selected_rows_functor.cc 35.3 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6 7 8 9 10 11 12 13 14

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

Y
Yi Wang 已提交
15
#include "paddle/fluid/operators/math/selected_rows_functor.h"
16
#include "paddle/fluid/platform/device/device_wrapper.h"
17

L
lidanqing 已提交
18 19 20 21
#ifdef PADDLE_WITH_MKLDNN
#include "paddle/fluid/operators/mkldnn/axpy_handler.h"
#endif

22 23 24 25
namespace paddle {
namespace operators {
namespace math {
template <typename T>
Q
QI JUN 已提交
26 27
struct SelectedRowsAdd<platform::CPUDeviceContext, T> {
  void operator()(const platform::CPUDeviceContext& context,
28 29
                  const phi::SelectedRows& input1,
                  const phi::SelectedRows& input2, phi::SelectedRows* output) {
30
    auto in1_height = input1.height();
31 32 33 34 35 36
    PADDLE_ENFORCE_EQ(
        in1_height, input2.height(),
        platform::errors::InvalidArgument("The two inputs height must be equal."
                                          "But recieved first input height  = "
                                          "[%d], second input height = [%d]",
                                          in1_height, input2.height()));
37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53
    output->set_height(in1_height);

    auto& in1_rows = input1.rows();
    auto& in2_rows = input2.rows();
    std::vector<int64_t> out_rows;
    out_rows.reserve(in1_rows.size() + in2_rows.size());

    // concat rows
    out_rows.insert(out_rows.end(), in1_rows.begin(), in1_rows.end());
    out_rows.insert(out_rows.end(), in2_rows.begin(), in2_rows.end());
    output->set_rows(out_rows);

    auto* out_value = output->mutable_value();
    auto& in1_value = input1.value();
    auto& in2_value = input2.value();

    auto in1_row_numel = in1_value.numel() / in1_rows.size();
54 55 56 57 58 59 60 61 62 63 64 65
    PADDLE_ENFORCE_EQ(
        in1_row_numel, in2_value.numel() / in2_rows.size(),
        platform::errors::InvalidArgument(
            "The two inputs width must be equal."
            "But recieved first input width = [%d], second input width = [%d]",
            in1_row_numel, in2_value.numel() / in2_rows.size()));
    PADDLE_ENFORCE_EQ(
        in1_row_numel, out_value->numel() / out_rows.size(),
        platform::errors::InvalidArgument(
            "The input and oupput width must be equal."
            "But recieved input width = [%d], output width = [%d]",
            in1_row_numel, out_value->numel() / out_rows.size()));
66 67

    auto in1_place = input1.place();
68 69 70
    PADDLE_ENFORCE_EQ(platform::is_cpu_place(in1_place), true,
                      platform::errors::InvalidArgument(
                          "The running enviroment is not on the CPU place."));
71
    auto in2_place = input2.place();
72 73 74
    PADDLE_ENFORCE_EQ(platform::is_cpu_place(in2_place), true,
                      platform::errors::InvalidArgument(
                          "The running enviroment is not on the CPU place."));
75
    auto out_place = context.GetPlace();
76 77 78
    PADDLE_ENFORCE_EQ(platform::is_cpu_place(out_place), true,
                      platform::errors::InvalidArgument(
                          "The running enviroment is not on the CPU place."));
79 80 81

    auto* out_data = out_value->data<T>();
    auto* in1_data = in1_value.data<T>();
82
    memory::Copy(out_place, out_data, in1_place, in1_data,
83 84 85
                 in1_value.numel() * sizeof(T));

    auto* in2_data = in2_value.data<T>();
86
    memory::Copy(out_place, out_data + in1_value.numel(), in2_place, in2_data,
87 88 89 90
                 in2_value.numel() * sizeof(T));
  }
};

Q
QI JUN 已提交
91 92
template struct SelectedRowsAdd<platform::CPUDeviceContext, float>;
template struct SelectedRowsAdd<platform::CPUDeviceContext, double>;
93 94

template <typename T>
Q
QI JUN 已提交
95 96
struct SelectedRowsAddTensor<platform::CPUDeviceContext, T> {
  void operator()(const platform::CPUDeviceContext& context,
97
                  const phi::SelectedRows& input1,
98 99 100 101
                  const framework::Tensor& input2, framework::Tensor* output) {
    auto in1_height = input1.height();
    auto in2_dims = input2.dims();
    auto out_dims = output->dims();
102 103 104 105 106 107 108 109 110 111 112 113
    PADDLE_ENFORCE_EQ(
        in1_height, in2_dims[0],
        platform::errors::InvalidArgument("The two inputs height must be equal."
                                          "But recieved first input height = "
                                          "[%d], second input height = [%d]",
                                          in1_height, in2_dims[0]));
    PADDLE_ENFORCE_EQ(
        in1_height, out_dims[0],
        platform::errors::InvalidArgument(
            "The input and output height must be equal."
            "But recieved input height = [%d], output height = [%d]",
            in1_height, out_dims[0]));
114 115 116 117 118

    auto& in1_value = input1.value();
    auto& in1_rows = input1.rows();

    int64_t in1_row_numel = in1_value.numel() / in1_rows.size();
119 120 121 122 123 124 125 126 127 128 129 130
    PADDLE_ENFORCE_EQ(
        in1_row_numel, input2.numel() / in1_height,
        platform::errors::InvalidArgument(
            "The two inputs width must be equal."
            "But recieved first input width = [%d], second input width = [%d]",
            in1_row_numel, input2.numel() / in1_height));
    PADDLE_ENFORCE_EQ(
        in1_row_numel, output->numel() / in1_height,
        platform::errors::InvalidArgument(
            "The input and output width must be equal."
            "But recieved input width = [%d], output width = [%d]",
            in1_row_numel, output->numel() / in1_height));
131

