varbase_patch_methods.py 27.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
import inspect
16
import numpy as np
17 18
import warnings
import weakref
19
import sys
20 21

import paddle
22 23
from .. import framework
from .. import core
24
from .. import unique_name
W
WeiXin 已提交
25
from ..framework import Variable, Parameter, ParamBase, _getitem_impl_, _setitem_impl_
26
from .base import switch_to_static_graph
27
from .math_op_patch import monkey_patch_math_varbase
28
from .parallel import scale_loss
L
Leo Chen 已提交
29
from paddle.fluid.data_feeder import convert_dtype, _PADDLE_DTYPE_2_NUMPY_DTYPE
30
import paddle.utils.deprecated as deprecated
31 32


33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
class TensorHookRemoveHelper(object):
    """
    A helper class that for removing Tensor gradient's hook.
    """

    def __init__(self, tensor, hook_id):
        self._tensor_ref = weakref.ref(tensor)
        self._hook_id = hook_id

    def remove(self):
        """
        Remove reference Tensor's hook.

        Returns:
            bool: Return True if removed successfully
        """
        tensor = self._tensor_ref()
        if tensor is not None:
            res = tensor._remove_grad_hook(self._hook_id)
            if res is True:
                return True
            else:
                warnings.warn(
                    "The backward hook (ID: %d) of Tensor `%s` you want to remove does not exist or has been removed."
                    % (self._hook_id, tensor.name), RuntimeWarning)
        return False


61
def monkey_patch_varbase():
62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88
    @switch_to_static_graph
    def _to_static_var(self, to_parameter=False, **kwargs):
        """
        **Notes**:
            **This API is ONLY available in Dygraph mode**

        Transform a VarBase into static Variable with same attributes. It's a low level interface used
        in dy2static and shall not be called directly.

        Args:
            to_parameter (bool): It takes effect only if the input a VarBase. If set True,
                                 the VarBase will be converted into framework.Parameters. Otherwise, it will
                                 be converted into framework.Variable. Default False.

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                from paddle.fluid.dygraph.base import to_variable
                import numpy as np

                data = np.ones([3, 1024], dtype='float32')
                with fluid.dygraph.guard():
                    var_base = to_variable(data)
                    static_var = var_base._to_static_var()

        """
89

90
        # Note: getattr(self, attr, None) will call x.grad=x.gradient(), but gradient() only available in dygraph.
91 92
        # It will fail. So, for propery that different between dynamic and static graph, should not getattr(self, attr, None).
        attr_not_need_keys = ['grad', 'T']
93 94 95
        if isinstance(self, ParamBase):
            attr_kwargs = self.__dict__.copy()
        else:
96 97
            attr_names = []
            for name in dir(self):
98 99 100 101
                if name not in attr_not_need_keys:
                    if not inspect.ismethod(getattr(
                            self, name)) and not name.startswith('_'):
                        attr_names.append(name)
102 103 104 105 106 107 108 109 110 111
            attr_kwargs = {name: getattr(self, name) for name in attr_names}

        attr_keys = ['block', 'shape', 'dtype', 'type', 'name', 'persistable']
        for attr in attr_keys:
            attr_kwargs[attr] = getattr(self, attr, None)

        attr_kwargs.update(kwargs)

        if to_parameter or isinstance(self, ParamBase):
            del attr_kwargs['persistable']
112 113
            # NOTE(Aurelius84): All parameters should be placed into global block.
            attr_kwargs['block'] = attr_kwargs['block'].program.global_block()
114 115 116 117 118
            static_var = Parameter(**attr_kwargs)
        else:
            static_var = Variable(**attr_kwargs)
        return static_var

119 120 121 122 123
    # TODO(jiabin): move this to cplusplus end if we find some performance issue on it
    @framework.dygraph_only
    def set_value(self, value):
        """
        **Notes**:
T
tianshuo78520a 已提交
124
            **This API is ONLY available in Dygraph mode**
125 126 127 128 129 130 131 132 133 134 135

        Set a new value for this Variable.

        Args:
            value (Variable|np.ndarray): the new value.

