varbase_patch_methods.py 31.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
import inspect
16
import numpy as np
17 18
import warnings
import weakref
19
import sys
20 21

import paddle
22 23
from .. import framework
from .. import core
24
from .. import unique_name
25
from ..framework import Variable, Parameter, ParamBase, _getitem_impl_, _setitem_impl_, _in_eager_mode, EagerParamBase
26
from .base import switch_to_static_graph
27
from .math_op_patch import monkey_patch_math_varbase
28
from .parallel import scale_loss
L
Leo Chen 已提交
29
from paddle.fluid.data_feeder import convert_dtype, _PADDLE_DTYPE_2_NUMPY_DTYPE
30
import paddle.utils.deprecated as deprecated
31 32


33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
class TensorHookRemoveHelper(object):
    """
    A helper class that for removing Tensor gradient's hook.
    """

    def __init__(self, tensor, hook_id):
        self._tensor_ref = weakref.ref(tensor)
        self._hook_id = hook_id

    def remove(self):
        """
        Remove reference Tensor's hook.

        Returns:
            bool: Return True if removed successfully
        """
        tensor = self._tensor_ref()
        if tensor is not None:
            res = tensor._remove_grad_hook(self._hook_id)
            if res is True:
                return True
            else:
                warnings.warn(
                    "The backward hook (ID: %d) of Tensor `%s` you want to remove does not exist or has been removed."
                    % (self._hook_id, tensor.name), RuntimeWarning)
        return False


61 62 63
_already_patch_repr = False


64
def monkey_patch_varbase():
65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91
    @switch_to_static_graph
    def _to_static_var(self, to_parameter=False, **kwargs):
        """
        **Notes**:
            **This API is ONLY available in Dygraph mode**

        Transform a VarBase into static Variable with same attributes. It's a low level interface used
        in dy2static and shall not be called directly.

        Args:
            to_parameter (bool): It takes effect only if the input a VarBase. If set True,
                                 the VarBase will be converted into framework.Parameters. Otherwise, it will
                                 be converted into framework.Variable. Default False.

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                from paddle.fluid.dygraph.base import to_variable
                import numpy as np

                data = np.ones([3, 1024], dtype='float32')
                with fluid.dygraph.guard():
                    var_base = to_variable(data)
                    static_var = var_base._to_static_var()

        """
92

93
        # Note: getattr(self, attr, None) will call x.grad=x.gradient(), but gradient() only available in dygraph.
94 95
        # It will fail. So, for propery that different between dynamic and static graph, should not getattr(self, attr, None).
        attr_not_need_keys = ['grad', 'T']
96 97 98
        if isinstance(self, ParamBase):
            attr_kwargs = self.__dict__.copy()
        else:
99 100
            attr_names = []
            for name in dir(self):
101 102 103 104
                if name not in attr_not_need_keys:
                    if not inspect.ismethod(getattr(
                            self, name)) and not name.startswith('_'):
                        attr_names.append(name)
105 106 107 108 109 110 111 112 113 114
            attr_kwargs = {name: getattr(self, name) for name in attr_names}

        attr_keys = ['block', 'shape', 'dtype', 'type', 'name', 'persistable']
        for attr in attr_keys:
            attr_kwargs[attr] = getattr(self, attr, None)

        attr_kwargs.update(kwargs)

        if to_parameter or isinstance(self, ParamBase):
            del attr_kwargs['persistable']
115 116
            # NOTE(Aurelius84): All parameters should be placed into global block.
            attr_kwargs['block'] = attr_kwargs['block'].program.global_block()
117 118 119 120 121
            static_var = Parameter(**attr_kwargs)
        else:
            static_var = Variable(**attr_kwargs)
        return static_var

122 123 124 125 126
    # TODO(jiabin): move this to cplusplus end if we find some performance issue on it
    @framework.dygraph_only
    def set_value(self, value):
        """
        **Notes**:
T
tianshuo78520a 已提交
127
            **This API is ONLY available in Dygraph mode**
128 129 130 131 132 133 134 135 136 137 138

        Set a new value for this Variable.

        Args:
            value (Variable|np.ndarray): the new value.