132
    phi::funcs::SetConstant<platform::CPUDeviceContext, T> functor;
133 134 135 136 137 138 139 140 141 142 143 144 145 146
    functor(context, output, 0.0);

    auto* in1_data = in1_value.data<T>();
    auto* out_data = output->data<T>();

    for (size_t i = 0; i < in1_rows.size(); i++) {
      for (int64_t j = 0; j < in1_row_numel; j++) {
        out_data[in1_rows[i] * in1_row_numel + j] +=
            in1_data[i * in1_row_numel + j];
      }
    }

    auto out_eigen = framework::EigenVector<T>::Flatten(*output);
    auto in2_eigen = framework::EigenVector<T>::Flatten(input2);
Q
QI JUN 已提交
147
    out_eigen.device(*context.eigen_device()) = out_eigen + in2_eigen;
148 149 150
  }
};

Q
QI JUN 已提交
151 152
template struct SelectedRowsAddTensor<platform::CPUDeviceContext, float>;
template struct SelectedRowsAddTensor<platform::CPUDeviceContext, double>;
Q
QI JUN 已提交
153 154

template <typename T>
Q
QI JUN 已提交
155 156
struct SelectedRowsAddTo<platform::CPUDeviceContext, T> {
  void operator()(const platform::CPUDeviceContext& context,
157 158
                  const phi::SelectedRows& input1, const int64_t input2_offset,
                  phi::SelectedRows* input2) {
Q
QI JUN 已提交
159
    auto in1_height = input1.height();
160 161 162 163 164 165
    PADDLE_ENFORCE_EQ(
        in1_height, input2->height(),
        platform::errors::InvalidArgument("The two inputs height must be equal."
                                          "But recieved first input height = "
                                          "[%d], second input height = [%d]",
                                          in1_height, input2->height()));
Q
QI JUN 已提交
166 167 168 169 170 171 172 173

    auto& in1_rows = input1.rows();
    auto& in2_rows = *(input2->mutable_rows());

    auto& in1_value = input1.value();
    auto* in2_value = input2->mutable_value();

    // concat rows
174 175
    paddle::framework::MixVector<int64_t> mixv_in2_rows(&in2_rows);
    mixv_in2_rows.Extend(in1_rows.begin(), in1_rows.end());
Q
QI JUN 已提交
176 177

    auto in1_place = input1.place();
178 179 180
    PADDLE_ENFORCE_EQ(platform::is_cpu_place(in1_place), true,
                      platform::errors::InvalidArgument(
                          "The running enviroment is not on the CPU place."));
Q
QI JUN 已提交
181
    auto in2_place = input2->place();
182 183 184
    PADDLE_ENFORCE_EQ(platform::is_cpu_place(in2_place), true,
                      platform::errors::InvalidArgument(
                          "The running enviroment is not on the CPU place."));
Q
QI JUN 已提交
185 186 187

    auto* in1_data = in1_value.data<T>();
    auto* in2_data = in2_value->data<T>();
188
    memory::Copy(in2_place, in2_data + input2_offset, in1_place, in1_data,
Q
QI JUN 已提交
189 190 191 192
                 in1_value.numel() * sizeof(T));
  }
};

Q
QI JUN 已提交
193 194 195 196
template struct SelectedRowsAddTo<platform::CPUDeviceContext, float>;
template struct SelectedRowsAddTo<platform::CPUDeviceContext, double>;
template struct SelectedRowsAddTo<platform::CPUDeviceContext, int>;
template struct SelectedRowsAddTo<platform::CPUDeviceContext, int64_t>;
Q
QI JUN 已提交
197

M
minqiyang 已提交
198 199 200
template <typename T>
struct SelectedRowsSumTo<platform::CPUDeviceContext, T> {
  void operator()(const platform::CPUDeviceContext& context,
201
                  const std::vector<phi::SelectedRows*>& input1,
M
minqiyang 已提交
202
                  const std::vector<int64_t>& input2_offsets,
203
                  phi::SelectedRows* input2) {
M
minqiyang 已提交
204 205 206 207 208 209
    // Ensure all selected rows have the same height
    size_t size = 0u;
    for (auto iter = input1.begin(); iter != input1.end(); ++iter) {
      auto& in_rows = (*iter)->rows();
      size += in_rows.end() - in_rows.begin();
      auto in1_height = (*iter)->height();
210 211 212 213 214 215
      PADDLE_ENFORCE_EQ(in1_height, input2->height(),
                        platform::errors::InvalidArgument(
                            "The two inputs height must be equal."
                            "But recieved first input height = [%d], second "
                            "input height = [%d]",
                            in1_height, input2->height()));
M
minqiyang 已提交
216 217 218 219 220 221 222 223 224 225 226 227
    }
    // concat rows
    std::vector<int64_t> in2_rows;
    in2_rows.reserve(in2_rows.size() + size);
    for (auto iter = input1.begin(); iter != input1.end(); ++iter) {
      const framework::Vector<int64_t>& in_rows = (*iter)->rows();
      in2_rows.insert(in2_rows.end(), in_rows.begin(), in_rows.end());
    }
    input2->set_rows(in2_rows);