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                from paddle.fluid.dygraph.base import to_variable
136
                from paddle.fluid.dygraph import Linear
137 138
                import numpy as np

139
                data = np.ones([3, 1024], dtype='float32')
140
                with fluid.dygraph.guard():
141
                    linear = fluid.dygraph.Linear(1024, 4)
142
                    t = to_variable(data)
143
                    linear(t)  # call with default weight
144
                    custom_weight = np.random.randn(1024, 4).astype("float32")
145 146
                    linear.weight.set_value(custom_weight)  # change existing weight
                    out = linear(t)  # call with different weight
147 148

        """
S
Steffy-zxf 已提交
149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164
        assert isinstance(value, (np.ndarray, core.VarBase, dict, str)), \
            "Variable set_value function, arguments type only support Variable, numpy, VarBase, dict, string."

        if isinstance(value, (dict, str)):
            assert len(self) == len(
                value
            ), "Variable length not match, Variable [ {} ] need tensor with length {} but load set tensor with length {}".format(
                self.name, len(self), len(value))
            if isinstance(value, dict):
                self.value().set_vocab(value)
            else:
                self.value().set_string_list(value)
        else:
            value_np = value
            if isinstance(value, core.VarBase):
                value_np = value.numpy()
165

S
Steffy-zxf 已提交
166
            self_tensor_np = self.numpy()
167

S
Steffy-zxf 已提交
168 169 170
            assert self_tensor_np.shape == value_np.shape, \
                "Variable Shape not match, Variable [ {} ] need tensor with shape {} but load set tensor with shape {}".format(
                    self.name, self_tensor_np.shape, value_np.shape)
171

S
Steffy-zxf 已提交
172 173 174
            assert self_tensor_np.dtype == value_np.dtype, \
                "Variable dtype not match, Variable [ {} ] need tensor with dtype {}  but load tensor with dtype {}".format(
                    self.name, self_tensor_np.dtype, value_np.dtype)
175

S
Steffy-zxf 已提交
176 177
            self.value().get_tensor().set(value_np,
                                          framework._current_expected_place())
178 179

    @framework.dygraph_only
180
    def backward(self, grad_tensor=None, retain_graph=False):
181
        """
182
        Run backward of current Graph which starts from current Tensor.
183

184 185 186 187
        The new gradient will accumulat on previous gradient.

        You can clear gradient by ``Tensor.clear_grad()`` .

188
        Args:
189 190 191 192 193
            grad_tensor(Tensor, optional): initial gradient values of the current Tensor. If `grad_tensor` is None, 
            the initial gradient values of the current Tensor would be Tensor filled with 1.0; 
            if `grad_tensor` is not None, it must have the same length as the current Tensor.
            Teh default value is None.

194
            retain_graph(bool, optional): If False, the graph used to compute grads will be freed. If you would
195 196 197
                like to add more ops to the built graph after calling this method( :code:`backward` ), set the parameter
                :code:`retain_graph` to True, then the grads will be retained. Thus, seting it to False is much more memory-efficient.
                Defaults to False.
198 199 200 201 202 203
        Returns:
            NoneType: None

        Examples:
            .. code-block:: python

204
                import paddle
205 206 207 208 209 210 211 212 213 214 215 216 217 218
                x = paddle.to_tensor(5., stop_gradient=False)
                for i in range(5):
                    y = paddle.pow(x, 4.0)
                    y.backward()
                    print("{}: {}".format(i, x.grad))
                # 0: [500.]
                # 1: [1000.]
                # 2: [1500.]
                # 3: [2000.]
                # 4: [2500.]

                x.clear_grad()
                print("{}".format(x.grad))
                # 0.
219

220 221 222 223 224 225 226 227 228 229 230
                grad_tensor=paddle.to_tensor(2.)
                for i in range(5):
                    y = paddle.pow(x, 4.0)
                    y.backward(grad_tensor)
                    print("{}: {}".format(i, x.grad))
                # 0: [1000.]
                # 1: [2000.]
                # 2: [3000.]
                # 3: [4000.]
                # 4: [5000.]

231 232
        """
        if framework.in_dygraph_mode():
233 234 235 236 237 238 239 240
            if grad_tensor is not None:
                assert isinstance(
                    grad_tensor, paddle.
                    Tensor), "The type of grad_tensot must be paddle.Tensor"
                assert grad_tensor.shape == self.shape, \
                    "Tensor shape not match, Tensor of grad_tensor [ {} ] with shape {} mismatch Tensor [ {} ] with shape {}".format(
                    grad_tensor.name, grad_tensor.shape, self.name, self.shape)

