selected_rows_functor.cc 14.6 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6 7 8 9 10 11 12 13 14

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

T
wip  
typhoonzero 已提交
15
#include <set>
Q
Qiao Longfei 已提交
16
#include <unordered_map>
T
wip  
typhoonzero 已提交
17

S
sneaxiy 已提交
18
#include "paddle/fluid/operators/math/blas.h"
Y
Yi Wang 已提交
19
#include "paddle/fluid/operators/math/selected_rows_functor.h"
20 21 22 23 24

namespace paddle {
namespace operators {
namespace math {
template <typename T>
Q
QI JUN 已提交
25 26
struct SelectedRowsAdd<platform::CPUDeviceContext, T> {
  void operator()(const platform::CPUDeviceContext& context,
27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72
                  const framework::SelectedRows& input1,
                  const framework::SelectedRows& input2,
                  framework::SelectedRows* output) {
    auto in1_height = input1.height();
    PADDLE_ENFORCE_EQ(in1_height, input2.height());
    output->set_height(in1_height);

    auto& in1_rows = input1.rows();
    auto& in2_rows = input2.rows();
    std::vector<int64_t> out_rows;
    out_rows.reserve(in1_rows.size() + in2_rows.size());

    // concat rows
    out_rows.insert(out_rows.end(), in1_rows.begin(), in1_rows.end());
    out_rows.insert(out_rows.end(), in2_rows.begin(), in2_rows.end());
    output->set_rows(out_rows);

    auto* out_value = output->mutable_value();
    auto& in1_value = input1.value();
    auto& in2_value = input2.value();

    auto in1_row_numel = in1_value.numel() / in1_rows.size();
    PADDLE_ENFORCE_EQ(in1_row_numel, in2_value.numel() / in2_rows.size());
    PADDLE_ENFORCE_EQ(in1_row_numel, out_value->numel() / out_rows.size());

    auto in1_place = input1.place();
    PADDLE_ENFORCE(platform::is_cpu_place(in1_place));
    auto in2_place = input2.place();
    PADDLE_ENFORCE(platform::is_cpu_place(in2_place));
    auto out_place = context.GetPlace();
    PADDLE_ENFORCE(platform::is_cpu_place(out_place));

    auto* out_data = out_value->data<T>();
    auto* in1_data = in1_value.data<T>();
    memory::Copy(boost::get<platform::CPUPlace>(out_place), out_data,
                 boost::get<platform::CPUPlace>(in1_place), in1_data,
                 in1_value.numel() * sizeof(T));

    auto* in2_data = in2_value.data<T>();
    memory::Copy(boost::get<platform::CPUPlace>(out_place),
                 out_data + in1_value.numel(),
                 boost::get<platform::CPUPlace>(in2_place), in2_data,
                 in2_value.numel() * sizeof(T));
  }
};

Q
QI JUN 已提交
73 74
template struct SelectedRowsAdd<platform::CPUDeviceContext, float>;
template struct SelectedRowsAdd<platform::CPUDeviceContext, double>;
75 76

template <typename T>
Q
QI JUN 已提交
77 78
struct SelectedRowsAddTensor<platform::CPUDeviceContext, T> {
  void operator()(const platform::CPUDeviceContext& context,
79 80 81 82 83 84 85 86 87 88 89 90 91 92 93
                  const framework::SelectedRows& input1,
                  const framework::Tensor& input2, framework::Tensor* output) {
    auto in1_height = input1.height();
    auto in2_dims = input2.dims();
    auto out_dims = output->dims();
    PADDLE_ENFORCE_EQ(in1_height, in2_dims[0]);
    PADDLE_ENFORCE_EQ(in1_height, out_dims[0]);

    auto& in1_value = input1.value();
    auto& in1_rows = input1.rows();

    int64_t in1_row_numel = in1_value.numel() / in1_rows.size();
    PADDLE_ENFORCE_EQ(in1_row_numel, input2.numel() / in1_height);
    PADDLE_ENFORCE_EQ(in1_row_numel, output->numel() / in1_height);

Q
QI JUN 已提交
94
    SetConstant<platform::CPUDeviceContext, T> functor;
95 96 97 98 99 100 101 102 103 104 105 106 107 108
    functor(context, output, 0.0);

    auto* in1_data = in1_value.data<T>();
    auto* out_data = output->data<T>();

    for (size_t i = 0; i < in1_rows.size(); i++) {
      for (int64_t j = 0; j < in1_row_numel; j++) {
        out_data[in1_rows[i] * in1_row_numel + j] +=
            in1_data[i * in1_row_numel + j];
      }
    }

    auto out_eigen = framework::EigenVector<T>::Flatten(*output);
    auto in2_eigen = framework::EigenVector<T>::Flatten(input2);
Q
QI JUN 已提交
109
    out_eigen.device(*context.eigen_device()) = out_eigen + in2_eigen;
110 111 112
  }
};

