selected_rows_functor.cc 31.5 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6 7 8 9 10 11 12 13 14

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

Y
Yi Wang 已提交
15
#include "paddle/fluid/operators/math/selected_rows_functor.h"
16

L
lidanqing 已提交
17 18 19 20
#ifdef PADDLE_WITH_MKLDNN
#include "paddle/fluid/operators/mkldnn/axpy_handler.h"
#endif

21 22 23 24
namespace paddle {
namespace operators {
namespace math {
template <typename T>
Q
QI JUN 已提交
25 26
struct SelectedRowsAdd<platform::CPUDeviceContext, T> {
  void operator()(const platform::CPUDeviceContext& context,
27 28
                  const phi::SelectedRows& input1,
                  const phi::SelectedRows& input2, phi::SelectedRows* output) {
29
    auto in1_height = input1.height();
30 31 32 33 34 35
    PADDLE_ENFORCE_EQ(
        in1_height, input2.height(),
        platform::errors::InvalidArgument("The two inputs height must be equal."
                                          "But recieved first input height  = "
                                          "[%d], second input height = [%d]",
                                          in1_height, input2.height()));
36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52
    output->set_height(in1_height);

    auto& in1_rows = input1.rows();
    auto& in2_rows = input2.rows();
    std::vector<int64_t> out_rows;
    out_rows.reserve(in1_rows.size() + in2_rows.size());

    // concat rows
    out_rows.insert(out_rows.end(), in1_rows.begin(), in1_rows.end());
    out_rows.insert(out_rows.end(), in2_rows.begin(), in2_rows.end());
    output->set_rows(out_rows);

    auto* out_value = output->mutable_value();
    auto& in1_value = input1.value();
    auto& in2_value = input2.value();

    auto in1_row_numel = in1_value.numel() / in1_rows.size();
53 54 55 56 57 58 59 60 61 62 63 64
    PADDLE_ENFORCE_EQ(
        in1_row_numel, in2_value.numel() / in2_rows.size(),
        platform::errors::InvalidArgument(
            "The two inputs width must be equal."
            "But recieved first input width = [%d], second input width = [%d]",
            in1_row_numel, in2_value.numel() / in2_rows.size()));
    PADDLE_ENFORCE_EQ(
        in1_row_numel, out_value->numel() / out_rows.size(),
        platform::errors::InvalidArgument(
            "The input and oupput width must be equal."
            "But recieved input width = [%d], output width = [%d]",
            in1_row_numel, out_value->numel() / out_rows.size()));
65 66

    auto in1_place = input1.place();
67 68 69
    PADDLE_ENFORCE_EQ(platform::is_cpu_place(in1_place), true,
                      platform::errors::InvalidArgument(
                          "The running enviroment is not on the CPU place."));
70
    auto in2_place = input2.place();
71 72 73
    PADDLE_ENFORCE_EQ(platform::is_cpu_place(in2_place), true,
                      platform::errors::InvalidArgument(
                          "The running enviroment is not on the CPU place."));
74
    auto out_place = context.GetPlace();
75 76 77
    PADDLE_ENFORCE_EQ(platform::is_cpu_place(out_place), true,
                      platform::errors::InvalidArgument(
                          "The running enviroment is not on the CPU place."));
78 79 80

    auto* out_data = out_value->data<T>();
    auto* in1_data = in1_value.data<T>();
81
    memory::Copy(out_place, out_data, in1_place, in1_data,
82 83 84
                 in1_value.numel() * sizeof(T));

    auto* in2_data = in2_value.data<T>();
85
    memory::Copy(out_place, out_data + in1_value.numel(), in2_place, in2_data,
86 87 88 89
                 in2_value.numel() * sizeof(T));
  }
};

Q
QI JUN 已提交
90 91
template struct SelectedRowsAdd<platform::CPUDeviceContext, float>;
template struct SelectedRowsAdd<platform::CPUDeviceContext, double>;
92 93

template <typename T>
Q
QI JUN 已提交
94 95
struct SelectedRowsAddTensor<platform::CPUDeviceContext, T> {
  void operator()(const platform::CPUDeviceContext& context,
96
                  const phi::SelectedRows& input1,
97 98 99 100
                  const framework::Tensor& input2, framework::Tensor* output) {
    auto in1_height = input1.height();
    auto in2_dims = input2.dims();
    auto out_dims = output->dims();
101 102 103 104 105 106 107 108 109 110 111 112
    PADDLE_ENFORCE_EQ(
        in1_height, in2_dims[0],
        platform::errors::InvalidArgument("The two inputs height must be equal."
                                          "But recieved first input height = "
                                          "[%d], second input height = [%d]",
                                          in1_height, in2_dims[0]));
    PADDLE_ENFORCE_EQ(
        in1_height, out_dims[0],
        platform::errors::InvalidArgument(
            "The input and output height must be equal."
            "But recieved input height = [%d], output height = [%d]",
            in1_height, out_dims[0]));
113 114 115 116 117

