已提交
152
           })
Y
yuyang18 已提交
153
      .def("_alloc_int",
C
chengduoZH 已提交
154 155 156
           [](Tensor &self, paddle::platform::CUDAPinnedPlace &place) {
             self.mutable_data<int>(place);
           })
Y
yuyang18 已提交
157
      .def("_alloc_float",
C
chengduoZH 已提交
158 159 160
           [](Tensor &self, paddle::platform::CUDAPinnedPlace &place) {
             self.mutable_data<float>(place);
           })
Y
Yu Yang 已提交
161 162
      .def("set", PyCPUTensorSetFromArray<float>)
      .def("set", PyCPUTensorSetFromArray<int>)
163
      .def("set", PyCPUTensorSetFromArray<double>)
164
      .def("set", PyCPUTensorSetFromArray<int64_t>)
Y
Yu Yang 已提交
165
      .def("set", PyCPUTensorSetFromArray<bool>)
166
      .def("set", PyCPUTensorSetFromArray<uint16_t>)
F
fengjiayi 已提交
167
      .def("set", PyCPUTensorSetFromArray<uint8_t>)
Q
qingqing01 已提交
168
      .def("set", PyCPUTensorSetFromArray<int8_t>)
169
#ifdef PADDLE_WITH_CUDA
Y
Yu Yang 已提交
170 171
      .def("set", PyCUDATensorSetFromArray<float>)
      .def("set", PyCUDATensorSetFromArray<int>)
172
      .def("set", PyCUDATensorSetFromArray<double>)
173
      .def("set", PyCUDATensorSetFromArray<int64_t>)
Y
Yu Yang 已提交
174
      .def("set", PyCUDATensorSetFromArray<bool>)
175
      .def("set", PyCUDATensorSetFromArray<uint16_t>)
F
fengjiayi 已提交
176
      .def("set", PyCUDATensorSetFromArray<uint8_t>)
Q
qingqing01 已提交
177
      .def("set", PyCUDATensorSetFromArray<int8_t>)
C
chengduoZH 已提交
178 179 180 181 182 183
      .def("set", PyCUDAPinnedTensorSetFromArray<float>)
      .def("set", PyCUDAPinnedTensorSetFromArray<int>)
      .def("set", PyCUDAPinnedTensorSetFromArray<double>)
      .def("set", PyCUDAPinnedTensorSetFromArray<int64_t>)
      .def("set", PyCUDAPinnedTensorSetFromArray<bool>)
      .def("set", PyCUDAPinnedTensorSetFromArray<uint16_t>)
F
fengjiayi 已提交
184
      .def("set", PyCUDAPinnedTensorSetFromArray<uint8_t>)
Q
qingqing01 已提交
185
      .def("set", PyCUDAPinnedTensorSetFromArray<int8_t>)
Q
qijun 已提交
186
#endif
187
      .def("shape", [](Tensor &self) { return vectorize(self.dims()); })
Y
yuyang18 已提交
188 189 190 191 192
      .def("_set_float_element", TensorSetElement<float>)
      .def("_get_float_element", TensorGetElement<float>)
      .def("_set_double_element", TensorSetElement<double>)
      .def("_get_double_element", TensorGetElement<double>)
      .def("_dtype", [](Tensor &self) { return ToDataType(self.type()); });
Y
Yu Yang 已提交
193

X
Xin Pan 已提交
194 195 196 197 198 199 200 201 202 203 204 205 206
  py::class_<LoDTensor, Tensor>(m, "LoDTensor", R"DOC(
    LoDTensor is a Tensor with optional LoD information.

    np.array(lod_tensor) can convert LoDTensor to numpy array.
    lod_tensor.lod() can retrieve the LoD information.

    LoD is short for Level of Details and is usually used for varied sequence
    length. You can skip the following comment if you don't need optional LoD.

  For example:
     A LoDTensor X can look like the example below. It contains 2 sequences.
     The first has length 2 and the second has length 3, as described by x.lod.

X
fix doc  
Xin Pan 已提交
207
     The first tensor dimension 5=2+3 is calculated from LoD if it's available.
X
Xin Pan 已提交
208
     It means the total number of sequence element. In X, each element has 2
X
fix doc  
Xin Pan 已提交
209
     columns, hence [5, 2].
X
Xin Pan 已提交
210 211 212

      x.lod  = [[2, 3]]
      x.data = [[1, 2], [3, 4],
X
fix doc  
Xin Pan 已提交
213 214
                [5, 6], [7, 8], [9, 10]]
      x.shape = [5, 2]
X
Xin Pan 已提交
215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237

      LoD can have multiple levels (for example, a paragraph can have multiple
      sentences and a sentence can have multiple words). In the following
      LodTensor Y, the lod_level is 2. It means there are 2 sequence, the
      first sequence length is 2 (has 2 sub-sequences), the second one's
      length is 1. The first sequence's 2 sub-sequences have length 2 and 2,
      respectively. And the second sequence's 1 sub-sequence has length 3.

      y.lod = [[2 1], [2 2 3]]
      y.shape = [2+2+3, ...]

  Note:
      In above description, LoD is length-based. In Paddle internal
      implementation, lod is offset-based. Hence, internally,
      y.lod is represented as [[0, 2, 3], [0, 2, 4, 7]] (length-based
      equivlent would be [[2-0, 3-2], [2-0, 4-2, 7-4]]).

      Sometimes LoD is called recursive_sequence_length to be more
      self-explanatory. In this case, it must be length-based. Due to history
      reasons. when LoD is called lod in public API, it might be offset-based.
      Users should be careful about it.

