varbase_patch_methods.py 18.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
import inspect
16
import numpy as np
17 18
import warnings
import weakref
19 20

import paddle
21 22
from .. import framework
from .. import core
23
from .. import unique_name
24
from ..framework import Variable, Parameter, ParamBase, _getitem_impl_
25
from .base import switch_to_static_graph
26
from .math_op_patch import monkey_patch_math_varbase
27
from .parallel import scale_loss
L
Leo Chen 已提交
28
from paddle.fluid.data_feeder import convert_dtype, _PADDLE_DTYPE_2_NUMPY_DTYPE
29
import paddle.utils.deprecated as deprecated
30 31


32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59
class TensorHookRemoveHelper(object):
    """
    A helper class that for removing Tensor gradient's hook.
    """

    def __init__(self, tensor, hook_id):
        self._tensor_ref = weakref.ref(tensor)
        self._hook_id = hook_id

    def remove(self):
        """
        Remove reference Tensor's hook.

        Returns:
            bool: Return True if removed successfully
        """
        tensor = self._tensor_ref()
        if tensor is not None:
            res = tensor._remove_grad_hook(self._hook_id)
            if res is True:
                return True
            else:
                warnings.warn(
                    "The backward hook (ID: %d) of Tensor `%s` you want to remove does not exist or has been removed."
                    % (self._hook_id, tensor.name), RuntimeWarning)
        return False


60
def monkey_patch_varbase():
61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87
    @switch_to_static_graph
    def _to_static_var(self, to_parameter=False, **kwargs):
        """
        **Notes**:
            **This API is ONLY available in Dygraph mode**

        Transform a VarBase into static Variable with same attributes. It's a low level interface used
        in dy2static and shall not be called directly.

        Args:
            to_parameter (bool): It takes effect only if the input a VarBase. If set True,
                                 the VarBase will be converted into framework.Parameters. Otherwise, it will
                                 be converted into framework.Variable. Default False.

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                from paddle.fluid.dygraph.base import to_variable
                import numpy as np

                data = np.ones([3, 1024], dtype='float32')
                with fluid.dygraph.guard():
                    var_base = to_variable(data)
                    static_var = var_base._to_static_var()

        """
88 89 90 91

        # Note: getattr(self, attr, None) will call x.grad=x.gradient(), but gradient() only available in dygraph. 
        # It will fail. So, for propery in dygraph only, should not let it getattr(self, attr, None).
        attr_not_need_keys = ['grad']
92 93 94
        if isinstance(self, ParamBase):
            attr_kwargs = self.__dict__.copy()
        else:
95 96 97 98 99 100
            attr_names = []
            for name in dir(self):
                if name not in attr_not_need_keys and not (
                        inspect.ismethod(getattr(self, name)) or
                        name.startswith('_')):
                    attr_names.append(name)
101 102 103 104 105 106 107 108 109 110 111 112 113 114 115
            attr_kwargs = {name: getattr(self, name) for name in attr_names}

        attr_keys = ['block', 'shape', 'dtype', 'type', 'name', 'persistable']
        for attr in attr_keys:
            attr_kwargs[attr] = getattr(self, attr, None)

        attr_kwargs.update(kwargs)

        if to_parameter or isinstance(self, ParamBase):
            del attr_kwargs['persistable']
            static_var = Parameter(**attr_kwargs)
        else:
            static_var = Variable(**attr_kwargs)
        return static_var

116 117 118 119 120
    # TODO(jiabin): move this to cplusplus end if we find some performance issue on it
    @framework.dygraph_only
    def set_value(self, value):
        """
        **Notes**:
T
tianshuo78520a 已提交
121
            **This API is ONLY available in Dygraph mode**
122 123 124 125 126 127 128 129 130 131 132

        Set a new value for this Variable.

        Args:
            value (Variable|np.ndarray): the new value.