    auto* in2_value = input2->mutable_value();
    auto* in2_data = in2_value->data<T>();
228
    auto blas = phi::funcs::GetBlas<platform::CPUDeviceContext, T>(context);
M
minqiyang 已提交
229 230 231 232 233 234 235 236 237 238 239 240 241
    size_t offset = 0u;
    for (size_t i = 0u; i != input1.size(); ++i) {
      auto& in_value = input1[i]->value();
      const auto* in_data = in_value.data<T>();
      offset += input2_offsets[i];
      blas.VCOPY(in_value.numel(), in_data, in2_data + offset);
    }
  }
};

template struct SelectedRowsSumTo<platform::CPUDeviceContext, float>;
template struct SelectedRowsSumTo<platform::CPUDeviceContext, double>;

Q
QI JUN 已提交
242
template <typename T>
Q
QI JUN 已提交
243 244
struct SelectedRowsAddToTensor<platform::CPUDeviceContext, T> {
  void operator()(const platform::CPUDeviceContext& context,
245
                  const phi::SelectedRows& input1, framework::Tensor* input2) {
Q
Qiao Longfei 已提交
246
    if (UNLIKELY(input1.rows().size() == 0)) {
247 248 249
      LOG(WARNING) << "input selected rows is empty!";
      return;
    }
Q
QI JUN 已提交
250 251
    auto in1_height = input1.height();
    auto in2_dims = input2->dims();
252 253 254 255 256 257
    PADDLE_ENFORCE_EQ(
        in1_height, in2_dims[0],
        platform::errors::InvalidArgument("The two inputs height must be equal."
                                          "But recieved first input height = "
                                          "[%d], second input height = [%d]",
                                          in1_height, in2_dims[0]));
Q
QI JUN 已提交
258 259 260 261 262

    auto& in1_value = input1.value();
    auto& in1_rows = input1.rows();

    int64_t in1_row_numel = in1_value.numel() / in1_rows.size();
263 264 265 266 267 268
    PADDLE_ENFORCE_EQ(
        in1_row_numel, input2->numel() / in1_height,
        platform::errors::InvalidArgument(
            "The two inputs width must be equal."
            "But recieved first input width = [%d], second input width = [%d]",
            in1_row_numel, input2->numel() / in1_height));
Q
QI JUN 已提交
269 270 271 272 273 274 275 276 277 278 279 280 281

    auto* in1_data = in1_value.data<T>();
    auto* input2_data = input2->data<T>();

    for (size_t i = 0; i < in1_rows.size(); i++) {
      for (int64_t j = 0; j < in1_row_numel; j++) {
        input2_data[in1_rows[i] * in1_row_numel + j] +=
            in1_data[i * in1_row_numel + j];
      }
    }
  }
};

H
hong 已提交
282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321
template <typename T>
struct SelectedRowsAddToTensor<phi::CPUContext, T> {
  void operator()(const phi::CPUContext& context,
                  const phi::SelectedRows& input1, framework::Tensor* input2) {
    if (UNLIKELY(input1.rows().size() == 0)) {
      LOG(WARNING) << "input selected rows is empty!";
      return;
    }
    auto in1_height = input1.height();
    auto in2_dims = input2->dims();
    PADDLE_ENFORCE_EQ(
        in1_height, in2_dims[0],
        platform::errors::InvalidArgument("The two inputs height must be equal."
                                          "But recieved first input height = "
                                          "[%d], second input height = [%d]",
                                          in1_height, in2_dims[0]));

    auto& in1_value = input1.value();
    auto& in1_rows = input1.rows();

    int64_t in1_row_numel = in1_value.numel() / in1_rows.size();
    PADDLE_ENFORCE_EQ(
        in1_row_numel, input2->numel() / in1_height,
        platform::errors::InvalidArgument(
            "The two inputs width must be equal."
            "But recieved first input width = [%d], second input width = [%d]",
            in1_row_numel, input2->numel() / in1_height));

    auto* in1_data = in1_value.data<T>();
    auto* input2_data = input2->data<T>();

    for (size_t i = 0; i < in1_rows.size(); i++) {
      for (int64_t j = 0; j < in1_row_numel; j++) {
        input2_data[in1_rows[i] * in1_row_numel + j] +=
            in1_data[i * in1_row_numel + j];
      }
    }
  }
};

Q
QI JUN 已提交
322 323 324 325
template struct SelectedRowsAddToTensor<platform::CPUDeviceContext, float>;
template struct SelectedRowsAddToTensor<platform::CPUDeviceContext, double>;
template struct SelectedRowsAddToTensor<platform::CPUDeviceContext, int>;
template struct SelectedRowsAddToTensor<platform::CPUDeviceContext, int64_t>;
326 327
template struct SelectedRowsAddToTensor<platform::CPUDeviceContext,
                                        platform::bfloat16>;
328