    auto& in1_value = input1.value();
    auto& in1_rows = input1.rows();

    int64_t in1_row_numel = in1_value.numel() / in1_rows.size();
118 119 120 121 122 123 124 125 126 127 128 129
    PADDLE_ENFORCE_EQ(
        in1_row_numel, input2.numel() / in1_height,
        platform::errors::InvalidArgument(
            "The two inputs width must be equal."
            "But recieved first input width = [%d], second input width = [%d]",
            in1_row_numel, input2.numel() / in1_height));
    PADDLE_ENFORCE_EQ(
        in1_row_numel, output->numel() / in1_height,
        platform::errors::InvalidArgument(
            "The input and output width must be equal."
            "But recieved input width = [%d], output width = [%d]",
            in1_row_numel, output->numel() / in1_height));
130

131
    phi::funcs::SetConstant<platform::CPUDeviceContext, T> functor;
132 133 134 135 136 137 138 139 140 141 142 143 144 145
    functor(context, output, 0.0);

    auto* in1_data = in1_value.data<T>();
    auto* out_data = output->data<T>();

    for (size_t i = 0; i < in1_rows.size(); i++) {
      for (int64_t j = 0; j < in1_row_numel; j++) {
        out_data[in1_rows[i] * in1_row_numel + j] +=
            in1_data[i * in1_row_numel + j];
      }
    }

    auto out_eigen = framework::EigenVector<T>::Flatten(*output);
    auto in2_eigen = framework::EigenVector<T>::Flatten(input2);
Q
QI JUN 已提交
146
    out_eigen.device(*context.eigen_device()) = out_eigen + in2_eigen;
147 148 149
  }
};

Q
QI JUN 已提交
150 151
template struct SelectedRowsAddTensor<platform::CPUDeviceContext, float>;
template struct SelectedRowsAddTensor<platform::CPUDeviceContext, double>;
Q
QI JUN 已提交
152 153

template <typename T>
Q
QI JUN 已提交
154 155
struct SelectedRowsAddTo<platform::CPUDeviceContext, T> {
  void operator()(const platform::CPUDeviceContext& context,
156 157
                  const phi::SelectedRows& input1, const int64_t input2_offset,
                  phi::SelectedRows* input2) {
Q
QI JUN 已提交
158
    auto in1_height = input1.height();
159 160 161 162 163 164
    PADDLE_ENFORCE_EQ(
        in1_height, input2->height(),
        platform::errors::InvalidArgument("The two inputs height must be equal."
                                          "But recieved first input height = "
                                          "[%d], second input height = [%d]",
                                          in1_height, input2->height()));
Q
QI JUN 已提交
165 166 167 168 169 170 171 172

    auto& in1_rows = input1.rows();
    auto& in2_rows = *(input2->mutable_rows());

    auto& in1_value = input1.value();
    auto* in2_value = input2->mutable_value();

    // concat rows
Y
Yu Yang 已提交
173
    in2_rows.Extend(in1_rows.begin(), in1_rows.end());
Q
QI JUN 已提交
174 175

    auto in1_place = input1.place();
176 177 178
    PADDLE_ENFORCE_EQ(platform::is_cpu_place(in1_place), true,
                      platform::errors::InvalidArgument(
                          "The running enviroment is not on the CPU place."));
Q
QI JUN 已提交
179
    auto in2_place = input2->place();
180 181 182
    PADDLE_ENFORCE_EQ(platform::is_cpu_place(in2_place), true,
                      platform::errors::InvalidArgument(
                          "The running enviroment is not on the CPU place."));
Q
QI JUN 已提交
183 184 185

    auto* in1_data = in1_value.data<T>();
    auto* in2_data = in2_value->data<T>();
186
    memory::Copy(in2_place, in2_data + input2_offset, in1_place, in1_data,
Q
QI JUN 已提交
187 188 189 190
                 in1_value.numel() * sizeof(T));
  }
};

Q
QI JUN 已提交
191 192 193 194
template struct SelectedRowsAddTo<platform::CPUDeviceContext, float>;
template struct SelectedRowsAddTo<platform::CPUDeviceContext, double>;
template struct SelectedRowsAddTo<platform::CPUDeviceContext, int>;
template struct SelectedRowsAddTo<platform::CPUDeviceContext, int64_t>;
Q
QI JUN 已提交
195