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                from paddle.fluid.dygraph.base import to_variable
133
                from paddle.fluid.dygraph import Linear
134 135
                import numpy as np

136
                data = np.ones([3, 1024], dtype='float32')
137
                with fluid.dygraph.guard():
138
                    linear = fluid.dygraph.Linear(1024, 4)
139
                    t = to_variable(data)
140
                    linear(t)  # call with default weight
141
                    custom_weight = np.random.randn(1024, 4).astype("float32")
142 143
                    linear.weight.set_value(custom_weight)  # change existing weight
                    out = linear(t)  # call with different weight
144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166

        """
        assert isinstance(value, (np.ndarray, core.VarBase)), \
            "Variable set_value function, arguments type only support Variable, numpy, VarBase"

        value_np = value
        if isinstance(value, core.VarBase):
            value_np = value.numpy()

        self_tensor_np = self.numpy()

        assert self_tensor_np.shape == value_np.shape, \
            "Variable Shape not match, Variable [ {} ] need tensor with shape {} but load set tensor with shape {}".format(
                self.name, self_tensor_np.shape, value_np.shape)

        assert self_tensor_np.dtype == value_np.dtype, \
            "Variable dtype not match, Variable [ {} ] need tensor with dtype {}  but load tensor with dtype {}".format(
                self.name, self_tensor_np.dtype, value_np.dtype)

        self.value().get_tensor().set(value_np,
                                      framework._current_expected_place())

    @framework.dygraph_only
167
    def backward(self, grad_tensor=None, retain_graph=False):
168
        """
169
        Run backward of current Graph which starts from current Tensor.
170

171 172 173 174
        The new gradient will accumulat on previous gradient.

        You can clear gradient by ``Tensor.clear_grad()`` .

175
        Args:
176 177 178 179 180
            grad_tensor(Tensor, optional): initial gradient values of the current Tensor. If `grad_tensor` is None, 
            the initial gradient values of the current Tensor would be Tensor filled with 1.0; 
            if `grad_tensor` is not None, it must have the same length as the current Tensor.
            Teh default value is None.

181
            retain_graph(bool, optional): If False, the graph used to compute grads will be freed. If you would
182 183 184
                like to add more ops to the built graph after calling this method( :code:`backward` ), set the parameter
                :code:`retain_graph` to True, then the grads will be retained. Thus, seting it to False is much more memory-efficient.
                Defaults to False.
185 186 187 188 189 190
        Returns:
            NoneType: None

        Examples:
            .. code-block:: python

191
                import paddle
192 193 194 195 196 197 198 199 200 201 202 203 204 205
                x = paddle.to_tensor(5., stop_gradient=False)
                for i in range(5):
                    y = paddle.pow(x, 4.0)
                    y.backward()
                    print("{}: {}".format(i, x.grad))
                # 0: [500.]
                # 1: [1000.]
                # 2: [1500.]
                # 3: [2000.]
                # 4: [2500.]

                x.clear_grad()
                print("{}".format(x.grad))
                # 0.
206

207 208 209 210 211 212 213 214 215 216 217
                grad_tensor=paddle.to_tensor(2.)
                for i in range(5):
                    y = paddle.pow(x, 4.0)
                    y.backward(grad_tensor)
                    print("{}: {}".format(i, x.grad))
                # 0: [1000.]
                # 1: [2000.]
                # 2: [3000.]
                # 3: [4000.]
                # 4: [5000.]

218 219
        """
        if framework.in_dygraph_mode():
220 221 222 223 224 225 226 227
            if grad_tensor is not None:
                assert isinstance(
                    grad_tensor, paddle.
                    Tensor), "The type of grad_tensot must be paddle.Tensor"
                assert grad_tensor.shape == self.shape, \
                    "Tensor shape not match, Tensor of grad_tensor [ {} ] with shape {} mismatch Tensor [ {} ] with shape {}".format(
                    grad_tensor.name, grad_tensor.shape, self.name, self.shape)

228 229
            if paddle.is_compiled_with_xpu():
                # TODO(liuyuhui): Currently only for xpu. Will be removed in the future.
230
                scaled_loss = scale_loss(self)
231 232 233
                core.dygraph_run_backward([scaled_loss], [grad_tensor],
                                          retain_graph,
                                          framework._dygraph_tracer())
234
            else:
235 236
                core.dygraph_run_backward([self], [grad_tensor], retain_graph,
                                          framework._dygraph_tracer())
237 238
        else:
            raise ValueError(
T
tianshuo78520a 已提交
239
                "Variable.backward() is only available in DyGraph mode")
240 241

    @framework.dygraph_only
242 243 244 245
    @deprecated(
        since="2.1.0",
        reason="Please use x.grad, which returns the tensor value of the gradient."
    )
246 247
    def gradient(self):
        """
248 249 250 251
        .. warning::
          This API will be deprecated in the future, it is recommended to use
          :code:`x.grad` which returns the tensor value of the gradient.