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                from paddle.fluid.dygraph.base import to_variable
139
                from paddle.fluid.dygraph import Linear
140 141
                import numpy as np

142
                data = np.ones([3, 1024], dtype='float32')
143
                with fluid.dygraph.guard():
144
                    linear = fluid.dygraph.Linear(1024, 4)
145
                    t = to_variable(data)
146
                    linear(t)  # call with default weight
147
                    custom_weight = np.random.randn(1024, 4).astype("float32")
148 149
                    linear.weight.set_value(custom_weight)  # change existing weight
                    out = linear(t)  # call with different weight
150 151

        """
152
        if core._in_eager_mode():
153
            base_tensor = core.eager.Tensor
154 155 156
        else:
            base_tensor = core.VarBase
        assert isinstance(value, (np.ndarray, base_tensor, dict, str)), \
S
Steffy-zxf 已提交
157 158 159 160 161 162 163 164 165 166 167 168 169
            "Variable set_value function, arguments type only support Variable, numpy, VarBase, dict, string."

        if isinstance(value, (dict, str)):
            assert len(self) == len(
                value
            ), "Variable length not match, Variable [ {} ] need tensor with length {} but load set tensor with length {}".format(
                self.name, len(self), len(value))
            if isinstance(value, dict):
                self.value().set_vocab(value)
            else:
                self.value().set_string_list(value)
        else:
            value_np = value
170
            if isinstance(value, base_tensor):
S
Steffy-zxf 已提交
171
                value_np = value.numpy()
172

S
Steffy-zxf 已提交
173
            self_tensor_np = self.numpy()
174

S
Steffy-zxf 已提交
175 176 177
            assert self_tensor_np.shape == value_np.shape, \
                "Variable Shape not match, Variable [ {} ] need tensor with shape {} but load set tensor with shape {}".format(
                    self.name, self_tensor_np.shape, value_np.shape)
178

S
Steffy-zxf 已提交
179 180 181
            assert self_tensor_np.dtype == value_np.dtype, \
                "Variable dtype not match, Variable [ {} ] need tensor with dtype {}  but load tensor with dtype {}".format(
                    self.name, self_tensor_np.dtype, value_np.dtype)
182

183
            # NOTE(wuweilong): self could be VarBase or Tensor, the subsequent behavior are defined in different files
184
            # if self is VarBase, method value() return Variable that bindded in imperative.cc, get_tensor() bindded in pybind.cc
185
            # if self is Tensor, method value() return self that defined in this file, get_tensor() defined in eager_method.cc
186
            # this Interface behavior will be unifed in the future.
S
Steffy-zxf 已提交
187 188
            self.value().get_tensor().set(value_np,
                                          framework._current_expected_place())
189 190

    @framework.dygraph_only
191
    def backward(self, grad_tensor=None, retain_graph=False):
192
        """
193
        Run backward of current Graph which starts from current Tensor.
194

195 196 197 198
        The new gradient will accumulat on previous gradient.

        You can clear gradient by ``Tensor.clear_grad()`` .

199
        Args:
200 201 202 203 204
            grad_tensor(Tensor, optional): initial gradient values of the current Tensor. If `grad_tensor` is None, 
            the initial gradient values of the current Tensor would be Tensor filled with 1.0; 
            if `grad_tensor` is not None, it must have the same length as the current Tensor.
            Teh default value is None.

205
            retain_graph(bool, optional): If False, the graph used to compute grads will be freed. If you would
206 207 208
                like to add more ops to the built graph after calling this method( :code:`backward` ), set the parameter
                :code:`retain_graph` to True, then the grads will be retained. Thus, seting it to False is much more memory-efficient.
                Defaults to False.
209 210 211 212 213 214
        Returns:
            NoneType: None

        Examples:
            .. code-block:: python

215
                import paddle
216 217 218 219 220 221 222 223 224 225 226 227 228 229
                x = paddle.to_tensor(5., stop_gradient=False)
                for i in range(5):
                    y = paddle.pow(x, 4.0)
                    y.backward()
                    print("{}: {}".format(i, x.grad))
                # 0: [500.]
                # 1: [1000.]
                # 2: [1500.]
                # 3: [2000.]
                # 4: [2500.]

                x.clear_grad()
                print("{}".format(x.grad))
                # 0.
230

231 232 233 234 235 236 237 238 239 240 241
                grad_tensor=paddle.to_tensor(2.)
                for i in range(5):
                    y = paddle.pow(x, 4.0)
                    y.backward(grad_tensor)
                    print("{}: {}".format(i, x.grad))
                # 0: [1000.]
                # 1: [2000.]
                # 2: [3000.]
                # 3: [4000.]
                # 4: [5000.]