        )DOC")
238 239
      .def_buffer(
          [](Tensor &self) -> py::buffer_info { return CastToPyBuffer(self); })
240 241 242 243 244 245 246 247 248 249 250 251 252 253
      .def("__init__",
           [](LoDTensor &instance, const std::vector<std::vector<size_t>>
                                       &recursive_sequence_lengths) {
             LoD new_lod;
             new_lod.reserve(recursive_sequence_lengths.size());
             std::copy(recursive_sequence_lengths.begin(),
                       recursive_sequence_lengths.end(),
                       std::back_inserter(new_lod));
             LoD new_offset_lod = ConvertToOffsetBasedLoD(new_lod);
             PADDLE_ENFORCE(
                 CheckLoD(new_offset_lod, -1),
                 "the provided recursive_sequence_lengths info is invalid");
             new (&instance) LoDTensor(new_offset_lod);
           })
Y
Yu Yang 已提交
254
      .def("__init__", [](LoDTensor &instance) { new (&instance) LoDTensor(); })
G
gongweibao 已提交
255 256 257 258 259
      // We implement offset based LOD in C++ while we use length based with
      // Python API. So we changed set_lod to set_recursive_sequence_lengths to
      // avoid misuse.
      // The discussion is here:
      // https://github.com/PaddlePaddle/Paddle/issues/10855
D
dangqingqing 已提交
260
      .def("set_lod",
261
           [](LoDTensor &self, const std::vector<std::vector<size_t>> &lod) {
262
             // the input lod is offset-based level-of-detail info
Y
Yu Yang 已提交
263
             LoD new_lod;
264 265
             new_lod.reserve(lod.size());
             std::copy(lod.begin(), lod.end(), std::back_inserter(new_lod));
266 267
             PADDLE_ENFORCE(CheckLoD(new_lod, vectorize(self.dims()).front()),
                            "the provided lod info is invalid");
268
             self.set_lod(new_lod);
D
dangqingqing 已提交
269
           })
270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294
      .def("set_recursive_sequence_lengths",
           [](LoDTensor &self, const std::vector<std::vector<size_t>>
                                   &recursive_sequence_lengths) {
             // the input recursive_sequence_lengths is length-based
             // level-of-detail info
             LoD new_lod;
             new_lod.reserve(recursive_sequence_lengths.size());
             std::copy(recursive_sequence_lengths.begin(),
                       recursive_sequence_lengths.end(),
                       std::back_inserter(new_lod));
             LoD new_offset_lod = ConvertToOffsetBasedLoD(new_lod);
             PADDLE_ENFORCE(
                 CheckLoD(new_offset_lod, vectorize(self.dims()).front()),
                 "the provided recursive_sequence_lengths info is invalid");
             self.set_lod(new_offset_lod);
           })
      .def("lod",
           [](LoDTensor &self) -> std::vector<std::vector<size_t>> {
             // output the offset-based lod info
             LoD lod = self.lod();
             std::vector<std::vector<size_t>> new_lod;
             new_lod.reserve(lod.size());
             std::copy(lod.begin(), lod.end(), std::back_inserter(new_lod));
             return new_lod;
           })
G
gongweibao 已提交
295
      // Set above comments of set_lod.
296 297 298 299 300 301 302 303 304 305 306 307 308
      .def("recursive_sequence_lengths",
           [](LoDTensor &self) -> std::vector<std::vector<size_t>> {
             // output the length-based lod info
             LoD lod = ConvertToLengthBasedLoD(self.lod());
             std::vector<std::vector<size_t>> new_lod;
             new_lod.reserve(lod.size());
             std::copy(lod.begin(), lod.end(), std::back_inserter(new_lod));
             return new_lod;
           })
      .def("has_valid_recursive_sequence_lengths", [](LoDTensor &self) -> bool {
        // Check that the lod info is valid and match the outermost
        // dimension of the LoDTensor data
        return CheckLoD(self.lod(), vectorize(self.dims()).front());
D
dangqingqing 已提交
309 310
      });

Q
qijun 已提交
311 312 313 314 315 316 317 318 319 320 321 322 323
  py::class_<SelectedRows>(m, "SelectedRows")
      .def("__init__",
           [](SelectedRows &instance) { new (&instance) SelectedRows(); })
      .def("__init__",
           [](SelectedRows &instance, const std::vector<int64_t> rows,
              const int64_t &height) {
             new (&instance) SelectedRows(rows, height);
           })
      .def("get_tensor",
           [](SelectedRows &self) { return self.mutable_value(); },
           py::return_value_policy::reference)
      .def("set_height", &SelectedRows::set_height)
      .def("height", &SelectedRows::height)
Q
qijun 已提交
324 325 326 327 328 329 330 331 332
      .def("set_rows",
           [](SelectedRows &self, std::vector<int64_t> rows) {
#ifndef PADDLE_WITH_CUDA
             self.set_rows(rows);
#else
        Vector<int64_t> new_rows(rows);
        self.set_rows(new_rows);
#endif
           })
333
      .def("sync_index", [](SelectedRows &instance) { instance.SyncIndex(); })
334
      .def("rows", [](SelectedRows &self) {
335 336 337 338 339
        auto rows = self.rows();
        std::vector<int64_t> new_rows;
        new_rows.reserve(rows.size());
        std::copy(rows.begin(), rows.end(), std::back_inserter(new_rows));
        return new_rows;
340
      });
Q
qijun 已提交
341