H
hong 已提交
329 330 331 332 333
template struct SelectedRowsAddToTensor<phi::CPUContext, float>;
template struct SelectedRowsAddToTensor<phi::CPUContext, double>;
template struct SelectedRowsAddToTensor<phi::CPUContext, int>;
template struct SelectedRowsAddToTensor<phi::CPUContext, int64_t>;
template struct SelectedRowsAddToTensor<phi::CPUContext, platform::bfloat16>;
T
typhoonzero 已提交
334 335 336 337 338 339 340 341
// This is a separated namespace for manipulate SelectedRows typed
// data. Like merge duplicated rows, adding two SelectedRows etc.
//
// Another group of functors is called "scatter updates", which means
// use SelectedRows to update a dense tensor with different Ops, like
// add or mul.
namespace scatter {

342
template <typename T, typename DeviceContext>
343
typename std::enable_if<!std::is_integral<T>::value>::type elementwise_add_to(
344 345
    phi::funcs::BlasT<DeviceContext, T>* blas, size_t data_len, const T* in,
    T* out) {
346
  blas->AXPY(data_len, T(1.f), in, out);
Q
Qiao Longfei 已提交
347 348
}

349
template <typename T, typename DeviceContext>
350
typename std::enable_if<std::is_integral<T>::value>::type elementwise_add_to(
351 352
    phi::funcs::BlasT<DeviceContext, T>* blas, size_t data_len, const T* in,
    T* out) {
T
Tao Luo 已提交
353
  for (size_t i = 0; i < data_len; i++) {
Q
Qiao Longfei 已提交
354 355
    out[i] += in[i];
  }
T
typhoonzero 已提交
356 357
}

358
template <typename T, typename DeviceContext>
359
typename std::enable_if<std::is_same<T, platform::bfloat16>::value>::type
360
add_sparse_inputs(const std::vector<const phi::SelectedRows*>& inputs,
361
                  const std::unordered_map<int64_t, size_t>& rows_to_id,
362 363
                  int64_t input_width, const DeviceContext& context,
                  T* out_data) {
364
#ifndef PADDLE_WITH_MKLDNN
365
  auto blas = phi::funcs::GetBlas<DeviceContext, T>(context);
366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383
#endif
  for (auto* input : inputs) {
    if (input->rows().size() == 0) {
      continue;
    }
    auto* input_data = input->value().data<T>();
    auto& input_rows = input->rows();

#ifdef PADDLE_WITH_MKLDNN
    OneDNNAXPYHandler<T> axpy_handler(input_width, T(1.f));
    for (size_t i = 0; i < input_rows.size(); i++) {
      size_t out_i = rows_to_id.at(input_rows[i]);
      axpy_handler(&input_data[i * input_width],
                   &out_data[out_i * input_width]);
    }
#else
    for (size_t i = 0; i < input_rows.size(); i++) {
      size_t out_i = rows_to_id.at(input_rows[i]);
384 385 386
      elementwise_add_to<T, DeviceContext>(
          &blas, static_cast<size_t>(input_width), &input_data[i * input_width],
          &out_data[out_i * input_width]);
387 388 389 390 391
    }
#endif
  }
}

392
template <typename T, typename DeviceContext>
393
typename std::enable_if<!std::is_same<T, platform::bfloat16>::value>::type
394
add_sparse_inputs(const std::vector<const phi::SelectedRows*>& inputs,
395
                  const std::unordered_map<int64_t, size_t>& rows_to_id,
396 397
                  int64_t input_width, const DeviceContext& context,
                  T* out_data) {
398
  VLOG(4) << "[CPU] add_sparse_inputs <" << typeid(T).name();
399
  auto blas = phi::funcs::GetBlas<DeviceContext, T>(context);
400 401 402 403 404 405 406 407 408
  for (auto* input : inputs) {
    if (input->rows().size() == 0) {
      continue;
    }
    auto* input_data = input->value().data<T>();
    auto& input_rows = input->rows();

    for (size_t i = 0; i < input_rows.size(); i++) {
      size_t out_i = rows_to_id.at(input_rows[i]);
409 410 411
      elementwise_add_to<T, DeviceContext>(
          &blas, static_cast<size_t>(input_width), &input_data[i * input_width],
          &out_data[out_i * input_width]);
412 413 414 415
    }
  }
}

416 417 418
template <typename DeviceContext, typename T>
struct MergeAddImpl {
  phi::SelectedRows operator()(const DeviceContext& context,
419 420 421
                               const phi::SelectedRows& input,
                               const bool sorted_result = false) {
    phi::SelectedRows out;
422
    (*this)(context, input, &out, sorted_result);
S
sneaxiy 已提交
423 424 425
    return out;
  }

426 427
  void operator()(const DeviceContext& context, const phi::SelectedRows& input,
                  phi::SelectedRows* output, const bool sorted_result = false) {
428
    std::vector<const phi::SelectedRows*> inputs;
429
    inputs.push_back(&input);
430
    (*this)(context, inputs, output, sorted_result);
431
  }
T
typhoonzero 已提交
432