242 243
        """
        if framework.in_dygraph_mode():
244
            if grad_tensor is not None:
245
                if core._in_eager_mode():
246
                    assert isinstance(
247 248
                        grad_tensor, core.eager.
                        Tensor), "The type of grad_tensor must be paddle.Tensor"
249 250 251 252
                else:
                    assert isinstance(
                        grad_tensor, paddle.
                        Tensor), "The type of grad_tensor must be paddle.Tensor"
253 254 255 256
                assert grad_tensor.shape == self.shape, \
                    "Tensor shape not match, Tensor of grad_tensor [ {} ] with shape {} mismatch Tensor [ {} ] with shape {}".format(
                    grad_tensor.name, grad_tensor.shape, self.name, self.shape)

257
            if core._in_eager_mode():
258 259 260 261
                if grad_tensor is None:
                    grad_tensor = []
                else:
                    grad_tensor = [grad_tensor]
K
kuizhiqing 已提交
262
            if paddle.is_compiled_with_xpu() or paddle.is_compiled_with_npu():
263
                # TODO(liuyuhui): Currently only for xpu. Will be removed in the future.
264
                scaled_loss = scale_loss(self)
265
                if core._in_eager_mode():
266 267 268 269 270 271
                    core.eager.run_backward([scaled_loss], grad_tensor,
                                            retain_graph)
                else:
                    core.dygraph_run_backward([scaled_loss], [grad_tensor],
                                              retain_graph,
                                              framework._dygraph_tracer())
272
            else:
273
                if core._in_eager_mode():
274 275 276 277 278
                    core.eager.run_backward([self], grad_tensor, retain_graph)
                else:
                    core.dygraph_run_backward([self], [grad_tensor],
                                              retain_graph,
                                              framework._dygraph_tracer())
279 280
        else:
            raise ValueError(
T
tianshuo78520a 已提交
281
                "Variable.backward() is only available in DyGraph mode")
282 283

    @framework.dygraph_only
284 285
    @deprecated(
        since="2.1.0",
286 287
        level=1,
        reason="Please use tensor.grad, which returns the tensor value of the gradient."
288
    )
289 290
    def gradient(self):
        """
291 292 293 294
        .. warning::
          This API will be deprecated in the future, it is recommended to use
          :code:`x.grad` which returns the tensor value of the gradient.

295
        Get the Gradient of Current Tensor.
296 297

        Returns:
298
            ndarray: Numpy value of the gradient of current Tensor
299 300 301 302

        Examples:
            .. code-block:: python

303
                import paddle
304

305 306 307
                x = paddle.to_tensor(5., stop_gradient=False)
                y = paddle.pow(x, 4.0)
                y.backward()
308
                print("grad of x: {}".format(x.gradient()))
309
                # [500.]
310 311

        """
312
        if core._in_eager_mode():
313 314 315 316 317 318 319
            if not self.grad._is_initialized():
                return None
            # TODO(wanghuancoder) support SELECTED_ROWS
            return self.grad.numpy()
        else:
            if self._grad_ivar() is None:
                return None
320

321 322 323 324
            new_ivar = self._grad_ivar()._copy_to(core.CPUPlace(), True)
            if self._grad_ivar().type == core.VarDesc.VarType.SELECTED_ROWS:
                return (
                    np.array(new_ivar.value().get_selected_rows().get_tensor()),
325
                    np.array(new_ivar.value().get_selected_rows().rows()))
326 327
            else:
                return np.array(new_ivar.value().get_tensor())
328

329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395
    @framework.dygraph_only
    def register_hook(self, hook):
        """
        Registers a backward hook for current Tensor.

        The hook will be called every time the gradient Tensor of current Tensor is computed.

        The hook should not modify the input gradient Tensor, but it can optionally return
        a new gradient Tensor which will be used in place of current Tensor's gradient.

        The hook should have the following signature:

            hook(grad) -> Tensor or None

        Args:
            hook(function): A backward hook to be registered for Tensor.grad

        Returns:
            TensorHookRemoveHelper: A helper object that can be used to remove the registered hook by calling `remove()` method.