342
  py::class_<Variable>(m, "Variable", R"DOC(Variable Class.
343 344 345

All parameter, weight, gradient are variables in Paddle.
)DOC")
346
      .def("is_int", [](const Variable &var) { return var.IsType<int>(); })
347
      .def("set_int",
348 349
           [](Variable &var, int val) -> void { *var.GetMutable<int>() = val; })
      .def("get_int", [](const Variable &var) -> int { return var.Get<int>(); })
350 351 352 353 354 355 356
      .def("is_float", [](const Variable &var) { return var.IsType<float>(); })
      .def("set_float",
           [](Variable &var, float val) -> void {
             *var.GetMutable<float>() = val;
           })
      .def("get_float",
           [](const Variable &var) -> float { return var.Get<float>(); })
Y
Yu Yang 已提交
357
      .def("get_tensor",
358 359
           [](Variable &self) -> LoDTensor * {
             return self.GetMutable<LoDTensor>();
D
dangqingqing 已提交
360 361
           },
           py::return_value_policy::reference)
Y
Yu Yang 已提交
362 363 364
      .def("get_lod_rank_table",
           [](Variable &self) { return self.GetMutable<LoDRankTable>(); },
           py::return_value_policy::reference)
Q
qijun 已提交
365 366 367 368 369
      .def("get_selected_rows",
           [](Variable &self) -> SelectedRows * {
             return self.GetMutable<SelectedRows>();
           },
           py::return_value_policy::reference)
Y
Yu Yang 已提交
370 371 372
      .def("get_lod_tensor_array",
           [](Variable &self) { return self.GetMutable<LoDTensorArray>(); },
           py::return_value_policy::reference)
P
peizhilin 已提交
373
#if (defined(PADDLE_WITH_CUDA) && !defined(_WIN32))
D
Dong Zhihong 已提交
374 375 376 377 378
      .def("get_communicator",
           [](Variable &self) -> platform::Communicator * {
             return self.GetMutable<platform::Communicator>();
           },
           py::return_value_policy::reference)
Y
Yu Yang 已提交
379
#endif
Y
Refine  
Yu Yang 已提交
380 381 382 383 384
      .def("get_reader",
           [](Variable &self) -> framework::ReaderHolder * {
             PADDLE_ENFORCE(self.IsType<framework::ReaderHolder>());
             return self.GetMutable<framework::ReaderHolder>();
           },
W
wopeizl 已提交
385
           py::return_value_policy::reference);
386

Y
Refine  
Yu Yang 已提交
387
  py::class_<framework::ReaderHolder>(m, "Reader", "")
388
      .def("reset", &framework::ReaderHolder::ResetAll);
Y
Refine  
Yu Yang 已提交
389

S
sneaxiy 已提交
390 391 392 393
  using LoDTensorBlockingQueue =
      ::paddle::operators::reader::LoDTensorBlockingQueue;
  using LoDTensorBlockingQueueHolder =
      ::paddle::operators::reader::LoDTensorBlockingQueueHolder;
S
sneaxiy 已提交
394 395
  py::class_<LoDTensorBlockingQueue, std::shared_ptr<LoDTensorBlockingQueue>>(
      m, "LoDTensorBlockingQueue", "")
S
sneaxiy 已提交
396
      .def("push",
S
sneaxiy 已提交
397
           [](LoDTensorBlockingQueue &self,
S
sneaxiy 已提交
398
              const std::vector<framework::LoDTensor> &lod_tensor_vec) {
S
sneaxiy 已提交
399
             pybind11::gil_scoped_release release;
S
sneaxiy 已提交
400
             return self.Push(lod_tensor_vec);
S
sneaxiy 已提交
401
           })
S
sneaxiy 已提交
402 403 404 405
      .def("size", &LoDTensorBlockingQueue::Size)
      .def("capacity", &LoDTensorBlockingQueue::Cap)
      .def("close", &LoDTensorBlockingQueue::Close)
      .def("is_closed", &LoDTensorBlockingQueue::IsClosed);
S
sneaxiy 已提交
406

S
sneaxiy 已提交
407
  m.def("init_lod_tensor_blocking_queue",
S
sneaxiy 已提交
408
        [](Variable &var, size_t capacity,
S
sneaxiy 已提交
409
           const std::vector<std::vector<int64_t>> &shapes)
S
sneaxiy 已提交
410
            -> std::shared_ptr<LoDTensorBlockingQueue> {
S
sneaxiy 已提交
411 412 413 414 415 416
              std::vector<DDim> dims(shapes.size());
              std::transform(shapes.begin(), shapes.end(), dims.begin(),
                             [](const std::vector<int64_t> &shape) {
                               return make_ddim(shape);
                             });
              auto *holder = var.GetMutable<LoDTensorBlockingQueueHolder>();
417 418
              holder->InitOnce(capacity, dims,
                               FLAGS_reader_queue_speed_test_mode);
S
sneaxiy 已提交
419
              return holder->GetQueue();
S
sneaxiy 已提交
420
            },
S
sneaxiy 已提交
421
        py::return_value_policy::copy);
S
sneaxiy 已提交
422

Q
Qiao Longfei 已提交
423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442
  py::class_<Scope>(m, "Scope", R"DOC(
    Scope is an association of a name to Variable. All variables belong to Scope.

    Variables in a parent scope can be retrieved from local scope.

    You need to specify a scope to run a Net, i.e., `exe.Run(&scope)`.
    One net can run in different scopes and update different variable in the
    scope.

    You can create var in a scope and get it from the scope.

    Examples:
        .. code-block:: python

          # create tensor from a scope and set value to it.
          param = scope.var('Param').get_tensor()
          param_array = np.full((height, row_numel), 5.0).astype("float32")
          param.set(param_array, place)

        )DOC")
D
dongzhihong 已提交
443
      .def("var",
444
           [](Scope &self, const std::string &name) -> Variable * {
D
dongzhihong 已提交
445
             return self.Var(name);
Y
Yu Yang 已提交
446
           },
447
           py::return_value_policy::reference)
448
      .def("find_var", &Scope::FindVar, py::return_value_policy::reference)
Y
Yu Yang 已提交
449
      .def(py::init<>())
450
      .def("new_scope", [](Scope &self) -> Scope * { return &self.NewScope(); },
451
           py::return_value_policy::reference)
Y
Yu Yang 已提交
452
      .def("drop_kids", &Scope::DropKids);
453

