nce_op.cc 10.7 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
W
wanghaoshuang 已提交
2

W
wanghaoshuang 已提交
3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
W
wanghaoshuang 已提交
6

W
wanghaoshuang 已提交
7
    http://www.apache.org/licenses/LICENSE-2.0
W
wanghaoshuang 已提交
8

W
wanghaoshuang 已提交
9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
W
wanghaoshuang 已提交
14

Y
Yi Wang 已提交
15
#include "paddle/fluid/operators/nce_op.h"
W
wanghaoshuang 已提交
16

17
#include <string>
Y
Yang Yang 已提交
18 19
#include <vector>

W
wanghaoshuang 已提交
20 21 22 23 24 25 26 27 28
namespace paddle {
namespace operators {

using framework::Tensor;

class NCEOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

29
  void InferShape(framework::InferShapeContext *ctx) const override {
W
wanghaoshuang 已提交
30
    PADDLE_ENFORCE(ctx->HasInput("Input"));
W
wanghaoshuang 已提交
31
    PADDLE_ENFORCE(ctx->HasInput("Label"));
W
wanghaoshuang 已提交
32 33
    PADDLE_ENFORCE(ctx->HasInput("Weight"));
    PADDLE_ENFORCE(ctx->HasOutput("Cost"));
W
wanghaoshuang 已提交
34 35 36
    PADDLE_ENFORCE(ctx->HasOutput("SampleLogits"));
    PADDLE_ENFORCE(ctx->HasOutput("SampleLabels"));

W
wanghaoshuang 已提交
37
    auto x_dims = ctx->GetInputDim("Input");
W
wanghaoshuang 已提交
38
    auto label_dims = ctx->GetInputDim("Label");
39 40 41
    if (ctx->IsRuntime() || (x_dims[0] > 0 && label_dims[0] > 0)) {
      PADDLE_ENFORCE_EQ(x_dims[0], label_dims[0]);
    }
W
wanghaoshuang 已提交
42 43 44 45
    int num_true_classes = label_dims.size() == 2 ? label_dims[1] : 1;
    if (ctx->HasInput("Bias")) {
      PADDLE_ENFORCE_EQ(ctx->GetInputDim("Weight")[0],
                        ctx->GetInputDim("Bias")[0]);
W
wanghaoshuang 已提交
46
    }
W
wanghaoshuang 已提交
47 48
    auto num_neg_samples = ctx->Attrs().Get<int>("num_neg_samples");
    auto num_total_classes = ctx->Attrs().Get<int>("num_total_classes");
W
wanghaoshuang 已提交
49 50
    std::vector<int> custom_neg_classes =
        ctx->Attrs().Get<std::vector<int>>("custom_neg_classes");
W
wanghaoshuang 已提交
51
    PADDLE_ENFORCE_EQ(num_total_classes, ctx->GetInputDim("Weight")[0]);
W
wanghaoshuang 已提交
52 53
    if (custom_neg_classes.size() > 0) {
      PADDLE_ENFORCE_EQ(custom_neg_classes.size(),
W
wanghaoshuang 已提交
54
                        static_cast<size_t>(num_neg_samples));
W
wanghaoshuang 已提交
55
    }
W
wanghaoshuang 已提交
56
    // set dims of output(Out)
W
wanghaoshuang 已提交
57
    std::vector<int64_t> out_dims;
W
wanghaoshuang 已提交
58
    out_dims.push_back(x_dims[0]);
W
wanghaoshuang 已提交
59
    out_dims.push_back(1);
W
wanghaoshuang 已提交
60
    ctx->SetOutputDim("Cost", framework::make_ddim(out_dims));
W
wanghaoshuang 已提交
61 62

    // set dims of output(SampleOut)
W
wanghaoshuang 已提交
63
    std::vector<int64_t> sample_out_dims;
W
wanghaoshuang 已提交
64
    sample_out_dims.push_back(x_dims[0]);
65 66
    sample_out_dims.push_back(
        (num_true_classes == -1) ? -1 : (num_neg_samples + num_true_classes));
W
wanghaoshuang 已提交
67 68 69
    ctx->SetOutputDim("SampleLogits", framework::make_ddim(sample_out_dims));
    ctx->SetOutputDim("SampleLabels", framework::make_ddim(sample_out_dims));
  }
W
wanghaoshuang 已提交
70 71

 protected:
72
  framework::OpKernelType GetExpectedKernelType(
73
      const framework::ExecutionContext &ctx) const override {
Y
Yu Yang 已提交
74 75
    return framework::OpKernelType(ctx.Input<Tensor>("Input")->type(),
                                   platform::CPUPlace());
W
wanghaoshuang 已提交
76
  }
W
wanghaoshuang 已提交
77 78 79 80
};

class NCEOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
Y
Yu Yang 已提交
81
  void Make() override {
W
wanghaoshuang 已提交
82
    AddInput("Input", "(Tensor) A tensor of shape [batch_size, dim].");
W
wanghaoshuang 已提交
83 84 85 86 87 88 89 90
    AddInput(
        "Label",
        "(Tensor) A tensor of shape [batch_size, num_true_class]. "
        "'num_true_class' is the number of target classes in each sample."
        "The number of target classes per sample should be same. "
        "If you have a variable number of target classes, "
        "you can pad them out to a constant number by either repeating them"
        " or by padding with an otherwise unused class.)");
W
wanghaoshuang 已提交
91 92 93
    AddInput("Weight",
             "(Tensor) A tensor of shape [num_class, dim]. 'num_class' is the "
             "total number of class.");
W
wanghaoshuang 已提交
94 95 96 97
    AddInput(
        "Bias",
        "(Tensor) A tensor of shape [num_class, 1]. 'num_class' is the total "
        "number of class. It is a dispensable input.")
W
wanghaoshuang 已提交
98 99
        .AsDispensable();
    AddInput("SampleWeight",
W
wanghaoshuang 已提交
100
             "(Tensor) A tensor of shape [batch_size, 1] storing a weight for "
W
wanghaoshuang 已提交
101 102 103
             "each sample. And it is a dispensable input. The default value of "
             "sample is 1.")
        .AsDispensable();
104 105

    AddInput(
106
        "CustomDistProbs",
107 108 109 110
        "(Tensor) It is used in 'CostumDist' sampler. "
        "It is a tensor with shape [num_total_classes]."
        "The i-th element is the probsbility of the i-th class being sampled.")
        .AsDispensable();
111 112 113 114 115 116 117 118 119 120 121 122 123
    AddInput(
        "CustomDistAlias",
        "(Tensor) It is used in 'CostumDist' sampler. "
        "It is a tensor with shape [num_total_classes]."
        "The i-th element is the probsbility of the i-th class being sampled.")
        .AsDispensable();
    AddInput(
        "CustomDistAliasProbs",
        "(Tensor) It is used in 'CostumDist' sampler. "
        "It is a tensor with shape [num_total_classes]."
        "The i-th element is the probsbility of the i-th class being sampled.")
        .AsDispensable();

W
wanghaoshuang 已提交
124
    AddOutput("Cost",
W
wanghaoshuang 已提交
125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141
              "(Tensor) A tensor of shape [batch_size, 1]. Cost of samples.");
    AddOutput("SampleLogits",
              "An intermediate tensor of shape[batch_size, num_neg_samples + "
              "num_pos_samples]."
              "This tensor is output of forward kernel and used in backward "
              "kernel to compute grads."
              "Given X is  the dot product of input tensor and sampled labels' "
              "weights."
              "Then 'SampleLogits' is sigmoid(X).")
        .AsIntermediate();
    AddOutput("SampleLabels",
              "An intermediate tensor of shape[batch_size, num_neg_samples + "
              "num_pos_samples]."
              "This tensor is output of forward kernel and used in backward "
              "kernel to compute grads."
              "")
        .AsIntermediate();
142

W
wanghaoshuang 已提交
143 144 145 146
    AddAttr<int>("num_total_classes",
                 "Total number of classes in all samples.");
    AddAttr<int>("num_neg_samples",
                 "The number of negative classes. The default value is 10.")
W
wanghaoshuang 已提交
147
        .SetDefault(10);
148 149 150 151 152 153 154 155
    AddAttr<int>("sampler",
                 "(int) Which sampler to be used to sample negative class."
                 "0: Uniform; 1: LogUniform; 2: CostumDist.")
        .SetDefault(0);
    AddAttr<int>("seed",
                 "(int) The seed used in sampler. If it is 0, "
                 "the sampler will generate a seed randomly.")
        .SetDefault(0);
156 157
    AddAttr<bool>("is_sparse", "(boolean, default false) Sparse update.")
        .SetDefault(false);
158

T
tangwei12 已提交
159 160 161
    // for parameter prefetch
    AddAttr<bool>("remote_prefetch", "").SetDefault(false);
    AddAttr<int>("trainer_id", "trainer id from 0 ~ worker_num.").SetDefault(0);
Q
Qiao Longfei 已提交
162 163 164
    AddAttr<std::vector<int64_t>>("height_sections",
                                  "Height for each output SelectedRows.")
        .SetDefault(std::vector<int64_t>({}));
T
tangwei12 已提交
165 166 167 168 169 170 171 172 173 174 175 176
    AddAttr<std::vector<std::string>>(
        "epmap",
        "(string vector, default 127.0.0.1:6164)"
        "Server endpoints in the order of input variables for mapping")
        .SetDefault({});
    AddAttr<std::vector<std::string>>(
        "table_names",
        "(string vector, the splited table names that will be fetched from "
        "parameter server)"
        "in the order of input variables for mapping")
        .SetDefault({});

