nce_op.cc 13.8 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
W
wanghaoshuang 已提交
2

W
wanghaoshuang 已提交
3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
W
wanghaoshuang 已提交
6

W
wanghaoshuang 已提交
7
    http://www.apache.org/licenses/LICENSE-2.0
W
wanghaoshuang 已提交
8

W
wanghaoshuang 已提交
9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
W
wanghaoshuang 已提交
14

Y
Yi Wang 已提交
15
#include "paddle/fluid/operators/nce_op.h"
W
wanghaoshuang 已提交
16

17
#include <memory>
18
#include <string>
Y
Yang Yang 已提交
19 20
#include <vector>

W
wanghaoshuang 已提交
21 22 23 24 25 26 27 28 29
namespace paddle {
namespace operators {

using framework::Tensor;

class NCEOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

30
  void InferShape(framework::InferShapeContext *ctx) const override {
31 32 33 34 35 36 37 38 39
    OP_INOUT_CHECK(ctx->HasInput("Input"), "Input", "Input", "nce");
    OP_INOUT_CHECK(ctx->HasInput("Label"), "Input", "Label", "nce");
    OP_INOUT_CHECK(ctx->HasInput("Weight"), "Input", "Weight", "nce");

    OP_INOUT_CHECK(ctx->HasOutput("Cost"), "Output", "Cost", "nce");
    OP_INOUT_CHECK(ctx->HasOutput("SampleLogits"), "Output", "SampleLogits",
                   "nce");
    OP_INOUT_CHECK(ctx->HasOutput("SampleLabels"), "Output", "SampleLabels",
                   "nce");
W
wanghaoshuang 已提交
40

W
wanghaoshuang 已提交
41
    auto x_dims = ctx->GetInputDim("Input");
W
wanghaoshuang 已提交
42
    auto label_dims = ctx->GetInputDim("Label");
43
    if (ctx->IsRuntime() || (x_dims[0] > 0 && label_dims[0] > 0)) {
44 45
      PADDLE_ENFORCE_EQ(
          x_dims[0], label_dims[0],
46 47 48 49 50 51
          platform::errors::InvalidArgument(
              "The first dimension of Input(Input) and Input(Label) should be "
              "equal in runtime. But received: Input(Input)'s shape = [%s] "
              "with 1st dim =  %d, Input(Label)'s shape = [%s] with 1st dim = "
              "%d.",
              x_dims, x_dims[0], label_dims, label_dims[0]));
52
    }
W
wanghaoshuang 已提交
53 54
    int num_true_classes = label_dims.size() == 2 ? label_dims[1] : 1;
    if (ctx->HasInput("Bias")) {
55 56
      PADDLE_ENFORCE_EQ(
          ctx->GetInputDim("Weight")[0], ctx->GetInputDim("Bias")[0],
57 58 59 60 61 62 63
          platform::errors::InvalidArgument(
              "The first dimension of Input(Weight) and Input(Bias) "
              "should be equal. But received: Input(Weight)'s shape = [%s] "
              "with 1st dim = %d, and Input(Bias)'s shape = [%s] with 1st dim "
              "= %d.",
              ctx->GetInputDim("Weight"), ctx->GetInputDim("Weight")[0],
              ctx->GetInputDim("Bias"), ctx->GetInputDim("Bias")[0]));
W
wanghaoshuang 已提交
64
    }
W
wanghaoshuang 已提交
65 66
    auto num_neg_samples = ctx->Attrs().Get<int>("num_neg_samples");
    auto num_total_classes = ctx->Attrs().Get<int>("num_total_classes");
W
wanghaoshuang 已提交
67 68
    std::vector<int> custom_neg_classes =
        ctx->Attrs().Get<std::vector<int>>("custom_neg_classes");
69 70
    PADDLE_ENFORCE_EQ(
        num_total_classes, ctx->GetInputDim("Weight")[0],
71 72 73 74 75 76
        platform::errors::InvalidArgument(
            "The number of total classes should be equal to the first "
            "dimension of Input(Weight). But received: Attr(num_total_classes) "
            "= %d, Input(Weight)'s shape = [%s] with 1st dim = %d.",
            num_total_classes, ctx->GetInputDim("Weight"),
            ctx->GetInputDim("Weight")[0]));
W
wanghaoshuang 已提交
77
    if (custom_neg_classes.size() > 0) {
78 79
      PADDLE_ENFORCE_EQ(
          custom_neg_classes.size(), static_cast<size_t>(num_neg_samples),
80 81 82 83 84
          platform::errors::InvalidArgument(
              "The size of Attr(custom_neg_classes) should be equal "
              "to the number of negative samples. But received: "
              "custom_neg_classes.size() = %d, num_neg_samples = %d.",
              custom_neg_classes.size(), num_neg_samples));
W
wanghaoshuang 已提交
85
    }
W
wanghaoshuang 已提交
86
    // set dims of output(Out)
W
wanghaoshuang 已提交
87
    std::vector<int64_t> out_dims;
W
wanghaoshuang 已提交
88
    out_dims.push_back(x_dims[0]);
W
wanghaoshuang 已提交
89
    out_dims.push_back(1);
W
wanghaoshuang 已提交
90
    ctx->SetOutputDim("Cost", framework::make_ddim(out_dims));
W
wanghaoshuang 已提交
91 92