M
minqiyang 已提交
196 197 198
template <typename T>
struct SelectedRowsSumTo<platform::CPUDeviceContext, T> {
  void operator()(const platform::CPUDeviceContext& context,
199
                  const std::vector<phi::SelectedRows*>& input1,
M
minqiyang 已提交
200
                  const std::vector<int64_t>& input2_offsets,
201
                  phi::SelectedRows* input2) {
M
minqiyang 已提交
202 203 204 205 206 207
    // Ensure all selected rows have the same height
    size_t size = 0u;
    for (auto iter = input1.begin(); iter != input1.end(); ++iter) {
      auto& in_rows = (*iter)->rows();
      size += in_rows.end() - in_rows.begin();
      auto in1_height = (*iter)->height();
208 209 210 211 212 213
      PADDLE_ENFORCE_EQ(in1_height, input2->height(),
                        platform::errors::InvalidArgument(
                            "The two inputs height must be equal."
                            "But recieved first input height = [%d], second "
                            "input height = [%d]",
                            in1_height, input2->height()));
M
minqiyang 已提交
214 215 216 217 218 219 220 221 222 223 224 225
    }
    // concat rows
    std::vector<int64_t> in2_rows;
    in2_rows.reserve(in2_rows.size() + size);
    for (auto iter = input1.begin(); iter != input1.end(); ++iter) {
      const framework::Vector<int64_t>& in_rows = (*iter)->rows();
      in2_rows.insert(in2_rows.end(), in_rows.begin(), in_rows.end());
    }
    input2->set_rows(in2_rows);

    auto* in2_value = input2->mutable_value();
    auto* in2_data = in2_value->data<T>();
226
    auto blas = phi::funcs::GetBlas<platform::CPUDeviceContext, T>(context);
M
minqiyang 已提交
227 228 229 230 231 232 233 234 235 236 237 238 239
    size_t offset = 0u;
    for (size_t i = 0u; i != input1.size(); ++i) {
      auto& in_value = input1[i]->value();
      const auto* in_data = in_value.data<T>();
      offset += input2_offsets[i];
      blas.VCOPY(in_value.numel(), in_data, in2_data + offset);
    }
  }
};

template struct SelectedRowsSumTo<platform::CPUDeviceContext, float>;
template struct SelectedRowsSumTo<platform::CPUDeviceContext, double>;

Q
QI JUN 已提交
240
template <typename T>
Q
QI JUN 已提交
241 242
struct SelectedRowsAddToTensor<platform::CPUDeviceContext, T> {
  void operator()(const platform::CPUDeviceContext& context,
243
                  const phi::SelectedRows& input1, framework::Tensor* input2) {
Q
Qiao Longfei 已提交
244
    if (UNLIKELY(input1.rows().size() == 0)) {
245 246 247
      LOG(WARNING) << "input selected rows is empty!";
      return;
    }
Q
QI JUN 已提交
248 249
    auto in1_height = input1.height();
    auto in2_dims = input2->dims();
250 251 252 253 254 255
    PADDLE_ENFORCE_EQ(
        in1_height, in2_dims[0],
        platform::errors::InvalidArgument("The two inputs height must be equal."
                                          "But recieved first input height = "
                                          "[%d], second input height = [%d]",
                                          in1_height, in2_dims[0]));
Q
QI JUN 已提交
256 257 258 259 260

    auto& in1_value = input1.value();
    auto& in1_rows = input1.rows();

    int64_t in1_row_numel = in1_value.numel() / in1_rows.size();
261 262 263 264 265 266
    PADDLE_ENFORCE_EQ(
        in1_row_numel, input2->numel() / in1_height,
        platform::errors::InvalidArgument(
            "The two inputs width must be equal."
            "But recieved first input width = [%d], second input width = [%d]",
            in1_row_numel, input2->numel() / in1_height));
Q
QI JUN 已提交
267 268 269 270 271 272 273 274 275 276 277 278 279

    auto* in1_data = in1_value.data<T>();
    auto* input2_data = input2->data<T>();

    for (size_t i = 0; i < in1_rows.size(); i++) {
      for (int64_t j = 0; j < in1_row_numel; j++) {
        input2_data[in1_rows[i] * in1_row_numel + j] +=
            in1_data[i * in1_row_numel + j];
      }
    }
  }
};

Q
QI JUN 已提交
280 281 282 283
template struct SelectedRowsAddToTensor<platform::CPUDeviceContext, float>;
template struct SelectedRowsAddToTensor<platform::CPUDeviceContext, double>;
template struct SelectedRowsAddToTensor<platform::CPUDeviceContext, int>;
template struct SelectedRowsAddToTensor<platform::CPUDeviceContext, int64_t>;
284 285
template struct SelectedRowsAddToTensor<platform::CPUDeviceContext,
                                        platform::bfloat16>;
286