W
wanghaoshuang 已提交
177 178 179 180
    AddAttr<std::vector<int>>("custom_neg_classes",
                              "This attribute only be used in unitest. Classes "
                              "in this list wiil be used as negative classes "
                              "for every samples. Under normal conditions, "
Y
Yang Yu 已提交
181 182
                              "user should avoid setting this attribute.")
        .SetDefault({});
W
wanghaoshuang 已提交
183
    AddComment(R"DOC(
M
minqiyang 已提交
184 185 186
Compute and return the noise-contrastive estimation training loss. See
`Noise-contrastive estimation: A new estimation principle for unnormalized
statistical models
Y
Yibing Liu 已提交
187
 <http://www.jmlr.org/proceedings/papers/v9/gutmann10a/gutmann10a.pdf>`_.
W
wanghaoshuang 已提交
188
By default this operator uses a uniform distribution for sampling.
W
wanghaoshuang 已提交
189 190 191 192 193 194 195 196
)DOC");
  }
};

class NCEOpGrad : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

197
  void InferShape(framework::InferShapeContext *ctx) const override {
W
wanghaoshuang 已提交
198 199 200 201 202 203
    PADDLE_ENFORCE(ctx->HasInput("Input"));
    PADDLE_ENFORCE(ctx->HasInput("Weight"));
    PADDLE_ENFORCE(ctx->HasInput("Cost"));
    PADDLE_ENFORCE(ctx->HasInput("SampleLogits"));
    PADDLE_ENFORCE(ctx->HasInput("SampleLabels"));
    PADDLE_ENFORCE(ctx->HasInput(framework::GradVarName("Cost")),
W
wanghaoshuang 已提交
204
                   "The input(Out@GRAD) should not be null.");
W
wanghaoshuang 已提交
205

W
wanghaoshuang 已提交
206 207
    auto x_dims = ctx->GetInputDim("Input");
    auto x_grad_name = framework::GradVarName("Input");
W
wanghaoshuang 已提交
208 209 210 211
    if (ctx->HasOutput(x_grad_name)) {
      ctx->SetOutputDim(x_grad_name, x_dims);
    }

W
wanghaoshuang 已提交
212 213
    auto w_dims = ctx->GetInputDim("Weight");
    auto w_grad_name = framework::GradVarName("Weight");
W
wanghaoshuang 已提交
214 215 216 217
    if (ctx->HasOutput(w_grad_name)) {
      ctx->SetOutputDim(w_grad_name, w_dims);
    }

W
wanghaoshuang 已提交
218
    auto bias_grad_name = framework::GradVarName("Bias");
W
wanghaoshuang 已提交
219
    if (ctx->HasOutput(bias_grad_name)) {
W
wanghaoshuang 已提交
220
      auto bias_dims = ctx->GetInputDim("Bias");
W
wanghaoshuang 已提交
221 222 223
      ctx->SetOutputDim(bias_grad_name, bias_dims);
    }
  }
W
wanghaoshuang 已提交
224 225

 protected:
226
  framework::OpKernelType GetExpectedKernelType(
227
      const framework::ExecutionContext &ctx) const override {
Y
Yu Yang 已提交
228 229
    return framework::OpKernelType(ctx.Input<Tensor>("Input")->type(),
                                   platform::CPUPlace());
W
wanghaoshuang 已提交
230
  }
W
wanghaoshuang 已提交
231 232
};

233 234
class NCEOpGradVarTypeInference : public framework::VarTypeInference {
 public:
M
minqiyang 已提交
235 236
  void operator()(framework::InferVarTypeContext *ctx) const override {
    auto weight_grad = ctx->Output(framework::GradVarName("Weight")).front();
237

M
minqiyang 已提交
238
    auto attr = ctx->GetAttr("is_sparse");
239 240
    bool is_sparse = boost::get<bool>(attr);
    if (is_sparse) {
241
      VLOG(3) << "nce_op_grad op " << weight_grad << " and "
M
minqiyang 已提交
242
              << " is set to SelectedRows";
M
minqiyang 已提交
243
      ctx->SetType(weight_grad, framework::proto::VarType::SELECTED_ROWS);
244
    } else {
245
      VLOG(3) << "nce_op_grad op " << weight_grad << " and "
M
minqiyang 已提交
246
              << " is set to LoDTensor";
M
minqiyang 已提交
247
      ctx->SetType(weight_grad, framework::proto::VarType::LOD_TENSOR);
248
    }
M
minqiyang 已提交
249
    ctx->SetDataType(weight_grad, ctx->GetDataType(ctx->Input("Input")[0]));
250 251 252
  }
};

W
wanghaoshuang 已提交
253 254 255 256
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
S
sneaxiy 已提交
257 258 259
REGISTER_OPERATOR(nce, ops::NCEOp,
                  paddle::framework::DefaultGradOpDescMaker<true>,
                  ops::NCEOpMaker);
260
REGISTER_OPERATOR(nce_grad, ops::NCEOpGrad, ops::NCEOpGradVarTypeInference);
W
wanghaoshuang 已提交
261 262
REGISTER_OP_CPU_KERNEL(nce, ops::NCEKernel<paddle::platform::CPUPlace, float>,
                       ops::NCEKernel<paddle::platform::CPUPlace, double>);
W
wanghaoshuang 已提交
263
REGISTER_OP_CPU_KERNEL(nce_grad,
W
wanghaoshuang 已提交
264 265
                       ops::NCEGradKernel<paddle::platform::CPUPlace, float>,
                       ops::NCEGradKernel<paddle::platform::CPUPlace, double>);