Q
QI JUN 已提交
113 114
template struct SelectedRowsAddTensor<platform::CPUDeviceContext, float>;
template struct SelectedRowsAddTensor<platform::CPUDeviceContext, double>;
Q
QI JUN 已提交
115 116

template <typename T>
Q
QI JUN 已提交
117 118
struct SelectedRowsAddTo<platform::CPUDeviceContext, T> {
  void operator()(const platform::CPUDeviceContext& context,
Q
QI JUN 已提交
119 120 121 122 123 124 125 126 127 128 129 130 131
                  const framework::SelectedRows& input1,
                  const int64_t input2_offset,
                  framework::SelectedRows* input2) {
    auto in1_height = input1.height();
    PADDLE_ENFORCE_EQ(in1_height, input2->height());

    auto& in1_rows = input1.rows();
    auto& in2_rows = *(input2->mutable_rows());

    auto& in1_value = input1.value();
    auto* in2_value = input2->mutable_value();

    // concat rows
Y
Yu Yang 已提交
132
    in2_rows.Extend(in1_rows.begin(), in1_rows.end());
Q
QI JUN 已提交
133 134 135 136 137 138 139 140 141 142 143 144 145 146 147

    auto in1_place = input1.place();
    PADDLE_ENFORCE(platform::is_cpu_place(in1_place));
    auto in2_place = input2->place();
    PADDLE_ENFORCE(platform::is_cpu_place(in2_place));

    auto* in1_data = in1_value.data<T>();
    auto* in2_data = in2_value->data<T>();
    memory::Copy(boost::get<platform::CPUPlace>(in2_place),
                 in2_data + input2_offset,
                 boost::get<platform::CPUPlace>(in1_place), in1_data,
                 in1_value.numel() * sizeof(T));
  }
};

Q
QI JUN 已提交
148 149 150 151
template struct SelectedRowsAddTo<platform::CPUDeviceContext, float>;
template struct SelectedRowsAddTo<platform::CPUDeviceContext, double>;
template struct SelectedRowsAddTo<platform::CPUDeviceContext, int>;
template struct SelectedRowsAddTo<platform::CPUDeviceContext, int64_t>;
Q
QI JUN 已提交
152

M
minqiyang 已提交
153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191
template <typename T>
struct SelectedRowsSumTo<platform::CPUDeviceContext, T> {
  void operator()(const platform::CPUDeviceContext& context,
                  const std::vector<framework::SelectedRows*>& input1,
                  const std::vector<int64_t>& input2_offsets,
                  framework::SelectedRows* input2) {
    // Ensure all selected rows have the same height
    size_t size = 0u;
    for (auto iter = input1.begin(); iter != input1.end(); ++iter) {
      auto& in_rows = (*iter)->rows();
      size += in_rows.end() - in_rows.begin();
      auto in1_height = (*iter)->height();
      PADDLE_ENFORCE_EQ(in1_height, input2->height());
    }
    // concat rows
    std::vector<int64_t> in2_rows;
    in2_rows.reserve(in2_rows.size() + size);
    for (auto iter = input1.begin(); iter != input1.end(); ++iter) {
      const framework::Vector<int64_t>& in_rows = (*iter)->rows();
      in2_rows.insert(in2_rows.end(), in_rows.begin(), in_rows.end());
    }
    input2->set_rows(in2_rows);

    auto* in2_value = input2->mutable_value();
    auto* in2_data = in2_value->data<T>();
    auto blas = math::GetBlas<platform::CPUDeviceContext, T>(context);
    size_t offset = 0u;
    for (size_t i = 0u; i != input1.size(); ++i) {
      auto& in_value = input1[i]->value();
      const auto* in_data = in_value.data<T>();
      offset += input2_offsets[i];
      blas.VCOPY(in_value.numel(), in_data, in2_data + offset);
    }
  }
};

template struct SelectedRowsSumTo<platform::CPUDeviceContext, float>;
template struct SelectedRowsSumTo<platform::CPUDeviceContext, double>;