T
typhoonzero 已提交
287 288 289 290 291 292 293 294
// This is a separated namespace for manipulate SelectedRows typed
// data. Like merge duplicated rows, adding two SelectedRows etc.
//
// Another group of functors is called "scatter updates", which means
// use SelectedRows to update a dense tensor with different Ops, like
// add or mul.
namespace scatter {

L
lidanqing 已提交
295
template <typename T>
296
typename std::enable_if<!std::is_integral<T>::value>::type elementwise_add_to(
297
    phi::funcs::BlasT<platform::CPUDeviceContext, T>* blas, size_t data_len,
298
    const T* in, T* out) {
299
  blas->AXPY(data_len, T(1.f), in, out);
Q
Qiao Longfei 已提交
300 301
}

302 303
template <typename T>
typename std::enable_if<std::is_integral<T>::value>::type elementwise_add_to(
304
    phi::funcs::BlasT<platform::CPUDeviceContext, T>* blas, size_t data_len,
305
    const T* in, T* out) {
T
Tao Luo 已提交
306
  for (size_t i = 0; i < data_len; i++) {
Q
Qiao Longfei 已提交
307 308
    out[i] += in[i];
  }
T
typhoonzero 已提交
309 310
}

311 312
template <typename T>
typename std::enable_if<std::is_same<T, platform::bfloat16>::value>::type
313
add_sparse_inputs(const std::vector<const phi::SelectedRows*>& inputs,
314 315 316 317
                  const std::unordered_map<int64_t, size_t>& rows_to_id,
                  int64_t input_width,
                  const platform::CPUDeviceContext& context, T* out_data) {
#ifndef PADDLE_WITH_MKLDNN
318
  auto blas = phi::funcs::GetBlas<platform::CPUDeviceContext, T>(context);
319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346
#endif
  for (auto* input : inputs) {
    if (input->rows().size() == 0) {
      continue;
    }
    auto* input_data = input->value().data<T>();
    auto& input_rows = input->rows();

#ifdef PADDLE_WITH_MKLDNN
    OneDNNAXPYHandler<T> axpy_handler(input_width, T(1.f));
    for (size_t i = 0; i < input_rows.size(); i++) {
      size_t out_i = rows_to_id.at(input_rows[i]);
      axpy_handler(&input_data[i * input_width],
                   &out_data[out_i * input_width]);
    }
#else
    for (size_t i = 0; i < input_rows.size(); i++) {
      size_t out_i = rows_to_id.at(input_rows[i]);
      elementwise_add_to<T>(&blas, static_cast<size_t>(input_width),
                            &input_data[i * input_width],
                            &out_data[out_i * input_width]);
    }
#endif
  }
}

template <typename T>
typename std::enable_if<!std::is_same<T, platform::bfloat16>::value>::type
347
add_sparse_inputs(const std::vector<const phi::SelectedRows*>& inputs,
348 349 350 351
                  const std::unordered_map<int64_t, size_t>& rows_to_id,
                  int64_t input_width,
                  const platform::CPUDeviceContext& context, T* out_data) {
  VLOG(4) << "[CPU] add_sparse_inputs <" << typeid(T).name();
352
  auto blas = phi::funcs::GetBlas<platform::CPUDeviceContext, T>(context);
353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368
  for (auto* input : inputs) {
    if (input->rows().size() == 0) {
      continue;
    }
    auto* input_data = input->value().data<T>();
    auto& input_rows = input->rows();

    for (size_t i = 0; i < input_rows.size(); i++) {
      size_t out_i = rows_to_id.at(input_rows[i]);
      elementwise_add_to<T>(&blas, static_cast<size_t>(input_width),
                            &input_data[i * input_width],
                            &out_data[out_i * input_width]);
    }
  }
}

T
typhoonzero 已提交
369 370
template <typename T>
struct MergeAdd<platform::CPUDeviceContext, T> {
371 372 373 374
  phi::SelectedRows operator()(const platform::CPUDeviceContext& context,
                               const phi::SelectedRows& input,
                               const bool sorted_result = false) {
    phi::SelectedRows out;
375
    (*this)(context, input, &out, sorted_result);
S
sneaxiy 已提交
376 377 378 379
    return out;
  }

  void operator()(const platform::CPUDeviceContext& context,
380
                  const phi::SelectedRows& input, phi::SelectedRows* output,
381
                  const bool sorted_result = false) {
382
    std::vector<const phi::SelectedRows*> inputs;
383
    inputs.push_back(&input);
384
    (*this)(context, inputs, output, sorted_result);
385
  }
T
typhoonzero 已提交
386