241 242
            if paddle.is_compiled_with_xpu():
                # TODO(liuyuhui): Currently only for xpu. Will be removed in the future.
243
                scaled_loss = scale_loss(self)
244 245 246
                core.dygraph_run_backward([scaled_loss], [grad_tensor],
                                          retain_graph,
                                          framework._dygraph_tracer())
247
            else:
248 249
                core.dygraph_run_backward([self], [grad_tensor], retain_graph,
                                          framework._dygraph_tracer())
250 251
        else:
            raise ValueError(
T
tianshuo78520a 已提交
252
                "Variable.backward() is only available in DyGraph mode")
253 254

    @framework.dygraph_only
255 256
    @deprecated(
        since="2.1.0",
257 258
        level=1,
        reason="Please use tensor.grad, which returns the tensor value of the gradient."
259
    )
260 261
    def gradient(self):
        """
262 263 264 265
        .. warning::
          This API will be deprecated in the future, it is recommended to use
          :code:`x.grad` which returns the tensor value of the gradient.

266
        Get the Gradient of Current Tensor.
267 268

        Returns:
269
            ndarray: Numpy value of the gradient of current Tensor
270 271 272 273

        Examples:
            .. code-block:: python

274
                import paddle
275

276 277 278
                x = paddle.to_tensor(5., stop_gradient=False)
                y = paddle.pow(x, 4.0)
                y.backward()
279
                print("grad of x: {}".format(x.gradient()))
280
                # [500.]
281 282 283

        """
        if self._grad_ivar() is None:
284 285
            return None

286 287 288 289 290 291 292
        new_ivar = self._grad_ivar()._copy_to(core.CPUPlace(), True)
        if self._grad_ivar().type == core.VarDesc.VarType.SELECTED_ROWS:
            return (np.array(new_ivar.value().get_selected_rows().get_tensor()),
                    np.array(new_ivar.value().get_selected_rows().rows()))
        else:
            return np.array(new_ivar.value().get_tensor())

293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359
    @framework.dygraph_only
    def register_hook(self, hook):
        """
        Registers a backward hook for current Tensor.

        The hook will be called every time the gradient Tensor of current Tensor is computed.

        The hook should not modify the input gradient Tensor, but it can optionally return
        a new gradient Tensor which will be used in place of current Tensor's gradient.

        The hook should have the following signature:

            hook(grad) -> Tensor or None

        Args:
            hook(function): A backward hook to be registered for Tensor.grad

        Returns:
            TensorHookRemoveHelper: A helper object that can be used to remove the registered hook by calling `remove()` method.

        Examples:
            .. code-block:: python

                import paddle

                # hook function return None
                def print_hook_fn(grad):
                    print(grad)

                # hook function return Tensor
                def double_hook_fn(grad):
                    grad = grad * 2
                    return grad

                x = paddle.to_tensor([0., 1., 2., 3.], stop_gradient=False)
                y = paddle.to_tensor([4., 5., 6., 7.], stop_gradient=False)
                z = paddle.to_tensor([1., 2., 3., 4.])

                # one Tensor can register multiple hooks
                h = x.register_hook(print_hook_fn)
                x.register_hook(double_hook_fn)

                w = x + y
                # register hook by lambda function
                w.register_hook(lambda grad: grad * 2)

                o = z.matmul(w)
                o.backward()
                # print_hook_fn print content in backward
                # Tensor(shape=[4], dtype=float32, place=CUDAPlace(0), stop_gradient=False,
                #        [2., 4., 6., 8.])

                print("w.grad:", w.grad) # w.grad: [1. 2. 3. 4.]
                print("x.grad:", x.grad) # x.grad: [ 4.  8. 12. 16.]
                print("y.grad:", y.grad) # y.grad: [2. 4. 6. 8.]

                # remove hook
                h.remove()
        """
        if self.stop_gradient is True:
            raise RuntimeError(
                "Cannot register hook on a tensor that stop gradient.")

        hook_id = self._register_grad_hook(hook)
        helper = TensorHookRemoveHelper(self, hook_id)
        return helper

360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434
    @framework.dygraph_only
    def _to(self, device=None, dtype=None, blocking=None):

        if device is None and dtype is None and blocking is None:
            return self

        if device is not None:
            if isinstance(device, str):
                device = paddle.device._convert_to_place(device)
            elif isinstance(device, (core.CPUPlace, core.CUDAPlace,
                                     core.CUDAPinnedPlace, core.XPUPlace)):
                pass
            else:
                raise ValueError(
                    "device value error, must be str, paddle.CPUPlace(), paddle.CUDAPlace(), paddle.CUDAPinnedPlace() or paddle.XPUPlace(), but the type of device is "
                    + type(device).__name__)

        if blocking is None:
            blocking = True
        else:
            assert isinstance(
                blocking,
                bool), "blocking value error, must be the True, False or None"

        def transform(t, device, dtype, blocking):
            if device is None:
                device = t.place
            if dtype is None:
                dtype = t.dtype