        Examples:
            .. code-block:: python

                import paddle

                # hook function return None
                def print_hook_fn(grad):
                    print(grad)

                # hook function return Tensor
                def double_hook_fn(grad):
                    grad = grad * 2
                    return grad

                x = paddle.to_tensor([0., 1., 2., 3.], stop_gradient=False)
                y = paddle.to_tensor([4., 5., 6., 7.], stop_gradient=False)
                z = paddle.to_tensor([1., 2., 3., 4.])

                # one Tensor can register multiple hooks
                h = x.register_hook(print_hook_fn)
                x.register_hook(double_hook_fn)

                w = x + y
                # register hook by lambda function
                w.register_hook(lambda grad: grad * 2)

                o = z.matmul(w)
                o.backward()
                # print_hook_fn print content in backward
                # Tensor(shape=[4], dtype=float32, place=CUDAPlace(0), stop_gradient=False,
                #        [2., 4., 6., 8.])

                print("w.grad:", w.grad) # w.grad: [1. 2. 3. 4.]
                print("x.grad:", x.grad) # x.grad: [ 4.  8. 12. 16.]
                print("y.grad:", y.grad) # y.grad: [2. 4. 6. 8.]

                # remove hook
                h.remove()
        """
        if self.stop_gradient is True:
            raise RuntimeError(
                "Cannot register hook on a tensor that stop gradient.")

        hook_id = self._register_grad_hook(hook)
        helper = TensorHookRemoveHelper(self, hook_id)
        return helper

396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424
    @framework.dygraph_only
    def _to(self, device=None, dtype=None, blocking=None):

        if device is None and dtype is None and blocking is None:
            return self

        if device is not None:
            if isinstance(device, str):
                device = paddle.device._convert_to_place(device)
            elif isinstance(device, (core.CPUPlace, core.CUDAPlace,
                                     core.CUDAPinnedPlace, core.XPUPlace)):
                pass
            else:
                raise ValueError(
                    "device value error, must be str, paddle.CPUPlace(), paddle.CUDAPlace(), paddle.CUDAPinnedPlace() or paddle.XPUPlace(), but the type of device is "
                    + type(device).__name__)

        if blocking is None:
            blocking = True
        else:
            assert isinstance(
                blocking,
                bool), "blocking value error, must be the True, False or None"

        def transform(t, device, dtype, blocking):
            if device is None:
                device = t.place
            if dtype is None:
                dtype = t.dtype
425 426
            if type(dtype) is str:
                dtype = framework.convert_np_dtype_to_dtype_(dtype)
427 428 429

            # 1. gpu place need to determine whether the memory is sufficient for allocation.
            if t.place.is_gpu_place():
430
                size_dtype = core.size_of_dtype(dtype)
431 432 433 434 435
                # Note(weilong wu): Paddle GPU minimum memory allocation unit is 256 bytes,
                # waiting_alloc_memory will compute the memory space occupied by 't'.
                # Coefficient 1.2 is used to avoid OOM that may occur in this critical state when the memory is just enough.
                waiting_alloc_memory = (
                    (t._numel() * size_dtype) / 256 + 1) * 256 * 1.2
436
                gpu_memory_available = core.gpu_memory_available()
437 438 439 440 441 442 443 444 445 446 447 448 449
                if gpu_memory_available < waiting_alloc_memory:
                    # Copy Tensor to cpu
                    t_used = t._copy_to(paddle.CPUPlace(), blocking)
                    # Release memory of t
                    t._clear()
                else:
                    # Tensor still in GPU
                    t_used = t
            else:
                t_used = t

            # 2. cast Tensor to dtype
            if dtype is not None and dtype != t_used.dtype:
450 451 452
                with paddle.fluid.framework._dygraph_place_guard(
                        place=t_used.place):
                    t_casted = t_used.cast(dtype=dtype)
453 454 455 456
            else:
                t_casted = t_used

            # 3. Copy casted Tensor(in CPU or GPU) to device
457 458 459 460
            if device is not None and not t_casted.place._equals(device):
                new_t = t_casted._copy_to(device, blocking)
            else:
                new_t = t_casted
461 462 463 464 465 466 467 468 469 470 471 472

            # 4. Share Tensor to origin Tensor
            dst_tensor = t.value().get_tensor()
            src_tensor = new_t.value().get_tensor()
            dst_tensor._share_data_with(src_tensor)

            return t

        with warnings.catch_warnings():
            warnings.filterwarnings("ignore", category=UserWarning)
            return transform(self, device, dtype, blocking)

473 474 475
    @property
    def grad(self):
        """
476 477 478 479 480 481 482 483 484 485 486 487 488
        .. warning::
          This API will return the tensor value of the gradient. If you want 
          to get the numpy value of the gradient, you can use :code:`x.grad.numpy()`.