    // set dims of output(SampleOut)
W
wanghaoshuang 已提交
93
    std::vector<int64_t> sample_out_dims;
W
wanghaoshuang 已提交
94
    sample_out_dims.push_back(x_dims[0]);
95 96
    sample_out_dims.push_back(
        (num_true_classes == -1) ? -1 : (num_neg_samples + num_true_classes));
W
wanghaoshuang 已提交
97 98 99
    ctx->SetOutputDim("SampleLogits", framework::make_ddim(sample_out_dims));
    ctx->SetOutputDim("SampleLabels", framework::make_ddim(sample_out_dims));
  }
W
wanghaoshuang 已提交
100 101

 protected:
102
  framework::OpKernelType GetExpectedKernelType(
103
      const framework::ExecutionContext &ctx) const override {
104 105 106
    return framework::OpKernelType(
        OperatorWithKernel::IndicateVarDataType(ctx, "Input"),
        platform::CPUPlace());
W
wanghaoshuang 已提交
107
  }
W
wanghaoshuang 已提交
108 109 110 111
};

class NCEOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
Y
Yu Yang 已提交
112
  void Make() override {
W
wanghaoshuang 已提交
113
    AddInput("Input", "(Tensor) A tensor of shape [batch_size, dim].");
W
wanghaoshuang 已提交
114 115 116 117 118 119 120 121
    AddInput(
        "Label",
        "(Tensor) A tensor of shape [batch_size, num_true_class]. "
        "'num_true_class' is the number of target classes in each sample."
        "The number of target classes per sample should be same. "
        "If you have a variable number of target classes, "
        "you can pad them out to a constant number by either repeating them"
        " or by padding with an otherwise unused class.)");
W
wanghaoshuang 已提交
122 123 124
    AddInput("Weight",
             "(Tensor) A tensor of shape [num_class, dim]. 'num_class' is the "
             "total number of class.");
W
wanghaoshuang 已提交
125 126 127 128
    AddInput(
        "Bias",
        "(Tensor) A tensor of shape [num_class, 1]. 'num_class' is the total "
        "number of class. It is a dispensable input.")
W
wanghaoshuang 已提交
129 130
        .AsDispensable();
    AddInput("SampleWeight",
W
wanghaoshuang 已提交
131
             "(Tensor) A tensor of shape [batch_size, 1] storing a weight for "
W
wanghaoshuang 已提交
132 133 134
             "each sample. And it is a dispensable input. The default value of "
             "sample is 1.")
        .AsDispensable();
135 136

    AddInput(
137
        "CustomDistProbs",
138 139
        "(Tensor) It is used in 'CostumDist' sampler. "
        "It is a tensor with shape [num_total_classes]."
T
tianshuo78520a 已提交
140
        "The i-th element is the probability of the i-th class being sampled.")
141
        .AsDispensable();
142 143 144 145
    AddInput(
        "CustomDistAlias",
        "(Tensor) It is used in 'CostumDist' sampler. "
        "It is a tensor with shape [num_total_classes]."
T
tianshuo78520a 已提交
146
        "The i-th element is the probability of the i-th class being sampled.")
147 148 149 150 151
        .AsDispensable();
    AddInput(
        "CustomDistAliasProbs",
        "(Tensor) It is used in 'CostumDist' sampler. "
        "It is a tensor with shape [num_total_classes]."
T
tianshuo78520a 已提交
152
        "The i-th element is the probability of the i-th class being sampled.")
153 154
        .AsDispensable();

W
wanghaoshuang 已提交
155
    AddOutput("Cost",
W
wanghaoshuang 已提交
156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172
              "(Tensor) A tensor of shape [batch_size, 1]. Cost of samples.");
    AddOutput("SampleLogits",
              "An intermediate tensor of shape[batch_size, num_neg_samples + "
              "num_pos_samples]."
              "This tensor is output of forward kernel and used in backward "
              "kernel to compute grads."
              "Given X is  the dot product of input tensor and sampled labels' "
              "weights."
              "Then 'SampleLogits' is sigmoid(X).")
        .AsIntermediate();
    AddOutput("SampleLabels",
              "An intermediate tensor of shape[batch_size, num_neg_samples + "
              "num_pos_samples]."
              "This tensor is output of forward kernel and used in backward "
              "kernel to compute grads."
              "")
        .AsIntermediate();
173