Q
QI JUN 已提交
192
template <typename T>
Q
QI JUN 已提交
193 194
struct SelectedRowsAddToTensor<platform::CPUDeviceContext, T> {
  void operator()(const platform::CPUDeviceContext& context,
Q
QI JUN 已提交
195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218
                  const framework::SelectedRows& input1,
                  framework::Tensor* input2) {
    auto in1_height = input1.height();
    auto in2_dims = input2->dims();
    PADDLE_ENFORCE_EQ(in1_height, in2_dims[0]);

    auto& in1_value = input1.value();
    auto& in1_rows = input1.rows();

    int64_t in1_row_numel = in1_value.numel() / in1_rows.size();
    PADDLE_ENFORCE_EQ(in1_row_numel, input2->numel() / in1_height);

    auto* in1_data = in1_value.data<T>();
    auto* input2_data = input2->data<T>();

    for (size_t i = 0; i < in1_rows.size(); i++) {
      for (int64_t j = 0; j < in1_row_numel; j++) {
        input2_data[in1_rows[i] * in1_row_numel + j] +=
            in1_data[i * in1_row_numel + j];
      }
    }
  }
};

Q
QI JUN 已提交
219 220 221 222
template struct SelectedRowsAddToTensor<platform::CPUDeviceContext, float>;
template struct SelectedRowsAddToTensor<platform::CPUDeviceContext, double>;
template struct SelectedRowsAddToTensor<platform::CPUDeviceContext, int>;
template struct SelectedRowsAddToTensor<platform::CPUDeviceContext, int64_t>;
223

T
typhoonzero 已提交
224 225 226 227 228 229 230 231
// This is a separated namespace for manipulate SelectedRows typed
// data. Like merge duplicated rows, adding two SelectedRows etc.
//
// Another group of functors is called "scatter updates", which means
// use SelectedRows to update a dense tensor with different Ops, like
// add or mul.
namespace scatter {

Q
Qiao Longfei 已提交
232 233 234 235
template <typename DeviceContext, typename T>
typename std::enable_if<
    std::is_floating_point<T>::value &&
    std::is_same<DeviceContext, platform::CPUDeviceContext>::value>::type
236 237
elementwise_add_to(const DeviceContext& ctx, BlasT<DeviceContext, T>* blas,
                   size_t data_len, const T* in, T* out) {
Q
Qiao Longfei 已提交
238
  blas->AXPY(data_len, 1., in, out);
Q
Qiao Longfei 已提交
239 240 241 242 243 244
}

template <typename DeviceContext, typename T>
typename std::enable_if<
    !std::is_floating_point<T>::value &&
    std::is_same<DeviceContext, platform::CPUDeviceContext>::value>::type
245 246
elementwise_add_to(const DeviceContext& ctx, BlasT<DeviceContext, T>* blas,
                   size_t data_len, const T* in, T* out) {
Q
Qiao Longfei 已提交
247 248 249
  for (int64_t i = 0; i < data_len; i++) {
    out[i] += in[i];
  }
T
typhoonzero 已提交
250 251 252 253
}

template <typename T>
struct MergeAdd<platform::CPUDeviceContext, T> {
T
wip  
typhoonzero 已提交
254 255 256
  framework::SelectedRows operator()(const platform::CPUDeviceContext& context,
                                     const framework::SelectedRows& input) {
    framework::SelectedRows out;
S
sneaxiy 已提交
257 258 259 260 261 262 263
    (*this)(context, input, &out);
    return out;
  }

  void operator()(const platform::CPUDeviceContext& context,
                  const framework::SelectedRows& input,
                  framework::SelectedRows* output) {
264 265 266 267
    std::vector<const framework::SelectedRows*> inputs;
    inputs.push_back(&input);
    (*this)(context, inputs, output);
  }
T
typhoonzero 已提交
268

269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286
  void operator()(const platform::CPUDeviceContext& context,
                  const std::vector<const framework::SelectedRows*>& inputs,
                  framework::SelectedRows* output) {
    PADDLE_ENFORCE_GT(inputs.size(), 0, "should have at least one input");
    auto input_width = inputs[0]->value().dims()[1];
    auto input_height = inputs[0]->height();
    framework::SelectedRows& out = *output;
    std::set<int64_t> merged_row_set;
    for (auto* input : inputs) {
      PADDLE_ENFORCE_EQ(input_width, input->value().dims()[1],
                        "all input should have same "
                        "dimension except for the first one");
      PADDLE_ENFORCE_EQ(input_height, input->height(),
                        "all input should have same height");
      merged_row_set.insert(input->rows().begin(), input->rows().end());
    }
    std::vector<int64_t> merge_rows(merged_row_set.begin(),
                                    merged_row_set.end());
Q
Qiao Longfei 已提交
287
    std::unordered_map<int64_t, size_t> rows_to_id;
Q
Qiao Longfei 已提交
288 289 290 291
    for (size_t i = 0; i < merge_rows.size(); ++i) {
      rows_to_id[merge_rows[i]] = i;
    }