        Get the Gradient of Current Tensor.

        Returns:
            Tensor: the gradient of current Tensor

        Examples:
            .. code-block:: python

                import paddle
489

490 491 492 493 494 495 496
                x = paddle.to_tensor(5., stop_gradient=False)
                y = paddle.pow(x, 4.0)
                y.backward()
                print("grad of x: {}".format(x.grad))
                # Tensor(shape=[1], dtype=float32, place=CUDAPlace(0), stop_gradient=False, [500.])

        """
497 498 499 500
        msg = 'tensor.grad will return the tensor value of the gradient.' \
            ' This is an incompatible upgrade for tensor.grad API. ' \
            ' It\'s return type changes from numpy.ndarray in version 2.0 to paddle.Tensor in version 2.1.0. ' \
            ' If you want to get the numpy value of the gradient, you can use :code:`x.grad.numpy()`'
501
        warning_msg = "\033[93m\nWarning:\n%s \033[0m" % (msg)
502 503 504
        # ensure ANSI escape sequences print correctly in cmd and powershell
        if sys.platform.lower() == 'win32':
            warning_msg = "\nWarning:\n%s " % (msg)
505
        warnings.warn(warning_msg)
506
        return self._grad_ivar()
507

508 509 510 511 512 513
    def clear_grad(self):
        """
        The alias of clear_gradient().
        """
        self.clear_gradient()

514 515
    def item(self, *args):
        """
516 517
        Convert element at specific position in Tensor into Python scalars. If the position is not specified, the Tensor must be a 
        single-element Tensor.
518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555

        Args:
            *args(int): The input coordinates. If it's single int, the data in the corresponding order of flattened Tensor will be returned.
                Default: None, and it must be in the case where Tensor has only one element.

        Returns(Python scalar): A Python scalar, whose dtype is corresponds to the dtype of Tensor.

        Raises:
            ValueError: If the Tensor has more than one element, there must be coordinates.
        
        Examples:
            .. code-block:: python

                import paddle

                x = paddle.to_tensor(1)
                print(x.item())             #1
                print(type(x.item()))       #<class 'int'>

                x = paddle.to_tensor(1.0)
                print(x.item())             #1.0
                print(type(x.item()))       #<class 'float'>

                x = paddle.to_tensor(True)
                print(x.item())             #True
                print(type(x.item()))       #<class 'bool'>

                x = paddle.to_tensor(1+1j)
                print(x.item())             #(1+1j)
                print(type(x.item()))       #<class 'complex'>

                x = paddle.to_tensor([[1.1, 2.2, 3.3]])
                print(x.item(2))            #3.3
                print(x.item(0, 2))         #3.3

        """
        return self._getitem_from_offset(*args).item()

556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576
    @property
    def inplace_version(self):
        """
        The inplace version of current Tensor.
        The version number is incremented whenever the current Tensor is modified through an inplace operation.

        **Notes: This is a read-only property**

        Examples:
          .. code-block:: python

            import paddle
            var = paddle.ones(shape=[4, 2, 3], dtype="float32")
            print(var.inplace_version)  # 0

            var[1] = 2.2
            print(var.inplace_version)  # 1

        """
        return self._inplace_version()

577 578
    def __str__(self):
        """
579
        Convert a VarBase object to a readable string.
580

581
        Returns(str): A readable string.
582 583 584 585

        Examples:
            .. code-block:: python

586
                import paddle
587
                x = paddle.rand([2, 5])
588
                print(x)
589 590 591 592
                
                # Tensor(shape=[2, 5], dtype=float32, place=CPUPlace,
                #        [[0.30574632, 0.55739117, 0.30902600, 0.39413780, 0.44830436],
                #         [0.79010487, 0.53972793, 0.09495186, 0.44267157, 0.72112119]])
593
        """
594
        if core._in_eager_mode():
595 596
            from paddle.tensor.to_string import tensor_to_string
            return tensor_to_string(self)
597 598 599
        else:
            from paddle.tensor.to_string import to_string
            return to_string(self)
600

601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625
    def __deepcopy__(self, memo):
        """
        Deep copy Tensor, it will always performs Tensor copy.