Y
Yu Yang 已提交
454 455
  //! @note: Be careful! PyBind will return std::string as an unicode, not
  //! Python str. If you want a str object, you should cast them in Python.
Y
Yu Yang 已提交
456 457
  m.def("get_all_op_protos", []() -> std::vector<py::bytes> {
    std::vector<py::bytes> ret_values;
458 459 460 461 462 463 464 465 466 467
    for (auto &iter : OpInfoMap::Instance().map()) {
      auto &info = iter.second;
      if (info.HasOpProtoAndChecker()) {
        std::string str;
        PADDLE_ENFORCE(
            info.Proto().SerializeToString(&str),
            "Serialize OpProto Error. This could be a bug of Paddle.");
        ret_values.emplace_back(str);
      }
    }
Y
Yu Yang 已提交
468 469
    return ret_values;
  });
470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485
  m.def(
      "get_grad_op_desc", [](const OpDesc &op_desc,
                             const std::unordered_set<std::string> &no_grad_set,
                             const std::vector<BlockDesc *> &grad_sub_block) {
        std::unordered_map<std::string, std::string> grad_to_var;
        std::vector<std::unique_ptr<OpDesc>> grad_op_descs =
            framework::OpInfoMap::Instance()
                .Get(op_desc.Type())
                .GradOpMaker()(op_desc, no_grad_set, &grad_to_var,
                               grad_sub_block);
        std::vector<OpDesc *> grad_op_desc_ptrs(grad_op_descs.size());
        std::transform(grad_op_descs.begin(), grad_op_descs.end(),
                       grad_op_desc_ptrs.begin(),
                       [](std::unique_ptr<OpDesc> &p) { return p.release(); });
        return std::make_pair(grad_op_desc_ptrs, grad_to_var);
      });
Y
Yu Yang 已提交
486
  m.def("prune", [](const ProgramDesc &origin,
487
                    const std::vector<std::array<size_t, 2>> &targets) {
Y
Yu Yang 已提交
488
    ProgramDesc prog_with_targets(origin);
489
    for (const auto &t : targets) {
490
      prog_with_targets.MutableBlock(t[0])->Op(t[1])->SetIsTarget(true);
491
    }
492
    proto::ProgramDesc pruned_desc;
493
    Prune(*prog_with_targets.Proto(), &pruned_desc);
Y
Yu Yang 已提交
494
    return new ProgramDesc(pruned_desc);
495
  });
496 497 498 499
  m.def("empty_var_name",
        []() { return std::string(framework::kEmptyVarName); });
  m.def("grad_var_suffix",
        []() { return std::string(framework::kGradVarSuffix); });
500 501 502
  m.def_submodule(
       "var_names",
       "The module will return special predefined variable name in Paddle")
Y
Yi Wang 已提交
503 504
      .def("empty", []() { return kEmptyVarName; })
      .def("temp", []() { return kTempVarName; });
Q
qijun 已提交
505
  // clang-format off
Y
Yu Yang 已提交
506
  py::class_<paddle::platform::DeviceContext>(m, "DeviceContext")
Q
qijun 已提交
507 508
      .def_static("create",
                  [](paddle::platform::CPUPlace& place)
Q
qijun 已提交
509
                      -> paddle::platform::DeviceContext* {
Q
qijun 已提交
510 511 512
                    return new paddle::platform::CPUDeviceContext();
                  })
      .def_static("create",
D
dzhwinter 已提交
513
                  [](paddle::platform::CUDAPlace& place)
Q
qijun 已提交
514
                      -> paddle::platform::DeviceContext* {
515
#ifndef PADDLE_WITH_CUDA
D
dzhwinter 已提交
516
                    PADDLE_THROW("CUDAPlace is not supported in CPU device.");
Q
qijun 已提交
517
#else
Q
qijun 已提交
518
                    return new paddle::platform::CUDADeviceContext(place);
Q
qijun 已提交
519
#endif
C
chengduoZH 已提交
520 521 522 523 524 525 526 527 528 529 530
                  })
          .def_static("create",
                [](paddle::platform::CUDAPinnedPlace& place)
                        -> paddle::platform::DeviceContext* {
#ifndef PADDLE_WITH_CUDA
                  PADDLE_THROW(
                        "CUDAPinnedPlace is not supported in CPU device.");
#else
                  return new paddle::platform::CUDAPinnedDeviceContext(place);
#endif
                });;
D
Dong Zhihong 已提交
531
// clang-format on
P
peizhilin 已提交
532
#if (defined(PADDLE_WITH_CUDA) && !defined(_WIN32))
D
Dong Zhihong 已提交
533 534
  py::class_<platform::Communicator>(m, "Communicator").def(py::init<>());
#endif
D
dzhwinter 已提交
535
  py::class_<platform::CUDAPlace>(m, "CUDAPlace")
536
      .def(py::init<int>())
D
dzhwinter 已提交
537
      .def("__str__", string::to_string<const platform::CUDAPlace &>);
Q
qijun 已提交
538

539 540 541
  py::class_<paddle::platform::CPUPlace>(m, "CPUPlace")
      .def(py::init<>())
      .def("__str__", string::to_string<const platform::CPUPlace &>);
Y
Yu Yang 已提交
542

C
chengduoZH 已提交
543 544 545 546
  py::class_<paddle::platform::CUDAPinnedPlace>(m, "CUDAPinnedPlace")
      .def(py::init<>())
      .def("__str__", string::to_string<const platform::CUDAPinnedPlace &>);

Y
Yu Yang 已提交
547 548 549 550 551 552 553
  py::class_<platform::Place>(m, "Place")
      .def(py::init<>())
      .def("set_place",
           [](platform::Place &self, const platform::CPUPlace &cpu_place) {
             self = cpu_place;
           })
      .def("set_place",
D
dzhwinter 已提交
554
           [](platform::Place &self, const platform::CUDAPlace &gpu_place) {
Y
Yu Yang 已提交
555
             self = gpu_place;
C
chengduoZH 已提交
556 557
           })
      .def("set_place", [](platform::Place &self,
C
chengduoZH 已提交
558 559
                           const platform::CUDAPinnedPlace &cuda_pinned_place) {
        self = cuda_pinned_place;
C
chengduoZH 已提交
560
      });
Y
Yu Yang 已提交
561