            # 1. gpu place need to determine whether the memory is sufficient for allocation.
            if t.place.is_gpu_place():
                gpu_memory_available = core.gpu_memory_available()
                # for gpu, minimum memory allocation unit is 256 bytes.
                if type(dtype) is str:
                    size_dtype = core.size_of_dtype(
                        framework.convert_np_dtype_to_dtype_(dtype))
                else:
                    size_dtype = core.size_of_dtype(dtype)
                # Note(weilong wu): Paddle GPU minimum memory allocation unit is 256 bytes,
                # waiting_alloc_memory will compute the memory space occupied by 't'.
                # Coefficient 1.2 is used to avoid OOM that may occur in this critical state when the memory is just enough.
                waiting_alloc_memory = (
                    (t._numel() * size_dtype) / 256 + 1) * 256 * 1.2
                if gpu_memory_available < waiting_alloc_memory:
                    # Copy Tensor to cpu
                    t_used = t._copy_to(paddle.CPUPlace(), blocking)
                    # Release memory of t
                    t._clear()
                else:
                    # Tensor still in GPU
                    t_used = t
            else:
                t_used = t

            # 2. cast Tensor to dtype
            if dtype is not None and dtype != t_used.dtype:
                t_casted = t_used.cast(dtype=dtype)
            else:
                t_casted = t_used

            # 3. Copy casted Tensor(in CPU or GPU) to device
            new_t = t_casted._copy_to(device, blocking)

            # 4. Share Tensor to origin Tensor
            dst_tensor = t.value().get_tensor()
            src_tensor = new_t.value().get_tensor()
            dst_tensor._share_data_with(src_tensor)

            return t

        with warnings.catch_warnings():
            warnings.filterwarnings("ignore", category=UserWarning)
            return transform(self, device, dtype, blocking)

435 436 437
    @property
    def grad(self):
        """
438 439 440 441 442 443 444 445 446 447 448 449 450
        .. warning::
          This API will return the tensor value of the gradient. If you want 
          to get the numpy value of the gradient, you can use :code:`x.grad.numpy()`.

        Get the Gradient of Current Tensor.

        Returns:
            Tensor: the gradient of current Tensor

        Examples:
            .. code-block:: python

                import paddle
451

452 453 454 455 456 457 458
                x = paddle.to_tensor(5., stop_gradient=False)
                y = paddle.pow(x, 4.0)
                y.backward()
                print("grad of x: {}".format(x.grad))
                # Tensor(shape=[1], dtype=float32, place=CUDAPlace(0), stop_gradient=False, [500.])

        """
459 460 461 462
        msg = 'tensor.grad will return the tensor value of the gradient.' \
            ' This is an incompatible upgrade for tensor.grad API. ' \
            ' It\'s return type changes from numpy.ndarray in version 2.0 to paddle.Tensor in version 2.1.0. ' \
            ' If you want to get the numpy value of the gradient, you can use :code:`x.grad.numpy()`'
463
        warning_msg = "\033[93m\nWarning:\n%s \033[0m" % (msg)
464 465 466
        # ensure ANSI escape sequences print correctly in cmd and powershell
        if sys.platform.lower() == 'win32':
            warning_msg = "\nWarning:\n%s " % (msg)
467
        warnings.warn(warning_msg)
468
        return self._grad_ivar()
469

470 471 472 473 474 475
    def clear_grad(self):
        """
        The alias of clear_gradient().
        """
        self.clear_gradient()

476 477
    def item(self, *args):
        """
478 479
        Convert element at specific position in Tensor into Python scalars. If the position is not specified, the Tensor must be a 
        single-element Tensor.
480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517

        Args:
            *args(int): The input coordinates. If it's single int, the data in the corresponding order of flattened Tensor will be returned.
                Default: None, and it must be in the case where Tensor has only one element.

        Returns(Python scalar): A Python scalar, whose dtype is corresponds to the dtype of Tensor.

        Raises:
            ValueError: If the Tensor has more than one element, there must be coordinates.
        