W
wanghaoshuang 已提交
174 175 176 177
    AddAttr<int>("num_total_classes",
                 "Total number of classes in all samples.");
    AddAttr<int>("num_neg_samples",
                 "The number of negative classes. The default value is 10.")
W
wanghaoshuang 已提交
178
        .SetDefault(10);
179 180 181 182 183 184 185 186
    AddAttr<int>("sampler",
                 "(int) Which sampler to be used to sample negative class."
                 "0: Uniform; 1: LogUniform; 2: CostumDist.")
        .SetDefault(0);
    AddAttr<int>("seed",
                 "(int) The seed used in sampler. If it is 0, "
                 "the sampler will generate a seed randomly.")
        .SetDefault(0);
187 188
    AddAttr<bool>("is_sparse", "(boolean, default false) Sparse update.")
        .SetDefault(false);
189

T
tangwei12 已提交
190 191 192
    // for parameter prefetch
    AddAttr<bool>("remote_prefetch", "").SetDefault(false);
    AddAttr<int>("trainer_id", "trainer id from 0 ~ worker_num.").SetDefault(0);
Q
Qiao Longfei 已提交
193 194 195
    AddAttr<std::vector<int64_t>>("height_sections",
                                  "Height for each output SelectedRows.")
        .SetDefault(std::vector<int64_t>({}));
T
tangwei12 已提交
196 197 198 199 200 201 202
    AddAttr<std::vector<std::string>>(
        "epmap",
        "(string vector, default 127.0.0.1:6164)"
        "Server endpoints in the order of input variables for mapping")
        .SetDefault({});
    AddAttr<std::vector<std::string>>(
        "table_names",
T
tianshuo78520a 已提交
203
        "(string vector, the split table names that will be fetched from "
T
tangwei12 已提交
204 205 206 207
        "parameter server)"
        "in the order of input variables for mapping")
        .SetDefault({});

W
wanghaoshuang 已提交
208 209 210 211
    AddAttr<std::vector<int>>("custom_neg_classes",
                              "This attribute only be used in unitest. Classes "
                              "in this list wiil be used as negative classes "
                              "for every samples. Under normal conditions, "
Y
Yang Yu 已提交
212 213
                              "user should avoid setting this attribute.")
        .SetDefault({});
W
wanghaoshuang 已提交
214
    AddComment(R"DOC(
M
minqiyang 已提交
215 216 217
Compute and return the noise-contrastive estimation training loss. See
`Noise-contrastive estimation: A new estimation principle for unnormalized
statistical models
Y
Yibing Liu 已提交
218
 <http://www.jmlr.org/proceedings/papers/v9/gutmann10a/gutmann10a.pdf>`_.
W
wanghaoshuang 已提交
219
By default this operator uses a uniform distribution for sampling.
W
wanghaoshuang 已提交
220 221 222 223
)DOC");
  }
};

224 225 226 227
template <typename T>
class NCEGradOpMaker : public framework::SingleGradOpMaker<T> {
 public:
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;
228
  void Apply(GradOpPtr<T> op) const override {
229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247
    op->SetType(this->ForwardOpType() + "_grad");
    op->SetInput("Input", this->Input("Input"));
    op->SetInput("Label", this->Input("Label"));
    op->SetInput("Bias", this->Input("Bias"));
    op->SetInput("Weight", this->Input("Weight"));
    op->SetInput("SampleLogits", this->Output("SampleLogits"));
    op->SetInput("SampleLabels", this->Output("SampleLabels"));
    op->SetInput("SampleWeight", this->Input("SampleWeight"));
    op->SetInput("CustomDistProbs", this->Input("CustomDistProbs"));
    op->SetInput("CustomDistAlias", this->Input("CustomDistAlias"));
    op->SetInput("CustomDistAliasProbs", this->Input("CustomDistAliasProbs"));
    op->SetInput(framework::GradVarName("Cost"), this->OutputGrad("Cost"));
    op->SetOutput(framework::GradVarName("Input"), this->InputGrad("Input"));
    op->SetOutput(framework::GradVarName("Bias"), this->InputGrad("Bias"));
    op->SetOutput(framework::GradVarName("Weight"), this->InputGrad("Weight"));
    op->SetAttrMap(this->Attrs());
  }
};

W
wanghaoshuang 已提交
248 249 250 251
class NCEOpGrad : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