        Examples:
            .. code-block:: python

                import paddle
                import copy
                x = paddle.to_tensor(2.)
                y = copy.deepcopy(x)
                
                print(x)
                # Tensor(shape=[1], dtype=float32, place=CPUPlace, stop_gradient=True,
                #        [2.])

                print(y)
                # Tensor(shape=[1], dtype=float32, place=CPUPlace, stop_gradient=True,
                #        [2.])

        """
        if not self.is_leaf:
            raise RuntimeError(
                "Only Leaf Tensor support the deepcopy at the moment, non-Leaf Tensors contains graph information that does't support deepcopy"
            )
626
        if core._in_eager_mode():
627
            new_varbase = core.eager.Tensor()
628 629
        else:
            new_varbase = core.VarBase()
630 631 632 633 634
        new_varbase.name = self.name + unique_name.generate("_deepcopy")
        memo[id(self)] = new_varbase
        new_varbase.copy_(self, True)
        return new_varbase

635 636 637
    @property
    def block(self):
        return framework.default_main_program().global_block()
638

639 640 641
    def __nonzero__(self):
        numel = np.prod(self.shape)
        assert numel == 1, "When Variable is used as the condition of if/while , Variable can only contain one element."
642 643 644 645 646 647 648
        if core._in_eager_mode():
            assert self._is_initialized(), "tensor not initialized"
            return bool(np.all(self.numpy() > 0))
        else:
            tensor = self.value().get_tensor()
            assert tensor._is_initialized(), "tensor not initialized"
            return bool(np.all(tensor.__array__() > 0))
649 650 651 652

    def __bool__(self):
        return self.__nonzero__()

653
    def __array__(self, dtype=None):
654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677
        """
        Returns a numpy array shows the value of current Tensor.
        
        Returns:
            ndarray: The numpy value of current Tensor.

        Returns type:
            ndarray: dtype is same as current Tensor

        Examples:
            .. code-block:: python

                import paddle
                import numpy as np
                x = paddle.randn([2, 2])
                x_array = np.array(x)

                print(type(x_array))      #<class 'numpy.ndarray'>
                print(x_array.shape)      #(2, 2)
        """
        array = self.numpy()
        if dtype:
            array = array.astype(dtype)
        return array
678

W
WeiXin 已提交
679
    def contain_tensor(item):
680
        if not isinstance(item, (tuple, list)):
W
WeiXin 已提交
681 682 683 684 685 686 687 688 689
            item = [item]

        for slice_item in item:
            if isinstance(slice_item, slice):
                if isinstance(slice_item.start, Variable)  \
                    or isinstance(slice_item.stop, Variable) \
                        or isinstance(slice_item.step, Variable):
                    return True
            else:
W
WeiXin 已提交
690 691 692
                if isinstance(
                        slice_item,
                    (Variable, np.ndarray)) and Variable.dtype != paddle.bool:
W
WeiXin 已提交
693 694 695
                    return True
        return False

696
    def __getitem__(self, item):
W
WeiXin 已提交
697 698 699 700 701 702
        def is_list_tuple(index, contain_type):
            def _is_list_tuple(item):
                if isinstance(item, (tuple, list)):
                    for s in item:
                        if not _is_list_tuple(s):
                            return False
703 704 705
                else:
                    if type(item) != contain_type:
                        return False
W
WeiXin 已提交
706
                return True
707

W
WeiXin 已提交
708 709 710 711 712 713 714 715
            if not isinstance(index, (tuple, list)):
                return False
            for s in index:
                if not _is_list_tuple(s):
                    return False
            return True

        if contain_tensor(item) or is_list_tuple(item, int):
716 717 718 719 720 721 722 723
            # 1. Call _getitem_impl_ when item contains tensor.
            # Why not call a c++ function ? Because item can't be parsed when it contains tensor.
            return _getitem_impl_(self, item)

        else:
            # 2. Call c++ func getitem_index_not_tensor to speedup.
            return self._getitem_index_not_tensor(item)

W
WeiXin 已提交
724
    def __setitem__(self, item, value):
Z
zyfncg 已提交
725 726 727
        def contain_tensor_or_list(item):
            if not isinstance(item, tuple):
                item = [item]
W
WeiXin 已提交
728