T
wip  
typhoonzero 已提交
292
    out.set_rows(merge_rows);
293
    out.set_height(input_height);
T
wip  
typhoonzero 已提交
294
    out.mutable_value()->mutable_data<T>(
T
typhoonzero 已提交
295 296 297 298 299
        framework::make_ddim(
            {static_cast<int64_t>(merge_rows.size()), input_width}),
        context.GetPlace());

    math::SetConstant<platform::CPUDeviceContext, T> constant_functor;
T
wip  
typhoonzero 已提交
300
    constant_functor(context, out.mutable_value(), 0.0);
T
typhoonzero 已提交
301

T
wip  
typhoonzero 已提交
302
    auto* out_data = out.mutable_value()->data<T>();
T
typhoonzero 已提交
303

Q
Qiao Longfei 已提交
304
    auto blas = math::GetBlas<platform::CPUDeviceContext, T>(context);
305 306 307 308 309
    for (auto* input : inputs) {
      auto* input_data = input->value().data<T>();
      auto& input_rows = input->rows();

      for (size_t i = 0; i < input_rows.size(); i++) {
Q
Qiao Longfei 已提交
310
        size_t out_i = rows_to_id[input_rows[i]];
311
        elementwise_add_to<platform::CPUDeviceContext, T>(
Q
Qiao Longfei 已提交
312
            context, &blas, static_cast<size_t>(input_width),
Q
Qiao Longfei 已提交
313
            &input_data[i * input_width], &out_data[out_i * input_width]);
T
typhoonzero 已提交
314 315
      }
    }
T
wip  
typhoonzero 已提交
316 317 318 319 320
  }
};

template struct MergeAdd<platform::CPUDeviceContext, int>;
template struct MergeAdd<platform::CPUDeviceContext, int64_t>;
Q
Qiao Longfei 已提交
321 322
template struct MergeAdd<platform::CPUDeviceContext, float>;
template struct MergeAdd<platform::CPUDeviceContext, double>;
T
wip  
typhoonzero 已提交
323 324 325

template <typename T>
struct UpdateToTensor<platform::CPUDeviceContext, T> {
T
typhoonzero 已提交
326 327 328
  void operator()(const platform::CPUDeviceContext& context,
                  const ScatterOps& op, const framework::SelectedRows& input1,
                  framework::Tensor* input2) {
T
wip  
typhoonzero 已提交
329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381
    auto in1_height = input1.height();
    auto in2_dims = input2->dims();
    PADDLE_ENFORCE_EQ(in1_height, in2_dims[0]);

    auto& in1_value = input1.value();
    auto& in1_rows = input1.rows();

    int64_t in1_row_numel = in1_value.numel() / in1_rows.size();
    PADDLE_ENFORCE_EQ(in1_row_numel, input2->numel() / in1_height);

    auto* in1_data = in1_value.data<T>();
    auto* input2_data = input2->data<T>();

    // FIXME(typhoonzero): use macro fix the below messy code.
    switch (op) {
      case ScatterOps::ASSIGN:
        INLINE_FOR2(in1_rows.size(), in1_row_numel)
        input2_data[in1_rows[i] * in1_row_numel + j] =
            in1_data[i * in1_row_numel + j];
        break;
      case ScatterOps::ADD:
        INLINE_FOR2(in1_rows.size(), in1_row_numel)
        input2_data[in1_rows[i] * in1_row_numel + j] +=
            in1_data[i * in1_row_numel + j];
        break;
      case ScatterOps::SUB:
        INLINE_FOR2(in1_rows.size(), in1_row_numel)
        input2_data[in1_rows[i] * in1_row_numel + j] -=
            in1_data[i * in1_row_numel + j];
        break;
      case ScatterOps::SUBBY:
        INLINE_FOR2(in1_rows.size(), in1_row_numel)
        input2_data[in1_rows[i] * in1_row_numel + j] =
            in1_data[i * in1_row_numel + j] -
            input2_data[in1_rows[i] * in1_row_numel + j];
        break;
      case ScatterOps::MUL:
        INLINE_FOR2(in1_rows.size(), in1_row_numel)
        input2_data[in1_rows[i] * in1_row_numel + j] *=
            in1_data[i * in1_row_numel + j];
        break;
      case ScatterOps::DIV:
        INLINE_FOR2(in1_rows.size(), in1_row_numel)
        input2_data[in1_rows[i] * in1_row_numel + j] /=
            in1_data[i * in1_row_numel + j];
        break;
      case ScatterOps::DIVBY:
        INLINE_FOR2(in1_rows.size(), in1_row_numel)
        input2_data[in1_rows[i] * in1_row_numel + j] =
            in1_data[i * in1_row_numel + j] /
            input2_data[in1_rows[i] * in1_row_numel + j];
        break;
    }
T
typhoonzero 已提交
382 383 384 385
  }
};

}  // namespace scatter
386 387 388
}  // namespace math
}  // namespace operators
}  // namespace paddle