252
  void InferShape(framework::InferShapeContext *ctx) const override {
253 254 255 256 257 258 259 260
    OP_INOUT_CHECK(ctx->HasInput("Input"), "Input", "Input", "nce_grad");
    OP_INOUT_CHECK(ctx->HasInput("Weight"), "Input", "Weight", "nce_grad");
    OP_INOUT_CHECK(ctx->HasInput("SampleLogits"), "Input", "SampleLogits",
                   "nce_grad");
    OP_INOUT_CHECK(ctx->HasInput("SampleLabels"), "Input", "SampleLabels",
                   "nce_grad");
    OP_INOUT_CHECK(ctx->HasInput(framework::GradVarName("Cost")), "Input",
                   framework::GradVarName("Cost"), "nce_grad");
W
wanghaoshuang 已提交
261

W
wanghaoshuang 已提交
262 263
    auto x_dims = ctx->GetInputDim("Input");
    auto x_grad_name = framework::GradVarName("Input");
W
wanghaoshuang 已提交
264 265 266 267
    if (ctx->HasOutput(x_grad_name)) {
      ctx->SetOutputDim(x_grad_name, x_dims);
    }

W
wanghaoshuang 已提交
268 269
    auto w_dims = ctx->GetInputDim("Weight");
    auto w_grad_name = framework::GradVarName("Weight");
W
wanghaoshuang 已提交
270 271 272 273
    if (ctx->HasOutput(w_grad_name)) {
      ctx->SetOutputDim(w_grad_name, w_dims);
    }

W
wanghaoshuang 已提交
274
    auto bias_grad_name = framework::GradVarName("Bias");
W
wanghaoshuang 已提交
275
    if (ctx->HasOutput(bias_grad_name)) {
W
wanghaoshuang 已提交
276
      auto bias_dims = ctx->GetInputDim("Bias");
W
wanghaoshuang 已提交
277 278 279
      ctx->SetOutputDim(bias_grad_name, bias_dims);
    }
  }
W
wanghaoshuang 已提交
280 281

 protected:
282
  framework::OpKernelType GetExpectedKernelType(
283
      const framework::ExecutionContext &ctx) const override {
284 285 286
    return framework::OpKernelType(
        OperatorWithKernel::IndicateVarDataType(ctx, "Input"),
        platform::CPUPlace());
W
wanghaoshuang 已提交
287
  }
W
wanghaoshuang 已提交
288 289
};

290 291
class NCEOpGradVarTypeInference : public framework::VarTypeInference {
 public:
M
minqiyang 已提交
292
  void operator()(framework::InferVarTypeContext *ctx) const override {
293
    auto weight_grad = framework::GradVarName("Weight");
294

M
minqiyang 已提交
295
    auto attr = ctx->GetAttr("is_sparse");
296 297
    bool is_sparse = boost::get<bool>(attr);
    if (is_sparse) {
298
      VLOG(3) << "nce_op_grad op " << weight_grad << " and "
M
minqiyang 已提交
299
              << " is set to SelectedRows";
300
      ctx->SetOutputType(weight_grad, framework::proto::VarType::SELECTED_ROWS);
301
    } else {
302
      VLOG(3) << "nce_op_grad op " << weight_grad << " and "
M
minqiyang 已提交
303
              << " is set to LoDTensor";
304
      ctx->SetOutputType(weight_grad, framework::proto::VarType::LOD_TENSOR);
305
    }
306
    ctx->SetOutputDataType(weight_grad, ctx->GetInputDataType("Input"));
307 308 309
  }
};

310
DECLARE_NO_NEED_BUFFER_VARS_INFERER(NCEGradOpNoNeedBufferVarInference, "Bias");
311

W
wanghaoshuang 已提交
312 313 314 315
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
316 317 318
REGISTER_OPERATOR(nce, ops::NCEOp, ops::NCEOpMaker,
                  ops::NCEGradOpMaker<paddle::framework::OpDesc>,
                  ops::NCEGradOpMaker<paddle::imperative::OpBase>);
319 320
REGISTER_OPERATOR(nce_grad, ops::NCEOpGrad, ops::NCEOpGradVarTypeInference,
                  ops::NCEGradOpNoNeedBufferVarInference);
W
wanghaoshuang 已提交
321 322
REGISTER_OP_CPU_KERNEL(nce, ops::NCEKernel<paddle::platform::CPUPlace, float>,
                       ops::NCEKernel<paddle::platform::CPUPlace, double>);
W
wanghaoshuang 已提交
323
REGISTER_OP_CPU_KERNEL(nce_grad,
W
wanghaoshuang 已提交
324 325
                       ops::NCEGradKernel<paddle::platform::CPUPlace, float>,
                       ops::NCEGradKernel<paddle::platform::CPUPlace, double>);