387
  void operator()(const platform::CPUDeviceContext& context,
388 389
                  const std::vector<const phi::SelectedRows*>& inputs,
                  phi::SelectedRows* output, const bool sorted_result = false) {
Q
Qiao Longfei 已提交
390
    if (inputs.size() == 0) {
M
minqiyang 已提交
391
      VLOG(3) << "no input! return";
Q
Qiao Longfei 已提交
392 393
      return;
    }
394
    const phi::SelectedRows* has_value_input = nullptr;
Q
Qiao Longfei 已提交
395
    for (auto* in : inputs) {
Q
Qiao Longfei 已提交
396
      if (in->rows().size() > 0) {
Q
Qiao Longfei 已提交
397 398 399 400 401
        has_value_input = in;
        break;
      }
    }
    if (has_value_input == nullptr) {
M
minqiyang 已提交
402
      VLOG(3) << "no input has value! just return" << std::endl;
Q
Qiao Longfei 已提交
403 404 405 406
      return;
    }
    auto input_width = has_value_input->value().dims()[1];
    auto input_height = has_value_input->height();
407
    phi::SelectedRows& out = *output;
408
    std::set<int64_t> merged_row_set;
409
    size_t row_num = 0;
410
    for (auto* input : inputs) {
Q
Qiao Longfei 已提交
411
      if (input->rows().size() == 0) {
Q
Qiao Longfei 已提交
412 413
        continue;
      }
414
      PADDLE_ENFORCE_EQ(input_width, input->value().dims()[1],
415 416 417
                        platform::errors::InvalidArgument(
                            "All inputs should have same "
                            "dimension except for the first one."));
418
      PADDLE_ENFORCE_EQ(input_height, input->height(),
419 420
                        platform::errors::InvalidArgument(
                            "All inputs should have same height."));
421
      row_num += input->rows().size();
422 423
      merged_row_set.insert(input->rows().begin(), input->rows().end());
    }
424

425
    out.set_height(input_height);
T
wip  
typhoonzero 已提交
426
    out.mutable_value()->mutable_data<T>(
427
        phi::make_ddim(
428
            {static_cast<int64_t>(merged_row_set.size()), input_width}),
T
typhoonzero 已提交
429
        context.GetPlace());
430
    auto* out_data = out.mutable_value()->data<T>();
T
typhoonzero 已提交
431

432 433 434 435 436 437 438 439 440 441 442 443 444 445 446
    if (merged_row_set.size() == row_num && !sorted_result) {
      // no duplicated ids, just concat the result together
      std::vector<int64_t> merge_rows;
      merge_rows.reserve(row_num);
      // concat rows
      for (auto* in : inputs) {
        merge_rows.insert(merge_rows.end(), in->rows().begin(),
                          in->rows().end());
      }
      out.set_rows(merge_rows);
      auto in_place = inputs[0]->place();
      auto out_place = out.place();
      int64_t copied_numel = 0;
      for (auto* in : inputs) {
        auto* in_data = in->value().data<T>();
447
        auto in_numel = in->rows().size() * input_width;
448
        memory::Copy(out_place, out_data + copied_numel, in_place, in_data,
449 450 451 452 453 454
                     in_numel * sizeof(T));
        copied_numel += in_numel;
      }
    } else {
      std::vector<int64_t> merge_rows(merged_row_set.begin(),
                                      merged_row_set.end());
T
typhoonzero 已提交
455

456 457 458
      if (sorted_result) {
        std::sort(merge_rows.begin(), merge_rows.end());
      }
T
typhoonzero 已提交
459

460 461
      out.set_rows(merge_rows);

462
      phi::funcs::SetConstant<platform::CPUDeviceContext, T> constant_functor;
463
      constant_functor(context, out.mutable_value(), static_cast<T>(0.f));
464 465 466 467

      std::unordered_map<int64_t, size_t> rows_to_id;
      for (size_t i = 0; i < merge_rows.size(); ++i) {
        rows_to_id[merge_rows[i]] = i;
Q
Qiao Longfei 已提交
468
      }
469

470
      add_sparse_inputs<T>(inputs, rows_to_id, input_width, context, out_data);
T
typhoonzero 已提交
471
    }
T
wip  
typhoonzero 已提交
472 473 474
  }
};

475 476 477
#ifdef PADDLE_WITH_XPU
template <typename T>
struct MergeAdd<platform::XPUDeviceContext, T> {
478 479 480 481
  phi::SelectedRows operator()(const platform::XPUDeviceContext& context,
                               const phi::SelectedRows& input,
                               const bool sorted_result = false) {
    phi::SelectedRows out;
482 483 484 485 486
    (*this)(context, input, &out, sorted_result);
    return out;
  }

  void operator()(const platform::XPUDeviceContext& context,
487
                  const phi::SelectedRows& input, phi::SelectedRows* output,
488 489 490 491 492 493
                  const bool sorted_result = false) {
    framework::Vector<int64_t> input_rows(input.rows());
    if (input_rows.size() == 0) {
      return;
    }