        Examples:
            .. code-block:: python

                import paddle

                x = paddle.to_tensor(1)
                print(x.item())             #1
                print(type(x.item()))       #<class 'int'>

                x = paddle.to_tensor(1.0)
                print(x.item())             #1.0
                print(type(x.item()))       #<class 'float'>

                x = paddle.to_tensor(True)
                print(x.item())             #True
                print(type(x.item()))       #<class 'bool'>

                x = paddle.to_tensor(1+1j)
                print(x.item())             #(1+1j)
                print(type(x.item()))       #<class 'complex'>

                x = paddle.to_tensor([[1.1, 2.2, 3.3]])
                print(x.item(2))            #3.3
                print(x.item(0, 2))         #3.3

        """
        return self._getitem_from_offset(*args).item()

518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538
    @property
    def inplace_version(self):
        """
        The inplace version of current Tensor.
        The version number is incremented whenever the current Tensor is modified through an inplace operation.

        **Notes: This is a read-only property**

        Examples:
          .. code-block:: python

            import paddle
            var = paddle.ones(shape=[4, 2, 3], dtype="float32")
            print(var.inplace_version)  # 0

            var[1] = 2.2
            print(var.inplace_version)  # 1

        """
        return self._inplace_version()

539 540
    def __str__(self):
        """
541
        Convert a VarBase object to a readable string.
542

543
        Returns(str): A readable string.
544 545 546 547

        Examples:
            .. code-block:: python

548
                import paddle
549
                x = paddle.rand([2, 5])
550
                print(x)
551 552 553 554
                
                # Tensor(shape=[2, 5], dtype=float32, place=CPUPlace,
                #        [[0.30574632, 0.55739117, 0.30902600, 0.39413780, 0.44830436],
                #         [0.79010487, 0.53972793, 0.09495186, 0.44267157, 0.72112119]])
555
        """
556 557
        from paddle.tensor.to_string import to_string
        return to_string(self)
558

559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589
    def __deepcopy__(self, memo):
        """
        Deep copy Tensor, it will always performs Tensor copy.

        Examples:
            .. code-block:: python

                import paddle
                import copy
                x = paddle.to_tensor(2.)
                y = copy.deepcopy(x)
                
                print(x)
                # Tensor(shape=[1], dtype=float32, place=CPUPlace, stop_gradient=True,
                #        [2.])

                print(y)
                # Tensor(shape=[1], dtype=float32, place=CPUPlace, stop_gradient=True,
                #        [2.])

        """
        if not self.is_leaf:
            raise RuntimeError(
                "Only Leaf Tensor support the deepcopy at the moment, non-Leaf Tensors contains graph information that does't support deepcopy"
            )
        new_varbase = core.VarBase()
        new_varbase.name = self.name + unique_name.generate("_deepcopy")
        memo[id(self)] = new_varbase
        new_varbase.copy_(self, True)
        return new_varbase

590 591 592
    @property
    def block(self):
        return framework.default_main_program().global_block()
593

594 595 596 597 598 599 600 601 602 603
    def __nonzero__(self):
        numel = np.prod(self.shape)
        assert numel == 1, "When Variable is used as the condition of if/while , Variable can only contain one element."
        tensor = self.value().get_tensor()
        assert tensor._is_initialized(), "tensor not initialized"
        return bool(np.all(tensor.__array__() > 0))

    def __bool__(self):
        return self.__nonzero__()

604
    def __array__(self, dtype=None):
605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628
        """
        Returns a numpy array shows the value of current Tensor.
        
        Returns:
            ndarray: The numpy value of current Tensor.

        Returns type:
            ndarray: dtype is same as current Tensor

        Examples:
            .. code-block:: python

                import paddle
                import numpy as np
                x = paddle.randn([2, 2])
                x_array = np.array(x)

                print(type(x_array))      #<class 'numpy.ndarray'>
                print(x_array.shape)      #(2, 2)
        """
        array = self.numpy()
        if dtype:
            array = array.astype(dtype)
        return array
629

W
WeiXin 已提交
630
    def contain_tensor(item):
631
        if not isinstance(item, (tuple, list)):
W
WeiXin 已提交
632 633 634 635 636 637 638 639 640
            item = [item]

        for slice_item in item:
            if isinstance(slice_item, slice):
                if isinstance(slice_item.start, Variable)  \
                    or isinstance(slice_item.stop, Variable) \
                        or isinstance(slice_item.step, Variable):
                    return True
            else:
W
WeiXin 已提交
641 642 643
                if isinstance(
                        slice_item,
                    (Variable, np.ndarray)) and Variable.dtype != paddle.bool:
W
WeiXin 已提交
644 645 646
                    return True
        return False