252
        Get the Gradient of Current Tensor.
253 254

        Returns:
255
            ndarray: Numpy value of the gradient of current Tensor
256 257 258 259

        Examples:
            .. code-block:: python

260
                import paddle
261

262 263 264
                x = paddle.to_tensor(5., stop_gradient=False)
                y = paddle.pow(x, 4.0)
                y.backward()
265
                print("grad of x: {}".format(x.gradient()))
266
                # [500.]
267 268 269

        """
        if self._grad_ivar() is None:
270 271
            return None

272 273 274 275 276 277 278
        new_ivar = self._grad_ivar()._copy_to(core.CPUPlace(), True)
        if self._grad_ivar().type == core.VarDesc.VarType.SELECTED_ROWS:
            return (np.array(new_ivar.value().get_selected_rows().get_tensor()),
                    np.array(new_ivar.value().get_selected_rows().rows()))
        else:
            return np.array(new_ivar.value().get_tensor())

279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345
    @framework.dygraph_only
    def register_hook(self, hook):
        """
        Registers a backward hook for current Tensor.

        The hook will be called every time the gradient Tensor of current Tensor is computed.

        The hook should not modify the input gradient Tensor, but it can optionally return
        a new gradient Tensor which will be used in place of current Tensor's gradient.

        The hook should have the following signature:

            hook(grad) -> Tensor or None

        Args:
            hook(function): A backward hook to be registered for Tensor.grad

        Returns:
            TensorHookRemoveHelper: A helper object that can be used to remove the registered hook by calling `remove()` method.

        Examples:
            .. code-block:: python

                import paddle

                # hook function return None
                def print_hook_fn(grad):
                    print(grad)

                # hook function return Tensor
                def double_hook_fn(grad):
                    grad = grad * 2
                    return grad

                x = paddle.to_tensor([0., 1., 2., 3.], stop_gradient=False)
                y = paddle.to_tensor([4., 5., 6., 7.], stop_gradient=False)
                z = paddle.to_tensor([1., 2., 3., 4.])

                # one Tensor can register multiple hooks
                h = x.register_hook(print_hook_fn)
                x.register_hook(double_hook_fn)

                w = x + y
                # register hook by lambda function
                w.register_hook(lambda grad: grad * 2)

                o = z.matmul(w)
                o.backward()
                # print_hook_fn print content in backward
                # Tensor(shape=[4], dtype=float32, place=CUDAPlace(0), stop_gradient=False,
                #        [2., 4., 6., 8.])

                print("w.grad:", w.grad) # w.grad: [1. 2. 3. 4.]
                print("x.grad:", x.grad) # x.grad: [ 4.  8. 12. 16.]
                print("y.grad:", y.grad) # y.grad: [2. 4. 6. 8.]

                # remove hook
                h.remove()
        """
        if self.stop_gradient is True:
            raise RuntimeError(
                "Cannot register hook on a tensor that stop gradient.")

        hook_id = self._register_grad_hook(hook)
        helper = TensorHookRemoveHelper(self, hook_id)
        return helper

346 347 348
    @property
    def grad(self):
        """
349 350 351 352 353 354 355 356 357 358 359 360 361
        .. warning::
          This API will return the tensor value of the gradient. If you want 
          to get the numpy value of the gradient, you can use :code:`x.grad.numpy()`.

        Get the Gradient of Current Tensor.

        Returns:
            Tensor: the gradient of current Tensor

        Examples:
            .. code-block:: python

                import paddle
362

363 364 365 366 367 368 369 370
                x = paddle.to_tensor(5., stop_gradient=False)
                y = paddle.pow(x, 4.0)
                y.backward()
                print("grad of x: {}".format(x.grad))
                # Tensor(shape=[1], dtype=float32, place=CUDAPlace(0), stop_gradient=False, [500.])

        """
        return self._grad_ivar()
371

372 373 374 375 376 377
    def clear_grad(self):
        """
        The alias of clear_gradient().
        """
        self.clear_gradient()

378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398
    @property
    def inplace_version(self):
        """
        The inplace version of current Tensor.
        The version number is incremented whenever the current Tensor is modified through an inplace operation.