494
    phi::SelectedRows& out = *output;
495 496 497 498 499 500 501
    std::set<int64_t> row_set(input_rows.begin(), input_rows.end());
    std::vector<int64_t> merge_rows(row_set.begin(), row_set.end());
    auto input_width = input.value().dims()[1];

    out.set_rows(merge_rows);
    out.set_height(input.height());
    out.mutable_value()->mutable_data<T>(
502
        phi::make_ddim({static_cast<int64_t>(merge_rows.size()), input_width}),
503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532
        context.GetPlace());
    int r =
        xpu::constant<T>(context.x_context(), out.mutable_value()->data<T>(),
                         merge_rows.size() * input_width, static_cast<T>(0.f));
    PADDLE_ENFORCE_EQ(r, xpu::Error_t::SUCCESS,
                      platform::errors::External("XPU constant op return"
                                                 " wrong value[%d %s].",
                                                 r, XPUAPIErrorMsg[r]));

    std::unordered_map<int64_t, size_t> rows_to_id;
    for (size_t i = 0; i < merge_rows.size(); ++i) {
      rows_to_id[merge_rows[i]] = i;
    }

    auto* out_data = out.mutable_value()->data<T>();
    auto* input_data = input.value().data<T>();
    int n = input_width;
    for (size_t i = 0; i < input_rows.size(); i++) {
      size_t out_i = rows_to_id[input_rows[i]];
      auto r = xpu::add(context.x_context(), &input_data[i * input_width],
                        &out_data[out_i * input_width],
                        &out_data[out_i * input_width], n);
      PADDLE_ENFORCE_EQ(
          r, XPU_SUCCESS,
          platform::errors::External("XPU API return wrong value[%d %s], ", r,
                                     XPUAPIErrorMsg[r]));
    }
  }

  void operator()(const platform::XPUDeviceContext& context,
533 534
                  const std::vector<const phi::SelectedRows*>& inputs,
                  phi::SelectedRows* output, const bool sorted_result = false) {
535 536 537 538
    if (inputs.size() == 0) {
      VLOG(3) << "no input! return";
      return;
    }
539
    const phi::SelectedRows* has_value_input = nullptr;
540 541 542 543 544 545 546 547 548 549 550 551
    for (auto* in : inputs) {
      if (in->rows().size() > 0) {
        has_value_input = in;
        break;
      }
    }
    if (has_value_input == nullptr) {
      VLOG(3) << "no input has value! just return" << std::endl;
      return;
    }
    auto input_width = has_value_input->value().dims()[1];
    auto input_height = has_value_input->height();
552
    phi::SelectedRows& out = *output;
553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579
    std::set<int64_t> merged_row_set;
    size_t row_num = 0;
    for (auto* input : inputs) {
      if (input->rows().size() == 0) {
        continue;
      }
      PADDLE_ENFORCE_EQ(input_width, input->value().dims()[1],
                        platform::errors::InvalidArgument(
                            "All inputs should have same "
                            "dimension except for the first one."));
      PADDLE_ENFORCE_EQ(input_height, input->height(),
                        platform::errors::InvalidArgument(
                            "All inputs should have same height."));
      row_num += input->rows().size();
      merged_row_set.insert(input->rows().begin(), input->rows().end());
    }

    std::vector<int64_t> merge_rows(merged_row_set.begin(),
                                    merged_row_set.end());

    if (sorted_result) {
      std::sort(merge_rows.begin(), merge_rows.end());
    }

    out.set_rows(merge_rows);
    out.set_height(input_height);
    out.mutable_value()->mutable_data<T>(
580
        phi::make_ddim(
581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620
            {static_cast<int64_t>(merged_row_set.size()), input_width}),
        context.GetPlace());

    int r =
        xpu::constant<T>(context.x_context(), out.mutable_value()->data<T>(),
                         merge_rows.size() * input_width, static_cast<T>(0.f));
    PADDLE_ENFORCE_EQ(r, xpu::Error_t::SUCCESS,
                      platform::errors::External("XPU constant op return"
                                                 " wrong value[%d %s].",
                                                 r, XPUAPIErrorMsg[r]));

    float* out_data = reinterpret_cast<float*>(out.mutable_value()->data<T>());

    std::unordered_map<int64_t, size_t> rows_to_id;
    for (size_t i = 0; i < merge_rows.size(); ++i) {
      rows_to_id[merge_rows[i]] = i;
    }

    for (auto* input : inputs) {
      if (input->rows().size() == 0) {
        continue;
      }
      auto& input_rows = input->rows();

      int n = input_width;
      for (size_t i = 0; i < input_rows.size(); i++) {
        size_t out_i = rows_to_id[input_rows[i]];
        auto r = xpu::add(
            context.x_context(), input->value().data<T>() + i * input_width,
            &out_data[out_i * input_width], &out_data[out_i * input_width], n);
        PADDLE_ENFORCE_EQ(
            r, XPU_SUCCESS,
            platform::errors::External("XPU API return wrong value[%d %s], ", r,
                                       XPUAPIErrorMsg[r]));
      }
    }
  }
};