433
  void operator()(const DeviceContext& context,
434 435
                  const std::vector<const phi::SelectedRows*>& inputs,
                  phi::SelectedRows* output, const bool sorted_result = false) {
Q
Qiao Longfei 已提交
436
    if (inputs.size() == 0) {
M
minqiyang 已提交
437
      VLOG(3) << "no input! return";
Q
Qiao Longfei 已提交
438 439
      return;
    }
440
    const phi::SelectedRows* has_value_input = nullptr;
Q
Qiao Longfei 已提交
441
    for (auto* in : inputs) {
Q
Qiao Longfei 已提交
442
      if (in->rows().size() > 0) {
Q
Qiao Longfei 已提交
443 444 445 446 447
        has_value_input = in;
        break;
      }
    }
    if (has_value_input == nullptr) {
M
minqiyang 已提交
448
      VLOG(3) << "no input has value! just return" << std::endl;
Q
Qiao Longfei 已提交
449 450 451 452
      return;
    }
    auto input_width = has_value_input->value().dims()[1];
    auto input_height = has_value_input->height();
453
    phi::SelectedRows& out = *output;
454
    std::set<int64_t> merged_row_set;
455
    size_t row_num = 0;
456
    for (auto* input : inputs) {
Q
Qiao Longfei 已提交
457
      if (input->rows().size() == 0) {
Q
Qiao Longfei 已提交
458 459
        continue;
      }
460
      PADDLE_ENFORCE_EQ(input_width, input->value().dims()[1],
461 462 463
                        platform::errors::InvalidArgument(
                            "All inputs should have same "
                            "dimension except for the first one."));
464
      PADDLE_ENFORCE_EQ(input_height, input->height(),
465 466
                        platform::errors::InvalidArgument(
                            "All inputs should have same height."));
467
      row_num += input->rows().size();
468 469
      merged_row_set.insert(input->rows().begin(), input->rows().end());
    }
470

471
    out.set_height(input_height);
T
wip  
typhoonzero 已提交
472
    out.mutable_value()->mutable_data<T>(
473
        phi::make_ddim(
474
            {static_cast<int64_t>(merged_row_set.size()), input_width}),
T
typhoonzero 已提交
475
        context.GetPlace());
476
    auto* out_data = out.mutable_value()->data<T>();
T
typhoonzero 已提交
477

478 479 480 481 482 483 484 485 486 487 488 489 490 491 492
    if (merged_row_set.size() == row_num && !sorted_result) {
      // no duplicated ids, just concat the result together
      std::vector<int64_t> merge_rows;
      merge_rows.reserve(row_num);
      // concat rows
      for (auto* in : inputs) {
        merge_rows.insert(merge_rows.end(), in->rows().begin(),
                          in->rows().end());
      }
      out.set_rows(merge_rows);
      auto in_place = inputs[0]->place();
      auto out_place = out.place();
      int64_t copied_numel = 0;
      for (auto* in : inputs) {
        auto* in_data = in->value().data<T>();
493
        auto in_numel = in->rows().size() * input_width;
494
        memory::Copy(out_place, out_data + copied_numel, in_place, in_data,
495 496 497 498 499 500
                     in_numel * sizeof(T));
        copied_numel += in_numel;
      }
    } else {
      std::vector<int64_t> merge_rows(merged_row_set.begin(),
                                      merged_row_set.end());
T
typhoonzero 已提交
501

502 503 504
      if (sorted_result) {
        std::sort(merge_rows.begin(), merge_rows.end());
      }
T
typhoonzero 已提交
505

506 507
      out.set_rows(merge_rows);

508
      phi::funcs::SetConstant<DeviceContext, T> constant_functor;
509
      constant_functor(context, out.mutable_value(), static_cast<T>(0.f));
510 511 512 513

      std::unordered_map<int64_t, size_t> rows_to_id;
      for (size_t i = 0; i < merge_rows.size(); ++i) {
        rows_to_id[merge_rows[i]] = i;
Q
Qiao Longfei 已提交
514
      }
515

516 517
      add_sparse_inputs<T, DeviceContext>(inputs, rows_to_id, input_width,
                                          context, out_data);
T
typhoonzero 已提交
518
    }
T
wip  
typhoonzero 已提交
519 520 521
  }
};

522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584
template <typename T>
struct MergeAdd<platform::CPUDeviceContext, T> {
  // unary functor, merge by adding duplicated rows in
  // the input SelectedRows object.
  phi::SelectedRows operator()(const platform::CPUDeviceContext& context,
                               const phi::SelectedRows& input,
                               const bool sorted_result) {
    return MergeAddImpl<platform::CPUDeviceContext, T>()(context, input,
                                                         sorted_result);
  }

  void operator()(const platform::CPUDeviceContext& context,
                  const phi::SelectedRows& input, phi::SelectedRows* output,
                  const bool sorted_result) {
    MergeAddImpl<platform::CPUDeviceContext, T>()(context, input, output,
                                                  sorted_result);
  }

  void operator()(const platform::CPUDeviceContext& context,
                  const std::vector<const phi::SelectedRows*>& inputs,
                  phi::SelectedRows* output, const bool sorted_result) {
    MergeAddImpl<platform::CPUDeviceContext, T>()(context, inputs, output,
                                                  sorted_result);
  }
};

template <typename T>
struct MergeAdd<phi::CPUContext, T> {
  // unary functor, merge by adding duplicated rows in
  // the input SelectedRows object.
  phi::SelectedRows operator()(const phi::CPUContext& context,
                               const phi::SelectedRows& input,
                               const bool sorted_result) {
    return MergeAddImpl<phi::CPUContext, T>()(context, input, sorted_result);
  }

  void operator()(const phi::CPUContext& context,
                  const phi::SelectedRows& input, phi::SelectedRows* output,
                  const bool sorted_result) {
    MergeAddImpl<phi::CPUContext, T>()(context, input, output, sorted_result);
  }

  void operator()(const phi::CPUContext& context,
                  const std::vector<const phi::SelectedRows*>& inputs,
                  phi::SelectedRows* output, const bool sorted_result) {
    MergeAddImpl<phi::CPUContext, T>()(context, inputs, output, sorted_result);
  }
};