Y
Yu Yang 已提交
562 563 564
  py::class_<OperatorBase>(m, "Operator")
      .def_static("create",
                  [](py::bytes protobin) {
565
                    proto::OpDesc desc;
Y
Yu Yang 已提交
566 567 568 569 570
                    PADDLE_ENFORCE(desc.ParsePartialFromString(protobin),
                                   "Cannot parse user input to OpDesc");
                    PADDLE_ENFORCE(desc.IsInitialized(),
                                   "User OpDesc is not initialized, reason %s",
                                   desc.InitializationErrorString());
571
                    return OpRegistry::CreateOp(desc);
Y
Yu Yang 已提交
572
                  })
573
      .def("run",
574
           [](OperatorBase &self, const Scope &scope,
D
dzhwinter 已提交
575 576 577
              const platform::CPUPlace &place) { self.Run(scope, place); })
      .def("run",
           [](OperatorBase &self, const Scope &scope,
D
dzhwinter 已提交
578
              const platform::CUDAPlace &place) { self.Run(scope, place); })
C
chengduoZH 已提交
579 580 581 582 583
      .def("run",
           [](OperatorBase &self, const Scope &scope,
              const platform::CUDAPinnedPlace &place) {
             self.Run(scope, place);
           })
Y
Yu Yang 已提交
584 585 586 587 588 589 590
      .def("type",
           [](const OperatorBase &op) -> std::string { return op.Type(); })
      .def("outputs",
           [](const OperatorBase &op)
               -> std::map<std::string, std::vector<std::string>> {
                 return op.Outputs();
               })
Q
qijun 已提交
591 592
      .def("output_vars",
           [](const OperatorBase &op) { return op.OutputVars(true); })
Y
Yu Yang 已提交
593
      .def("inputs", [](const OperatorBase &op) { return op.Inputs(); })
Q
qijun 已提交
594
      .def("input_vars", [](const OperatorBase &op) { return op.InputVars(); })
Y
Yu Yang 已提交
595 596 597 598
      .def("__str__", &OperatorBase::DebugString)
      .def("no_intermediate_outputs",
           [](const OperatorBase &op) { return op.OutputVars(false); })
      .def("support_gpu", &OperatorBase::SupportGPU);
Y
Yu Yang 已提交
599

F
fengjiayi 已提交
600
  py::class_<framework::Executor>(m, "Executor")
D
dzhwinter 已提交
601
      .def(py::init<const platform::Place &>())
Y
Yancey1989 已提交
602
      .def("close", &Executor::Close)
S
sneaxiy 已提交
603 604 605 606 607
      .def("run", [](Executor &self, const ProgramDesc &prog, Scope *scope,
                     int block_id, bool create_local_scope, bool create_vars) {
        pybind11::gil_scoped_release release;
        self.Run(prog, scope, block_id, create_local_scope, create_vars);
      });
S
sneaxiy 已提交
608

D
dzhwinter 已提交
609
  m.def("init_gflags", framework::InitGflags);
Y
Yang Yu 已提交
610
  m.def("init_glog", framework::InitGLOG);
X
Xin Pan 已提交
611 612
  m.def("init_devices",
        [](bool init_p2p) { framework::InitDevices(init_p2p); });
613

614
  m.def("is_compiled_with_cuda", IsCompiledWithCUDA);
Y
update  
Yancey1989 已提交
615
  m.def("is_compiled_with_dist", IsCompiledWithDIST);
616 617 618 619 620 621
#ifdef PADDLE_WITH_CUDA
  m.def("is_float16_supported", [](const platform::CUDAPlace &place) -> bool {
    // Only GPUs with Compute Capability >= 53 support float16
    return platform::GetCUDAComputeCapability(place.device) >= 53;
  });
#endif
622

623
  m.def("set_feed_variable", framework::SetFeedVariable);
Q
qijun 已提交
624
  m.def("get_fetch_variable", framework::GetFetchVariable);
X
Xin Pan 已提交
625
  m.def("get_variable_tensor", framework::GetVariableTensor);
Q
qijun 已提交
626

X
Xin Pan 已提交
627 628
  m.def("_is_program_version_supported", IsProgramVersionSupported);

629 630 631 632 633
  BindProgramDesc(&m);
  BindBlockDesc(&m);
  BindVarDsec(&m);
  BindOpDesc(&m);
  BindConstValue(&m);
Y
Yu Yang 已提交
634

Y
Yu Yang 已提交
635 636 637 638 639 640 641 642 643
  py::class_<framework::LoDRankTable>(m, "LodRankTable")
      .def("items", [](framework::LoDRankTable &table) {
        std::vector<std::pair<size_t, size_t>> res;
        for (auto &item : table.items()) {
          res.push_back({item.index, item.length});
        }
        return res;
      });

Y
Yu Yang 已提交
644
  py::class_<LoDTensorArray>(m, "LoDTensorArray")
S
sneaxiy 已提交
645 646
      .def("__init__",
           [](LoDTensorArray &instance) { new (&instance) LoDTensorArray(); })
Y
Yu Yang 已提交
647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662
      .def("__getitem__",
           [](LoDTensorArray &self, size_t i) { return &self.at(i); },
           py::return_value_policy::reference)
      .def("__len__", [](LoDTensorArray &self) { return self.size(); })
      .def("__setitem__",
           [](LoDTensorArray &self, size_t i, const LoDTensor &t) {
             PADDLE_ENFORCE_LT(i, self.size());
             self[i].ShareDataWith(t);
             self[i].set_lod(t.lod());
           })
      .def("append", [](LoDTensorArray &self, const LoDTensor &t) {
        self.emplace_back();
        self.back().ShareDataWith(t);
        self.back().set_lod(t.lod());
      });

D
dzhwinter 已提交
663 664 665
  m.def("IsInplace",
        [](std::string op) -> bool { return operators::IsInplace(op); });