#endif
621 622
template <typename T>
struct MergeAverage<platform::CPUDeviceContext, T> {
623 624 625
  phi::SelectedRows operator()(const platform::CPUDeviceContext& context,
                               const phi::SelectedRows& input) {
    phi::SelectedRows out;
626 627 628 629 630
    (*this)(context, input, &out);
    return out;
  }

  void operator()(const platform::CPUDeviceContext& context,
631 632
                  const phi::SelectedRows& input, phi::SelectedRows* output) {
    std::vector<const phi::SelectedRows*> inputs;
633 634 635 636 637
    inputs.push_back(&input);
    (*this)(context, inputs, output);
  }

  void operator()(const platform::CPUDeviceContext& context,
638 639
                  const std::vector<const phi::SelectedRows*>& inputs,
                  phi::SelectedRows* output) {
640 641 642 643
    if (inputs.size() == 0) {
      VLOG(3) << "no input! return";
      return;
    }
644
    const phi::SelectedRows* has_value_input = nullptr;
645 646 647 648 649 650 651 652 653 654 655 656
    for (auto* in : inputs) {
      if (in->rows().size() > 0) {
        has_value_input = in;
        break;
      }
    }
    if (has_value_input == nullptr) {
      VLOG(3) << "no input has value! just return" << std::endl;
      return;
    }
    auto input_width = has_value_input->value().dims()[1];
    auto input_height = has_value_input->height();
657
    phi::SelectedRows& out = *output;
658 659 660 661 662 663 664
    std::set<int64_t> merged_row_set;
    size_t row_num = 0;
    for (auto* input : inputs) {
      if (input->rows().size() == 0) {
        continue;
      }
      PADDLE_ENFORCE_EQ(input_width, input->value().dims()[1],
665 666 667
                        platform::errors::InvalidArgument(
                            "All inputs should have same "
                            "dimension except for the first one."));
668
      PADDLE_ENFORCE_EQ(input_height, input->height(),
669 670
                        platform::errors::InvalidArgument(
                            "All input should have same height."));
671 672 673 674 675 676
      row_num += input->rows().size();
      merged_row_set.insert(input->rows().begin(), input->rows().end());
    }

    out.set_height(input_height);
    out.mutable_value()->mutable_data<T>(
677
        phi::make_ddim(
678 679 680 681 682 683 684 685 686 687
            {static_cast<int64_t>(merged_row_set.size()), input_width}),
        context.GetPlace());
    auto* out_data = out.mutable_value()->data<T>();

    std::vector<int64_t> merge_rows(merged_row_set.begin(),
                                    merged_row_set.end());
    std::sort(merge_rows.begin(), merge_rows.end());

    out.set_rows(merge_rows);

688
    phi::funcs::SetConstant<platform::CPUDeviceContext, T> constant_functor;
689 690 691 692 693 694 695
    constant_functor(context, out.mutable_value(), 0.0);

    std::unordered_map<int64_t, size_t> rows_to_id;
    for (size_t i = 0; i < merge_rows.size(); ++i) {
      rows_to_id[merge_rows[i]] = i;
    }

696
    auto blas = phi::funcs::GetBlas<platform::CPUDeviceContext, T>(context);
697 698 699 700 701 702 703 704 705
    for (auto* input : inputs) {
      if (input->rows().size() == 0) {
        continue;
      }
      auto* input_data = input->value().data<T>();
      auto& input_rows = input->rows();

      for (size_t i = 0; i < input_rows.size(); i++) {
        size_t out_i = rows_to_id[input_rows[i]];
706 707 708
        elementwise_add_to<T>(&blas, static_cast<size_t>(input_width),
                              &input_data[i * input_width],
                              &out_data[out_i * input_width]);
709 710 711 712 713 714 715 716 717 718 719 720
      }
    }
    size_t input_width_cast = static_cast<size_t>(input_width);
    T count = static_cast<T>(inputs.size());
    for (size_t i = 0; i < merge_rows.size(); i++) {
      for (size_t j = 0; j < input_width_cast; j++) {
        out_data[i * input_width + j] = out_data[i * input_width + j] / count;
      }
    }
  }
};