#define TEMPLATE_SPECIALIZED_FOR_MERGEADD_CPU(dtype)               \
  template struct MergeAddImpl<platform::CPUDeviceContext, dtype>; \
  template struct MergeAddImpl<phi::CPUContext, dtype>;            \
  template struct MergeAdd<platform::CPUDeviceContext, dtype>;     \
  template struct MergeAdd<phi::CPUContext, dtype>;

TEMPLATE_SPECIALIZED_FOR_MERGEADD_CPU(float)
TEMPLATE_SPECIALIZED_FOR_MERGEADD_CPU(double)
TEMPLATE_SPECIALIZED_FOR_MERGEADD_CPU(int)
TEMPLATE_SPECIALIZED_FOR_MERGEADD_CPU(int64_t)
TEMPLATE_SPECIALIZED_FOR_MERGEADD_CPU(platform::bfloat16)
TEMPLATE_SPECIALIZED_FOR_MERGEADD_CPU(platform::complex<float>)
TEMPLATE_SPECIALIZED_FOR_MERGEADD_CPU(platform::complex<double>)

585 586 587
#ifdef PADDLE_WITH_XPU
template <typename T>
struct MergeAdd<platform::XPUDeviceContext, T> {
588 589 590 591
  phi::SelectedRows operator()(const platform::XPUDeviceContext& context,
                               const phi::SelectedRows& input,
                               const bool sorted_result = false) {
    phi::SelectedRows out;
592 593 594 595 596
    (*this)(context, input, &out, sorted_result);
    return out;
  }

  void operator()(const platform::XPUDeviceContext& context,
597
                  const phi::SelectedRows& input, phi::SelectedRows* output,
598 599 600 601 602 603
                  const bool sorted_result = false) {
    framework::Vector<int64_t> input_rows(input.rows());
    if (input_rows.size() == 0) {
      return;
    }

604
    phi::SelectedRows& out = *output;
605 606 607 608 609 610 611
    std::set<int64_t> row_set(input_rows.begin(), input_rows.end());
    std::vector<int64_t> merge_rows(row_set.begin(), row_set.end());
    auto input_width = input.value().dims()[1];

    out.set_rows(merge_rows);
    out.set_height(input.height());
    out.mutable_value()->mutable_data<T>(
612
        phi::make_ddim({static_cast<int64_t>(merge_rows.size()), input_width}),
613 614 615 616 617 618 619
        context.GetPlace());

    std::unordered_map<int64_t, size_t> rows_to_id;
    for (size_t i = 0; i < merge_rows.size(); ++i) {
      rows_to_id[merge_rows[i]] = i;
    }

620 621 622 623
    auto* y_data = out.mutable_value()->data<T>();
    auto* x_data = input.value().data<T>();
    int xm = input_rows.size();
    int ym = merge_rows.size();
624
    int n = input_width;
625 626 627 628 629 630 631 632 633 634 635 636

    xpu::ctx_guard RAII_GUARD(context.x_context());
    int64_t* x_rows_data = RAII_GUARD.alloc_l3_or_gm<int64_t>(xm);
    int64_t* y_rows_data = RAII_GUARD.alloc_l3_or_gm<int64_t>(ym);
    memory::Copy(context.GetPlace(), y_rows_data, platform::CPUPlace(),
                 merge_rows.data(), ym * sizeof(int64_t));
    memory::Copy(context.GetPlace(), x_rows_data, platform::CPUPlace(),
                 input_rows.data(), xm * sizeof(int64_t));
    int r =
        xpu::merge_dup_rows<T, int64_t>(context.x_context(), x_data, y_data,
                                        x_rows_data, y_rows_data, xm, n, ym);
    PADDLE_ENFORCE_XDNN_SUCCESS(r, "merge_dup_rows");
637 638 639
  }

  void operator()(const platform::XPUDeviceContext& context,
640 641
                  const std::vector<const phi::SelectedRows*>& inputs,
                  phi::SelectedRows* output, const bool sorted_result = false) {
642 643 644 645
    if (inputs.size() == 0) {
      VLOG(3) << "no input! return";
      return;
    }
646
    const phi::SelectedRows* has_value_input = nullptr;
647 648 649 650 651 652 653 654 655 656 657 658
    for (auto* in : inputs) {
      if (in->rows().size() > 0) {
        has_value_input = in;
        break;
      }
    }
    if (has_value_input == nullptr) {
      VLOG(3) << "no input has value! just return" << std::endl;
      return;
    }
    auto input_width = has_value_input->value().dims()[1];
    auto input_height = has_value_input->height();
659
    phi::SelectedRows& out = *output;
660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686
    std::set<int64_t> merged_row_set;
    size_t row_num = 0;
    for (auto* input : inputs) {
      if (input->rows().size() == 0) {
        continue;
      }
      PADDLE_ENFORCE_EQ(input_width, input->value().dims()[1],
                        platform::errors::InvalidArgument(
                            "All inputs should have same "
                            "dimension except for the first one."));
      PADDLE_ENFORCE_EQ(input_height, input->height(),
                        platform::errors::InvalidArgument(
                            "All inputs should have same height."));
      row_num += input->rows().size();
      merged_row_set.insert(input->rows().begin(), input->rows().end());
    }