Y
Yu Yang 已提交
666
  m.def("op_support_gpu", OpSupportGPU);
D
Dong Zhihong 已提交
667
#ifdef PADDLE_WITH_CUDA
D
Dong Zhihong 已提交
668
  m.def("get_cuda_device_count", platform::GetCUDADeviceCount);
D
dangqingqing 已提交
669

P
peizhilin 已提交
670
#ifndef _WIN32
D
dangqingqing 已提交
671 672 673
  m.def("nvprof_init", platform::CudaProfilerInit);
  m.def("nvprof_start", platform::CudaProfilerStart);
  m.def("nvprof_stop", platform::CudaProfilerStop);
D
Dong Zhihong 已提交
674
#endif
P
peizhilin 已提交
675
#endif
Y
Yu Yang 已提交
676

677 678 679 680
  py::enum_<platform::ProfilerState>(m, "ProfilerState", py::arithmetic())
      .value("kDisabled", platform::ProfilerState::kDisabled)
      .value("kCPU", platform::ProfilerState::kCPU)
      .value("kCUDA", platform::ProfilerState::kCUDA)
681
      .value("kAll", platform::ProfilerState::kAll)
682 683 684 685 686 687 688 689 690 691 692 693 694
      .export_values();

  py::enum_<platform::EventSortingKey>(m, "EventSortingKey", py::arithmetic())
      .value("kDefault", platform::EventSortingKey::kDefault)
      .value("kCalls", platform::EventSortingKey::kCalls)
      .value("kTotal", platform::EventSortingKey::kTotal)
      .value("kMin", platform::EventSortingKey::kMin)
      .value("kMax", platform::EventSortingKey::kMax)
      .value("kAve", platform::EventSortingKey::kAve)
      .export_values();

  m.def("enable_profiler", platform::EnableProfiler);
  m.def("disable_profiler", platform::DisableProfiler);
X
Xin Pan 已提交
695
  m.def("is_profiler_enabled", platform::IsProfileEnabled);
696
  m.def("reset_profiler", platform::ResetProfiler);
Y
Yu Yang 已提交
697

698 699
  py::class_<ir::Pass, std::shared_ptr<ir::Pass>> pass(m, "Pass");
  pass.def(py::init())
700 701 702 703 704
      .def(
          "set_str",
          [](ir::Pass &self, const std::string &name, const std::string &attr) {
            self.Set<std::string>(name, new std::string(attr));
          })
X
Xin Pan 已提交
705 706 707
      .def("set_int", [](ir::Pass &self, const std::string &name,
                         int val) { self.Set<const int>(name, new int(val)); })
      .def("type", &ir::Pass::Type);
708

X
fix  
Xin Pan 已提交
709 710
  py::class_<ir::PassBuilder, std::shared_ptr<ir::PassBuilder>> pb(
      m, "PassBuilder");
711 712 713 714 715 716 717 718 719 720 721 722 723 724
  pb.def(py::init())
      .def("append_pass",
           [](ir::PassBuilder &self,
              const std::string &pass_type) -> std::shared_ptr<ir::Pass> {
             return self.AppendPass(pass_type);
           })
      .def("all_passes", [](ir::PassBuilder &self) { return self.AllPasses(); })
      .def("insert_pass",
           [](ir::PassBuilder &self, size_t idx, const std::string &pass_type) {
             return self.InsertPass(idx, pass_type);
           })
      .def("remove_pass",
           [](ir::PassBuilder &self, size_t idx) { self.RemovePass(idx); });

Y
yuyang18 已提交
725
  // -- python binds for parallel executor.
Y
yuyang18 已提交
726
  py::class_<ParallelExecutor> pe(m, "ParallelExecutor");
C
chengduo 已提交
727 728 729 730
  py::class_<ExecutionStrategy> exec_strategy(pe, "ExecutionStrategy", R"DOC(
    ExecutionStrategy allows the user to more preciously control how to run
    the program in ParallelExecutor by setting the property.

C
chengduo 已提交
731 732 733 734 735 736 737 738 739 740 741
    Examples:
        .. code-block:: python

          exec_strategy = fluid.ExecutionStrategy()
          exec_strategy.num_threads = 4

          train_exe = fluid.ParallelExecutor(use_cuda=True,
                                             loss_name=loss.name,
                                             exec_strategy=exec_strategy)

          train_loss, = train_exe.run([loss.name], feed=feed_dict)
C
chengduo 已提交
742 743 744

        )DOC");