Z
zyfncg 已提交
729 730 731 732 733 734 735 736
            for slice_item in item:
                if isinstance(slice_item, list):
                    return True
                elif isinstance(slice_item, Variable):
                    return True

            return False

737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758
        def is_combine_index(item):
            var_type = None
            item_type = None
            if isinstance(item, (tuple, list)):
                for slice_item in item:
                    if item_type is None:
                        item_type = type(slice_item)
                    else:
                        if type(slice_item) != item_type:
                            return True

                    if isinstance(slice_item, Variable):
                        if var_type is None:
                            var_type = slice_item.dtype
                        else:
                            if var_type != slice_item.dtype:
                                return True
                return False

            return False

        if contain_tensor_or_list(item) and not is_combine_index(item):
Z
zyfncg 已提交
759 760
            # To reuse code with static graph,
            # Call _setitem_impl_ when item contains tensor or list.
W
WeiXin 已提交
761 762 763
            return _setitem_impl_(self, item, value)

        else:
Z
zyfncg 已提交
764
            # Call c++ func __setitem_varbase__ to speedup.
W
WeiXin 已提交
765 766
            return self.__setitem_varbase__(item, value)

767 768
    @framework.dygraph_only
    def _grad_ivar(self):
769 770 771 772
        if self.grad is not None:
            if self.grad._is_initialized():
                return self.grad
        return None
773

774 775 776 777 778 779 780 781 782 783 784 785
    @framework.dygraph_only
    def _set_grad_ivar(self, value):
        if isinstance(self, EagerParamBase):
            self.grad = value
        else:
            raise TypeError(
                "_set_grad_ivar is only supported for Parameter Tensor")

    @framework.dygraph_only
    def clone(self):
        return _C_ops_.assign(self)

786 787 788 789
    @framework.dygraph_only
    def value(self):
        return self

790 791 792
    if core._in_eager_mode() and not hasattr(core, "eager"):
        return

793 794
    for method_name, method in (
        ("__bool__", __bool__), ("__nonzero__", __nonzero__),
795
        ("_to_static_var", _to_static_var), ("set_value", set_value),
796
        ("block", block), ("backward", backward), ("clear_grad", clear_grad),
797 798 799 800
        ("inplace_version", inplace_version), ("gradient", gradient),
        ("register_hook", register_hook), ("__str__", __str__),
        ("__repr__", __str__), ("__deepcopy__", __deepcopy__),
        ("__module__", "paddle"), ("__array__", __array__),
W
WeiXin 已提交
801
        ("__getitem__", __getitem__), ("item", item),
802
        ("__setitem__", __setitem__), ("_to", _to)):
803
        if core._in_eager_mode():
804
            setattr(core.eager.Tensor, method_name, method)
L
Leo Chen 已提交
805
        else:
806 807 808
            setattr(core.VarBase, method_name, method)

    if core._in_eager_mode():
809 810 811 812
        setattr(core.eager.Tensor, "_grad_ivar", _grad_ivar)
        setattr(core.eager.Tensor, "_set_grad_ivar", _set_grad_ivar)
        setattr(core.eager.Tensor, "clone", clone)
        setattr(core.eager.Tensor, "value", value)
813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830
    else:
        setattr(core.VarBase, "__name__", "Tensor")
        setattr(core.VarBase, "grad", grad)

    global _already_patch_repr
    if not _already_patch_repr:
        # NOTE(zhiqiu): pybind11 will set a default __str__ method of enum class.
        # So, we need to overwrite it to a more readable one.
        # See details in https://github.com/pybind/pybind11/issues/2537.
        origin = getattr(core.VarDesc.VarType, "__repr__")

        def dtype_str(dtype):
            if dtype in _PADDLE_DTYPE_2_NUMPY_DTYPE:
                prefix = 'paddle.'
                return prefix + _PADDLE_DTYPE_2_NUMPY_DTYPE[dtype]
            else:
                # for example, paddle.fluid.core.VarDesc.VarType.LOD_TENSOR
                return origin(dtype)
L
Leo Chen 已提交
831

832 833
        setattr(core.VarDesc.VarType, "__repr__", dtype_str)
        _already_patch_repr = True
L
Leo Chen 已提交
834

835 836
    # patch math methods for varbase
    monkey_patch_math_varbase()