    std::vector<int64_t> merge_rows(merged_row_set.begin(),
                                    merged_row_set.end());

    if (sorted_result) {
      std::sort(merge_rows.begin(), merge_rows.end());
    }

    out.set_rows(merge_rows);
    out.set_height(input_height);
    out.mutable_value()->mutable_data<T>(
687
        phi::make_ddim(
688 689 690
            {static_cast<int64_t>(merged_row_set.size()), input_width}),
        context.GetPlace());

691
    float* y_data = reinterpret_cast<float*>(out.mutable_value()->data<T>());
692 693 694 695 696 697 698 699 700 701 702 703

    std::unordered_map<int64_t, size_t> rows_to_id;
    for (size_t i = 0; i < merge_rows.size(); ++i) {
      rows_to_id[merge_rows[i]] = i;
    }

    for (auto* input : inputs) {
      if (input->rows().size() == 0) {
        continue;
      }
      auto& input_rows = input->rows();

704 705 706
      auto* x_data = input->value().data<T>();
      int xm = input_rows.size();
      int ym = merge_rows.size();
707
      int n = input_width;
708 709 710 711 712 713 714 715 716 717 718 719

      xpu::ctx_guard RAII_GUARD(context.x_context());
      int64_t* x_rows_data = RAII_GUARD.alloc_l3_or_gm<int64_t>(xm);
      int64_t* y_rows_data = RAII_GUARD.alloc_l3_or_gm<int64_t>(ym);
      memory::Copy(context.GetPlace(), y_rows_data, platform::CPUPlace(),
                   merge_rows.data(), ym * sizeof(int64_t));
      memory::Copy(context.GetPlace(), x_rows_data, platform::CPUPlace(),
                   input_rows.data(), xm * sizeof(int64_t));
      int r =
          xpu::merge_dup_rows<T, int64_t>(context.x_context(), x_data, y_data,
                                          x_rows_data, y_rows_data, xm, n, ym);
      PADDLE_ENFORCE_XDNN_SUCCESS(r, "merge_dup_rows");
720 721 722 723 724
    }
  }
};

#endif
725 726
template <typename T>
struct MergeAverage<platform::CPUDeviceContext, T> {
727 728 729
  phi::SelectedRows operator()(const platform::CPUDeviceContext& context,
                               const phi::SelectedRows& input) {
    phi::SelectedRows out;
730 731 732 733 734
    (*this)(context, input, &out);
    return out;
  }

  void operator()(const platform::CPUDeviceContext& context,
735 736
                  const phi::SelectedRows& input, phi::SelectedRows* output) {
    std::vector<const phi::SelectedRows*> inputs;
737 738 739 740 741
    inputs.push_back(&input);
    (*this)(context, inputs, output);
  }

  void operator()(const platform::CPUDeviceContext& context,
742 743
                  const std::vector<const phi::SelectedRows*>& inputs,
                  phi::SelectedRows* output) {
744 745 746 747
    if (inputs.size() == 0) {
      VLOG(3) << "no input! return";
      return;
    }
748
    const phi::SelectedRows* has_value_input = nullptr;
749 750 751 752 753 754 755 756 757 758 759 760
    for (auto* in : inputs) {
      if (in->rows().size() > 0) {
        has_value_input = in;
        break;
      }
    }
    if (has_value_input == nullptr) {
      VLOG(3) << "no input has value! just return" << std::endl;
      return;
    }
    auto input_width = has_value_input->value().dims()[1];
    auto input_height = has_value_input->height();
761
    phi::SelectedRows& out = *output;
762 763 764 765 766 767 768
    std::set<int64_t> merged_row_set;
    size_t row_num = 0;
    for (auto* input : inputs) {
      if (input->rows().size() == 0) {
        continue;
      }
      PADDLE_ENFORCE_EQ(input_width, input->value().dims()[1],
769 770 771
                        platform::errors::InvalidArgument(
                            "All inputs should have same "
                            "dimension except for the first one."));
772
      PADDLE_ENFORCE_EQ(input_height, input->height(),
773 774
                        platform::errors::InvalidArgument(
                            "All input should have same height."));
775 776 777 778 779 780
      row_num += input->rows().size();
      merged_row_set.insert(input->rows().begin(), input->rows().end());
    }

    out.set_height(input_height);
    out.mutable_value()->mutable_data<T>(
781
        phi::make_ddim(
782 783 784 785 786 787 788 789 790 791
            {static_cast<int64_t>(merged_row_set.size()), input_width}),
        context.GetPlace());
    auto* out_data = out.mutable_value()->data<T>();

    std::vector<int64_t> merge_rows(merged_row_set.begin(),
                                    merged_row_set.end());
    std::sort(merge_rows.begin(), merge_rows.end());

    out.set_rows(merge_rows);