Y
yuyang18 已提交
745
  exec_strategy.def(py::init())
Y
yuyang18 已提交
746 747 748 749 750
      .def_property(
          "num_threads",
          [](const ExecutionStrategy &self) { return self.num_threads_; },
          [](ExecutionStrategy &self, size_t num_threads) {
            self.num_threads_ = num_threads;
C
chengduo 已提交
751 752 753 754 755 756 757 758 759 760
          },
          R"DOC(The type is INT, num_threads represents the size of thread pool that
            used to run the operators of the current program in ParallelExecutor.
            If :math:`num\_threads=1`, all the operators will execute one by one,
            but the order maybe difference between iterations.
            If it is not set, it will be set in ParallelExecutor according to the
            device type and device count, for GPU, :math:`num\_threads=device\_count*4`, for CPU,
            :math:`num\_threads=CPU\_NUM*4`, the explanation of:math:`CPU\_NUM` is in ParallelExecutor.
            if it is not set, ParallelExecutor will get the cpu count by calling
            `multiprocessing.cpu_count()`. Default 0.)DOC")
Y
yuyang18 已提交
761
      .def_property(
762 763 764 765
          "use_cuda",
          [](const ExecutionStrategy &self) { return self.use_cuda_; },
          [](ExecutionStrategy &self, bool use_cuda) {
            self.use_cuda_ = use_cuda;
C
chengduo 已提交
766 767 768 769
          })  // FIXME(chengduo): Doesn't add doc for 'use_cuda', use_cuda may
      // make user confuse, because ParallelExecutor has a parameter named
      // 'use_cuda' too, in current implementation, ParallelExecutor's
      // 'use_cuda' will rewrite ExecutionStrategy's 'use_cuda'.
Y
yuyang18 已提交
770 771 772 773 774
      .def_property(
          "allow_op_delay",
          [](const ExecutionStrategy &self) { return self.allow_op_delay_; },
          [](ExecutionStrategy &self, bool allow_op_delay) {
            self.allow_op_delay_ = allow_op_delay;
C
chengduo 已提交
775 776 777 778
          },
          R"DOC(The type is BOOL, allow_op_delay represents whether to delay the
                communication operators to run, it may make the execution faster.
                Note that in some models, allow_op_delay may cause program hang. Default False.)DOC")
Y
yuyang18 已提交
779 780 781 782 783 784 785
      .def_property(
          "num_iteration_per_drop_scope",
          [](const ExecutionStrategy &self) {
            return self.num_iteration_per_drop_scope_;
          },
          [](ExecutionStrategy &self, size_t num_iteration_per_drop_scope) {
            self.num_iteration_per_drop_scope_ = num_iteration_per_drop_scope;
C
chengduo 已提交
786 787 788 789 790 791 792 793 794 795 796
          },
          R"DOC(The type is INT, num_iteration_per_drop_scope indicates how
                many iterations to clean up the temp variables which
                is generated during execution. It may make the execution faster,
                because the temp variable's shape maybe the same between two iterations. Default 100.

                NOTES:
                    1. If you fetch data when calling the 'run', the ParallelExecutor
                       will clean up the temp variables at the end of the current iteration.
                    2. In some NLP model, it may cause the GPU memory is insufficient,
                       in this case, you should reduce `num_iteration_per_drop_scope`.
797 798 799 800 801 802
              )DOC")
      .def_property("_dry_run",
                    [](const ExecutionStrategy &self) { return self.dry_run_; },
                    [](ExecutionStrategy &self, bool dry_run) {
                      self.dry_run_ = dry_run;
                    });
C
chengduo 已提交
803

Y
yuyang18 已提交
804
  exec_strategy.def_property(
Y
yuyang18 已提交
805 806 807 808 809 810 811
      "use_experimental_executor",
      [](const ExecutionStrategy &self) {
        return self.type_ == ExecutionStrategy::kExperimental;
      },
      [](ExecutionStrategy &self, bool experimental) {
        self.type_ = experimental ? ExecutionStrategy::kExperimental
                                  : ExecutionStrategy::kDefault;
Y
yuyang18 已提交
812 813
      });

C
chengduo 已提交
814 815 816 817
  py::class_<BuildStrategy> build_strategy(pe, "BuildStrategy", R"DOC(
    BuildStrategy allows the user to more preciously control how to
    build the SSA Graph in ParallelExecutor by setting the property.

C
chengduo 已提交
818 819 820 821 822 823 824 825 826 827 828
    Examples:
        .. code-block:: python

          build_strategy = fluid.BuildStrategy()
          build_strategy.reduce_strategy = fluid.BuildStrategy.ReduceStrategy.Reduce

          train_exe = fluid.ParallelExecutor(use_cuda=True,
                                             loss_name=loss.name,
                                             build_strategy=build_strategy)

          train_loss, = train_exe.run([loss.name], feed=feed_dict)
C
chengduo 已提交
829
)DOC");
Y
yuyang18 已提交
830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845

  py::enum_<BuildStrategy::ReduceStrategy>(build_strategy, "ReduceStrategy")
      .value("Reduce", BuildStrategy::ReduceStrategy::kReduce)
      .value("AllReduce", BuildStrategy::ReduceStrategy::kAllReduce);
  py::enum_<BuildStrategy::GradientScaleStrategy>(build_strategy,
                                                  "GradientScaleStrategy")
      .value("CoeffNumDevice",
             BuildStrategy::GradientScaleStrategy::kCoeffNumDevice)
      .value("One", BuildStrategy::GradientScaleStrategy::kOne)
      .value("Customized", BuildStrategy::GradientScaleStrategy::kCustomized);