T
wip  
typhoonzero 已提交
721 722
template struct MergeAdd<platform::CPUDeviceContext, int>;
template struct MergeAdd<platform::CPUDeviceContext, int64_t>;
Q
Qiao Longfei 已提交
723 724
template struct MergeAdd<platform::CPUDeviceContext, float>;
template struct MergeAdd<platform::CPUDeviceContext, double>;
725
template struct MergeAdd<platform::CPUDeviceContext,
726
                         paddle::platform::complex<float>>;
727
template struct MergeAdd<platform::CPUDeviceContext,
728
                         paddle::platform::complex<double>>;
729 730
template struct MergeAdd<platform::CPUDeviceContext,
                         paddle::platform::bfloat16>;
T
wip  
typhoonzero 已提交
731

732 733 734 735
#ifdef PADDLE_WITH_XPU
template struct MergeAdd<platform::XPUDeviceContext, float>;
#endif

736 737 738 739 740
template struct MergeAverage<platform::CPUDeviceContext, int>;
template struct MergeAverage<platform::CPUDeviceContext, int64_t>;
template struct MergeAverage<platform::CPUDeviceContext, float>;
template struct MergeAverage<platform::CPUDeviceContext, double>;

T
wip  
typhoonzero 已提交
741 742
template <typename T>
struct UpdateToTensor<platform::CPUDeviceContext, T> {
T
typhoonzero 已提交
743
  void operator()(const platform::CPUDeviceContext& context,
744
                  const ScatterOps& op, const phi::SelectedRows& input1,
T
typhoonzero 已提交
745
                  framework::Tensor* input2) {
T
wip  
typhoonzero 已提交
746 747
    auto in1_height = input1.height();
    auto in2_dims = input2->dims();
748 749 750 751 752 753
    PADDLE_ENFORCE_EQ(
        in1_height, in2_dims[0],
        platform::errors::InvalidArgument("The two inputs height must be equal."
                                          "But recieved first input height = "
                                          "[%d], second input height = [%d]",
                                          in1_height, in2_dims[0]));
T
wip  
typhoonzero 已提交
754 755 756 757 758

    auto& in1_value = input1.value();
    auto& in1_rows = input1.rows();

    int64_t in1_row_numel = in1_value.numel() / in1_rows.size();
759 760 761 762 763 764
    PADDLE_ENFORCE_EQ(
        in1_row_numel, input2->numel() / in1_height,
        platform::errors::InvalidArgument(
            "The two inputs width must be equal."
            "But recieved first input width = [%d], second input width = [%d]",
            in1_row_numel, input2->numel() / in1_height));
T
wip  
typhoonzero 已提交
765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808

    auto* in1_data = in1_value.data<T>();
    auto* input2_data = input2->data<T>();

    // FIXME(typhoonzero): use macro fix the below messy code.
    switch (op) {
      case ScatterOps::ASSIGN:
        INLINE_FOR2(in1_rows.size(), in1_row_numel)
        input2_data[in1_rows[i] * in1_row_numel + j] =
            in1_data[i * in1_row_numel + j];
        break;
      case ScatterOps::ADD:
        INLINE_FOR2(in1_rows.size(), in1_row_numel)
        input2_data[in1_rows[i] * in1_row_numel + j] +=
            in1_data[i * in1_row_numel + j];
        break;
      case ScatterOps::SUB:
        INLINE_FOR2(in1_rows.size(), in1_row_numel)
        input2_data[in1_rows[i] * in1_row_numel + j] -=
            in1_data[i * in1_row_numel + j];
        break;
      case ScatterOps::SUBBY:
        INLINE_FOR2(in1_rows.size(), in1_row_numel)
        input2_data[in1_rows[i] * in1_row_numel + j] =
            in1_data[i * in1_row_numel + j] -
            input2_data[in1_rows[i] * in1_row_numel + j];
        break;
      case ScatterOps::MUL:
        INLINE_FOR2(in1_rows.size(), in1_row_numel)
        input2_data[in1_rows[i] * in1_row_numel + j] *=
            in1_data[i * in1_row_numel + j];
        break;
      case ScatterOps::DIV:
        INLINE_FOR2(in1_rows.size(), in1_row_numel)
        input2_data[in1_rows[i] * in1_row_numel + j] /=
            in1_data[i * in1_row_numel + j];
        break;
      case ScatterOps::DIVBY:
        INLINE_FOR2(in1_rows.size(), in1_row_numel)
        input2_data[in1_rows[i] * in1_row_numel + j] =
            in1_data[i * in1_row_numel + j] /
            input2_data[in1_rows[i] * in1_row_numel + j];
        break;
    }
T
typhoonzero 已提交
809 810 811 812
  }
};

}  // namespace scatter
813 814 815
}  // namespace math
}  // namespace operators
}  // namespace paddle