792
    phi::funcs::SetConstant<platform::CPUDeviceContext, T> constant_functor;
793 794 795 796 797 798 799
    constant_functor(context, out.mutable_value(), 0.0);

    std::unordered_map<int64_t, size_t> rows_to_id;
    for (size_t i = 0; i < merge_rows.size(); ++i) {
      rows_to_id[merge_rows[i]] = i;
    }

800
    auto blas = phi::funcs::GetBlas<platform::CPUDeviceContext, T>(context);
801 802 803 804 805 806 807 808 809
    for (auto* input : inputs) {
      if (input->rows().size() == 0) {
        continue;
      }
      auto* input_data = input->value().data<T>();
      auto& input_rows = input->rows();

      for (size_t i = 0; i < input_rows.size(); i++) {
        size_t out_i = rows_to_id[input_rows[i]];
810 811 812
        elementwise_add_to<T>(&blas, static_cast<size_t>(input_width),
                              &input_data[i * input_width],
                              &out_data[out_i * input_width]);
813 814 815 816 817 818 819 820 821 822 823 824
      }
    }
    size_t input_width_cast = static_cast<size_t>(input_width);
    T count = static_cast<T>(inputs.size());
    for (size_t i = 0; i < merge_rows.size(); i++) {
      for (size_t j = 0; j < input_width_cast; j++) {
        out_data[i * input_width + j] = out_data[i * input_width + j] / count;
      }
    }
  }
};

825 826 827 828
#ifdef PADDLE_WITH_XPU
template struct MergeAdd<platform::XPUDeviceContext, float>;
#endif

829 830 831 832 833
template struct MergeAverage<platform::CPUDeviceContext, int>;
template struct MergeAverage<platform::CPUDeviceContext, int64_t>;
template struct MergeAverage<platform::CPUDeviceContext, float>;
template struct MergeAverage<platform::CPUDeviceContext, double>;

T
wip  
typhoonzero 已提交
834 835
template <typename T>
struct UpdateToTensor<platform::CPUDeviceContext, T> {
T
typhoonzero 已提交
836
  void operator()(const platform::CPUDeviceContext& context,
837
                  const ScatterOps& op, const phi::SelectedRows& input1,
T
typhoonzero 已提交
838
                  framework::Tensor* input2) {
T
wip  
typhoonzero 已提交
839 840
    auto in1_height = input1.height();
    auto in2_dims = input2->dims();
841 842 843 844 845 846
    PADDLE_ENFORCE_EQ(
        in1_height, in2_dims[0],
        platform::errors::InvalidArgument("The two inputs height must be equal."
                                          "But recieved first input height = "
                                          "[%d], second input height = [%d]",
                                          in1_height, in2_dims[0]));
T
wip  
typhoonzero 已提交
847 848 849 850 851

    auto& in1_value = input1.value();
    auto& in1_rows = input1.rows();

    int64_t in1_row_numel = in1_value.numel() / in1_rows.size();
852 853 854 855 856 857
    PADDLE_ENFORCE_EQ(
        in1_row_numel, input2->numel() / in1_height,
        platform::errors::InvalidArgument(
            "The two inputs width must be equal."
            "But recieved first input width = [%d], second input width = [%d]",
            in1_row_numel, input2->numel() / in1_height));
T
wip  
typhoonzero 已提交
858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901

    auto* in1_data = in1_value.data<T>();
    auto* input2_data = input2->data<T>();

    // FIXME(typhoonzero): use macro fix the below messy code.
    switch (op) {
      case ScatterOps::ASSIGN:
        INLINE_FOR2(in1_rows.size(), in1_row_numel)
        input2_data[in1_rows[i] * in1_row_numel + j] =
            in1_data[i * in1_row_numel + j];
        break;
      case ScatterOps::ADD:
        INLINE_FOR2(in1_rows.size(), in1_row_numel)
        input2_data[in1_rows[i] * in1_row_numel + j] +=
            in1_data[i * in1_row_numel + j];
        break;
      case ScatterOps::SUB:
        INLINE_FOR2(in1_rows.size(), in1_row_numel)
        input2_data[in1_rows[i] * in1_row_numel + j] -=
            in1_data[i * in1_row_numel + j];
        break;
      case ScatterOps::SUBBY:
        INLINE_FOR2(in1_rows.size(), in1_row_numel)
        input2_data[in1_rows[i] * in1_row_numel + j] =
            in1_data[i * in1_row_numel + j] -
            input2_data[in1_rows[i] * in1_row_numel + j];
        break;
      case ScatterOps::MUL:
        INLINE_FOR2(in1_rows.size(), in1_row_numel)
        input2_data[in1_rows[i] * in1_row_numel + j] *=
            in1_data[i * in1_row_numel + j];
        break;
      case ScatterOps::DIV:
        INLINE_FOR2(in1_rows.size(), in1_row_numel)
        input2_data[in1_rows[i] * in1_row_numel + j] /=
            in1_data[i * in1_row_numel + j];
        break;
      case ScatterOps::DIVBY:
        INLINE_FOR2(in1_rows.size(), in1_row_numel)
        input2_data[in1_rows[i] * in1_row_numel + j] =
            in1_data[i * in1_row_numel + j] /
            input2_data[in1_rows[i] * in1_row_numel + j];
        break;
    }
T
typhoonzero 已提交
902 903 904 905
  }
};

}  // namespace scatter
906 907 908
}  // namespace math
}  // namespace operators
}  // namespace paddle