        **Notes: This is a read-only property**

        Examples:
          .. code-block:: python

            import paddle
            var = paddle.ones(shape=[4, 2, 3], dtype="float32")
            print(var.inplace_version)  # 0

            var[1] = 2.2
            print(var.inplace_version)  # 1

        """
        return self._inplace_version()

399 400
    def __str__(self):
        """
401
        Convert a VarBase object to a readable string.
402

403
        Returns(str): A readable string.
404 405 406 407

        Examples:
            .. code-block:: python

408
                import paddle
409
                x = paddle.rand([2, 5])
410
                print(x)
411 412 413 414
                
                # Tensor(shape=[2, 5], dtype=float32, place=CPUPlace,
                #        [[0.30574632, 0.55739117, 0.30902600, 0.39413780, 0.44830436],
                #         [0.79010487, 0.53972793, 0.09495186, 0.44267157, 0.72112119]])
415
        """
416 417
        from paddle.tensor.to_string import to_string
        return to_string(self)
418

419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449
    def __deepcopy__(self, memo):
        """
        Deep copy Tensor, it will always performs Tensor copy.

        Examples:
            .. code-block:: python

                import paddle
                import copy
                x = paddle.to_tensor(2.)
                y = copy.deepcopy(x)
                
                print(x)
                # Tensor(shape=[1], dtype=float32, place=CPUPlace, stop_gradient=True,
                #        [2.])

                print(y)
                # Tensor(shape=[1], dtype=float32, place=CPUPlace, stop_gradient=True,
                #        [2.])

        """
        if not self.is_leaf:
            raise RuntimeError(
                "Only Leaf Tensor support the deepcopy at the moment, non-Leaf Tensors contains graph information that does't support deepcopy"
            )
        new_varbase = core.VarBase()
        new_varbase.name = self.name + unique_name.generate("_deepcopy")
        memo[id(self)] = new_varbase
        new_varbase.copy_(self, True)
        return new_varbase

450 451 452
    @property
    def block(self):
        return framework.default_main_program().global_block()
453

454 455 456 457 458 459 460 461 462 463
    def __nonzero__(self):
        numel = np.prod(self.shape)
        assert numel == 1, "When Variable is used as the condition of if/while , Variable can only contain one element."
        tensor = self.value().get_tensor()
        assert tensor._is_initialized(), "tensor not initialized"
        return bool(np.all(tensor.__array__() > 0))

    def __bool__(self):
        return self.__nonzero__()

464 465 466
    def __array__(self, dtype=None):
        return self.numpy().astype(dtype)

467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491
    def __getitem__(self, item):
        def contain_tensor(item):
            if not isinstance(item, tuple):
                item = [item]

            for slice_item in item:
                if isinstance(slice_item, slice):
                    if isinstance(slice_item.start, Variable)  \
                        or isinstance(slice_item.stop, Variable) \
                           or isinstance(slice_item.step, Variable):
                        return True
                else:
                    if isinstance(slice_item, Variable):
                        return True
            return False

        if contain_tensor(item):
            # 1. Call _getitem_impl_ when item contains tensor.
            # Why not call a c++ function ? Because item can't be parsed when it contains tensor.
            return _getitem_impl_(self, item)

        else:
            # 2. Call c++ func getitem_index_not_tensor to speedup.
            return self._getitem_index_not_tensor(item)

492 493
    for method_name, method in (
        ("__bool__", __bool__), ("__nonzero__", __nonzero__),
494
        ("_to_static_var", _to_static_var), ("set_value", set_value),
495 496
        ("block", block), ("backward", backward), ("clear_grad", clear_grad),
        ("inplace_version", inplace_version), ("grad", grad),
497 498
        ("gradient", gradient), ("register_hook", register_hook),
        ("__str__", __str__), ("__repr__", __str__),
499
        ("__deepcopy__", __deepcopy__), ("__module__", "paddle"),
500 501
        ("__name__", "Tensor"), ("__array__", __array__),
        ("__getitem__", __getitem__)):
502
        setattr(core.VarBase, method_name, method)
503

L
Leo Chen 已提交
504 505 506 507 508 509 510 511 512 513 514 515 516 517 518
    # NOTE(zhiqiu): pybind11 will set a default __str__ method of enum class.
    # So, we need to overwrite it to a more readable one.
    # See details in https://github.com/pybind/pybind11/issues/2537.
    origin = getattr(core.VarDesc.VarType, "__repr__")

    def dtype_str(dtype):
        if dtype in _PADDLE_DTYPE_2_NUMPY_DTYPE:
            prefix = 'paddle.'
            return prefix + _PADDLE_DTYPE_2_NUMPY_DTYPE[dtype]
        else:
            # for example, paddle.fluid.core.VarDesc.VarType.LOD_TENSOR
            return origin(dtype)

    setattr(core.VarDesc.VarType, "__repr__", dtype_str)

519 520
    # patch math methods for varbase
    monkey_patch_math_varbase()