  build_strategy.def(py::init())
      .def_property(
          "reduce_strategy",
          [](const BuildStrategy &self) { return self.reduce_; },
          [](BuildStrategy &self, BuildStrategy::ReduceStrategy strategy) {
X
Xin Pan 已提交
846
            PADDLE_ENFORCE(!self.IsFinalized(), "BuildStrategy is finlaized.");
Y
yuyang18 已提交
847
            self.reduce_ = strategy;
C
chengduo 已提交
848 849 850 851 852 853 854
          },
          R"DOC(The type is STR, there are two reduce strategies in ParallelExecutor,
                  'AllReduce' and 'Reduce'. If you want that all the parameters'
                  optimization are done on all devices independently, you should choose 'AllReduce';
                  if you choose 'Reduce', all the parameters' optimization will be evenly distributed
                  to different devices, and then broadcast the optimized parameter to other devices.
                  In some models, `Reduce` is faster. Default 'AllReduce'. )DOC")
Y
yuyang18 已提交
855 856 857 858 859
      .def_property(
          "gradient_scale_strategy",
          [](const BuildStrategy &self) { return self.gradient_scale_; },
          [](BuildStrategy &self,
             BuildStrategy::GradientScaleStrategy strategy) {
X
Xin Pan 已提交
860
            PADDLE_ENFORCE(!self.IsFinalized(), "BuildStrategy is finlaized.");
Y
yuyang18 已提交
861
            self.gradient_scale_ = strategy;
C
chengduo 已提交
862 863 864 865 866 867
          },
          R"DOC(The type is STR, there are three ways of defining :math:`loss@grad` in
                   ParallelExecutor, 'CoeffNumDevice', 'One' and 'Customized'. By default,
                   ParallelExecutor sets the :math:`loss@grad` according to the number of devices.
                   If you want to customize :math:`loss@grad`, you can choose 'Customized'.
                   Default 'CoeffNumDevice'.)DOC")
Y
yuyang18 已提交
868 869 870 871
      .def_property(
          "debug_graphviz_path",
          [](const BuildStrategy &self) { return self.debug_graphviz_path_; },
          [](BuildStrategy &self, const std::string &path) {
X
Xin Pan 已提交
872
            PADDLE_ENFORCE(!self.IsFinalized(), "BuildStrategy is finlaized.");
Y
yuyang18 已提交
873
            self.debug_graphviz_path_ = path;
C
chengduo 已提交
874 875 876 877
          },
          R"DOC(The type is STR, debug_graphviz_path indicate the path that
                    writing the SSA Graph to file in the form of graphviz, you.
                    It is useful for debugging. Default "")DOC")
F
fengjiayi 已提交
878 879 880
      .def_property(
          "enable_data_balance",
          [](const BuildStrategy &self) { return self.enable_data_balance_; },
C
chengduo 已提交
881
          [](BuildStrategy &self, bool b) {
X
Xin Pan 已提交
882
            PADDLE_ENFORCE(!self.IsFinalized(), "BuildStrategy is finlaized.");
C
chengduo 已提交
883 884
            self.enable_data_balance_ = b;
          })  // FIXME(chengudo): enable_data_balance seems not important
S
sneaxiy 已提交
885 886 887 888 889 890
      .def_property(
          "enable_sequential_execution",
          [](const BuildStrategy &self) {
            return self.enable_sequential_execution_;
          },
          [](BuildStrategy &self, bool b) {
X
Xin Pan 已提交
891
            PADDLE_ENFORCE(!self.IsFinalized(), "BuildStrategy is finlaized.");
S
sneaxiy 已提交
892 893 894 895 896 897 898 899 900
            self.enable_sequential_execution_ = b;
          },
          R"DOC(The type is BOOL. If set True, the execution order of ops would be the same as what is in the program. Default False.)DOC")
      .def_property(
          "remove_unnecessary_lock",
          [](const BuildStrategy &self) {
            return self.remove_unnecessary_lock_;
          },
          [](BuildStrategy &self, bool b) {
X
Xin Pan 已提交
901
            PADDLE_ENFORCE(!self.IsFinalized(), "BuildStrategy is finlaized.");
S
sneaxiy 已提交
902 903 904
            self.remove_unnecessary_lock_ = b;
          },
          R"DOC(The type is BOOL. If set True, some locks in GPU ops would be released and ParallelExecutor would run faster. Default False.)DOC")
905 906 907 908 909 910
      .def_property(
          "num_trainers",
          [](const BuildStrategy &self) { return self.num_trainers_; },
          [](BuildStrategy &self, int num_trainers) {
            self.num_trainers_ = num_trainers;
          })
C
chengduo 已提交
911 912 913 914 915 916
      .def_property(
          "fuse_elewise_add_act_ops",
          [](const BuildStrategy &self) {
            return self.fuse_elewise_add_act_ops_;
          },
          [](BuildStrategy &self, bool b) {
X
Xin Pan 已提交
917
            PADDLE_ENFORCE(!self.IsFinalized(), "BuildStrategy is finlaized.");
C
chengduo 已提交
918 919 920 921 922
            self.fuse_elewise_add_act_ops_ = b;
          },
          R"DOC(The type is BOOL, fuse_elewise_add_act_ops indicate whether
                     to fuse elementwise_add_op and activation_op,
                     it may make the execution faster. Default False)DOC")
923
      .def("_finalize_strategy_and_create_passes",
X
fix  
Xin Pan 已提交
924
           [](BuildStrategy &self) -> std::shared_ptr<ir::PassBuilder> {
925 926 927 928 929
             return self.CreatePassesFromStrategy(true);
           },
           R"DOC(Allow user to customized passes. Normally model-specific
                optimization passes should be defined in this way. BuildStrategy
                cannot be updated after being finalized.)DOC");
Y
yuyang18 已提交
930 931 932 933

  pe.def(py::init<const std::vector<platform::Place> &,
                  const std::unordered_set<std::string> &,
                  const std::unordered_set<std::string> &, const ProgramDesc &,
Y
yuyang18 已提交
934
                  const std::string &, Scope *, std::vector<Scope *> &,
935 936
                  const ExecutionStrategy &, const BuildStrategy &, size_t,
                  size_t>())
Y
Yu Yang 已提交
937 938 939 940
      // NOTE: even we return a vec<Scope*>* to Python use reference policy.
      // We still cannot get local_scope from this vector, since the element
      // of vec<Scope*> will be freed by Python GC. We can only return Scope*
      // one by one and mark them as reference.
941 942 943 944 945
      .def("local_scopes",
           [](ParallelExecutor &self) -> std::vector<Scope *> * {
             return &self.GetLocalScopes();
           },
           py::return_value_policy::reference)
Y
Yu Yang 已提交
946 947 948 949
      .def("feed_tensors_into_local_scopes",
           &ParallelExecutor::FeedTensorsIntoLocalScopes)
      .def("feed_and_split_tensor_into_local_scopes",
           &ParallelExecutor::FeedAndSplitTensorIntoLocalScopes)
S
sneaxiy 已提交
950 951 952 953 954 955
      .def("run", [](ParallelExecutor &self,
                     const std::vector<std::string> &fetch_tensors,
                     const std::string &fetched_var_name) {
        pybind11::gil_scoped_release release;
        self.Run(fetch_tensors, fetched_var_name);
      });
Y
Yu Yang 已提交
956

957
  BindRecordIOWriter(&m);
W
Wang Guibao 已提交
958
  BindAsyncExecutor(&m);
L
Luo Tao 已提交
959
}
960
}  // namespace pybind
961
}  // namespace paddle