647
    def __getitem__(self, item):
W
WeiXin 已提交
648 649 650 651 652 653
        def is_list_tuple(index, contain_type):
            def _is_list_tuple(item):
                if isinstance(item, (tuple, list)):
                    for s in item:
                        if not _is_list_tuple(s):
                            return False
654 655 656
                else:
                    if type(item) != contain_type:
                        return False
W
WeiXin 已提交
657
                return True
658

W
WeiXin 已提交
659 660 661 662 663 664 665 666
            if not isinstance(index, (tuple, list)):
                return False
            for s in index:
                if not _is_list_tuple(s):
                    return False
            return True

        if contain_tensor(item) or is_list_tuple(item, int):
667 668 669 670 671 672 673 674
            # 1. Call _getitem_impl_ when item contains tensor.
            # Why not call a c++ function ? Because item can't be parsed when it contains tensor.
            return _getitem_impl_(self, item)

        else:
            # 2. Call c++ func getitem_index_not_tensor to speedup.
            return self._getitem_index_not_tensor(item)

W
WeiXin 已提交
675
    def __setitem__(self, item, value):
Z
zyfncg 已提交
676 677 678
        def contain_tensor_or_list(item):
            if not isinstance(item, tuple):
                item = [item]
W
WeiXin 已提交
679

Z
zyfncg 已提交
680 681 682 683 684 685 686 687
            for slice_item in item:
                if isinstance(slice_item, list):
                    return True
                elif isinstance(slice_item, Variable):
                    return True

            return False

688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709
        def is_combine_index(item):
            var_type = None
            item_type = None
            if isinstance(item, (tuple, list)):
                for slice_item in item:
                    if item_type is None:
                        item_type = type(slice_item)
                    else:
                        if type(slice_item) != item_type:
                            return True

                    if isinstance(slice_item, Variable):
                        if var_type is None:
                            var_type = slice_item.dtype
                        else:
                            if var_type != slice_item.dtype:
                                return True
                return False

            return False

        if contain_tensor_or_list(item) and not is_combine_index(item):
Z
zyfncg 已提交
710 711
            # To reuse code with static graph,
            # Call _setitem_impl_ when item contains tensor or list.
W
WeiXin 已提交
712 713 714
            return _setitem_impl_(self, item, value)

        else:
Z
zyfncg 已提交
715
            # Call c++ func __setitem_varbase__ to speedup.
W
WeiXin 已提交
716 717
            return self.__setitem_varbase__(item, value)

718 719
    for method_name, method in (
        ("__bool__", __bool__), ("__nonzero__", __nonzero__),
720
        ("_to_static_var", _to_static_var), ("set_value", set_value),
721 722
        ("block", block), ("backward", backward), ("clear_grad", clear_grad),
        ("inplace_version", inplace_version), ("grad", grad),
723 724
        ("gradient", gradient), ("register_hook", register_hook),
        ("__str__", __str__), ("__repr__", __str__),
725
        ("__deepcopy__", __deepcopy__), ("__module__", "paddle"),
726
        ("__name__", "Tensor"), ("__array__", __array__),
W
WeiXin 已提交
727
        ("__getitem__", __getitem__), ("item", item),
728
        ("__setitem__", __setitem__), ("_to", _to)):
729
        setattr(core.VarBase, method_name, method)
730

L
Leo Chen 已提交
731 732 733 734 735 736 737 738 739 740 741 742 743 744 745
    # NOTE(zhiqiu): pybind11 will set a default __str__ method of enum class.
    # So, we need to overwrite it to a more readable one.
    # See details in https://github.com/pybind/pybind11/issues/2537.
    origin = getattr(core.VarDesc.VarType, "__repr__")

    def dtype_str(dtype):
        if dtype in _PADDLE_DTYPE_2_NUMPY_DTYPE:
            prefix = 'paddle.'
            return prefix + _PADDLE_DTYPE_2_NUMPY_DTYPE[dtype]
        else:
            # for example, paddle.fluid.core.VarDesc.VarType.LOD_TENSOR
            return origin(dtype)

    setattr(core.VarDesc.VarType, "__repr__", dtype_str)

746 747
    # patch math methods for varbase
    monkey_patch_math_varbase()