nce_op.cc 12.0 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
W
wanghaoshuang 已提交
2

W
wanghaoshuang 已提交
3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
W
wanghaoshuang 已提交
6

W
wanghaoshuang 已提交
7
    http://www.apache.org/licenses/LICENSE-2.0
W
wanghaoshuang 已提交
8

W
wanghaoshuang 已提交
9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
W
wanghaoshuang 已提交
14

Y
Yi Wang 已提交
15
#include "paddle/fluid/operators/nce_op.h"
W
wanghaoshuang 已提交
16

17
#include <string>
Y
Yang Yang 已提交
18 19
#include <vector>

W
wanghaoshuang 已提交
20 21 22 23 24 25 26 27 28
namespace paddle {
namespace operators {

using framework::Tensor;

class NCEOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

29
  void InferShape(framework::InferShapeContext *ctx) const override {
30 31 32 33 34 35
    PADDLE_ENFORCE_EQ(ctx->HasInput("Input"), true);
    PADDLE_ENFORCE_EQ(ctx->HasInput("Label"), true);
    PADDLE_ENFORCE_EQ(ctx->HasInput("Weight"), true);
    PADDLE_ENFORCE_EQ(ctx->HasOutput("Cost"), true);
    PADDLE_ENFORCE_EQ(ctx->HasOutput("SampleLogits"), true);
    PADDLE_ENFORCE_EQ(ctx->HasOutput("SampleLabels"), true);
W
wanghaoshuang 已提交
36

W
wanghaoshuang 已提交
37
    auto x_dims = ctx->GetInputDim("Input");
W
wanghaoshuang 已提交
38
    auto label_dims = ctx->GetInputDim("Label");
39
    if (ctx->IsRuntime() || (x_dims[0] > 0 && label_dims[0] > 0)) {
40 41 42 43 44 45 46
      PADDLE_ENFORCE_EQ(
          x_dims[0], label_dims[0],
          "ShapeError: the first dimension of Input(Input) and Input(Label) "
          "should be equal in runtime. But received: Input(Input)'s shape = "
          "[%s] with 1st dim =  %d, Input(Label)'s shape = [%s] with 1st "
          "dim = %d.",
          x_dims, x_dims[0], label_dims, label_dims[0]);
47
    }
W
wanghaoshuang 已提交
48 49
    int num_true_classes = label_dims.size() == 2 ? label_dims[1] : 1;
    if (ctx->HasInput("Bias")) {
50 51 52 53 54 55 56
      PADDLE_ENFORCE_EQ(
          ctx->GetInputDim("Weight")[0], ctx->GetInputDim("Bias")[0],
          "ShapeError: the first dimension of Input(Weight) and Input(Bias) "
          "should be equal. But received: Input(Weight)'s shape = [%s] with "
          "1st dim = %d, Input(Bias)'s shape = [%s] with 1st dim = %d.",
          ctx->GetInputDim("Weight"), ctx->GetInputDim("Weight")[0],
          ctx->GetInputDim("Bias"), ctx->GetInputDim("Bias")[0]);
W
wanghaoshuang 已提交
57
    }
W
wanghaoshuang 已提交
58 59
    auto num_neg_samples = ctx->Attrs().Get<int>("num_neg_samples");
    auto num_total_classes = ctx->Attrs().Get<int>("num_total_classes");
W
wanghaoshuang 已提交
60 61
    std::vector<int> custom_neg_classes =
        ctx->Attrs().Get<std::vector<int>>("custom_neg_classes");
62 63 64 65 66 67 68
    PADDLE_ENFORCE_EQ(
        num_total_classes, ctx->GetInputDim("Weight")[0],
        "ShapeError: the number of total classes should be equal to the first "
        "dimension of Input(Weight). But received: Attr(num_total_classes) = "
        "%d, Input(Weight)'s shape = [%s] with 1st dim = %d.",
        num_total_classes, ctx->GetInputDim("Weight"),
        ctx->GetInputDim("Weight")[0]);
W
wanghaoshuang 已提交
69
    if (custom_neg_classes.size() > 0) {
70 71 72 73 74 75
      PADDLE_ENFORCE_EQ(
          custom_neg_classes.size(), static_cast<size_t>(num_neg_samples),
          "ShapeError: the size of Attr(custom_neg_classes) should be equal "
          "to the number of negative samples. But received: "
          "custom_neg_classes.size() = %d, num_neg_samples = %d.",
          custom_neg_classes.size(), num_neg_samples);
W
wanghaoshuang 已提交
76
    }
W
wanghaoshuang 已提交
77
    // set dims of output(Out)
W
wanghaoshuang 已提交
78
    std::vector<int64_t> out_dims;
W
wanghaoshuang 已提交
79
    out_dims.push_back(x_dims[0]);
W
wanghaoshuang 已提交
80
    out_dims.push_back(1);
W
wanghaoshuang 已提交
81
    ctx->SetOutputDim("Cost", framework::make_ddim(out_dims));
W
wanghaoshuang 已提交
82 83

    // set dims of output(SampleOut)
W
wanghaoshuang 已提交
84
    std::vector<int64_t> sample_out_dims;
W
wanghaoshuang 已提交
85
    sample_out_dims.push_back(x_dims[0]);
86 87
    sample_out_dims.push_back(
        (num_true_classes == -1) ? -1 : (num_neg_samples + num_true_classes));
W
wanghaoshuang 已提交
88 89 90
    ctx->SetOutputDim("SampleLogits", framework::make_ddim(sample_out_dims));
    ctx->SetOutputDim("SampleLabels", framework::make_ddim(sample_out_dims));
  }
W
wanghaoshuang 已提交
91 92

 protected:
93
  framework::OpKernelType GetExpectedKernelType(
94
      const framework::ExecutionContext &ctx) const override {
95 96 97
    return framework::OpKernelType(
        OperatorWithKernel::IndicateVarDataType(ctx, "Input"),
        platform::CPUPlace());
W
wanghaoshuang 已提交
98
  }
W
wanghaoshuang 已提交
99 100 101 102
};

class NCEOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
Y
Yu Yang 已提交
103
  void Make() override {
W
wanghaoshuang 已提交
104
    AddInput("Input", "(Tensor) A tensor of shape [batch_size, dim].");
W
wanghaoshuang 已提交
105 106 107 108 109 110 111 112
    AddInput(
        "Label",
        "(Tensor) A tensor of shape [batch_size, num_true_class]. "
        "'num_true_class' is the number of target classes in each sample."
        "The number of target classes per sample should be same. "
        "If you have a variable number of target classes, "
        "you can pad them out to a constant number by either repeating them"
        " or by padding with an otherwise unused class.)");
W
wanghaoshuang 已提交
113 114 115
    AddInput("Weight",
             "(Tensor) A tensor of shape [num_class, dim]. 'num_class' is the "
             "total number of class.");
W
wanghaoshuang 已提交
116 117 118 119
    AddInput(
        "Bias",
        "(Tensor) A tensor of shape [num_class, 1]. 'num_class' is the total "
        "number of class. It is a dispensable input.")
W
wanghaoshuang 已提交
120 121
        .AsDispensable();
    AddInput("SampleWeight",
W
wanghaoshuang 已提交
122
             "(Tensor) A tensor of shape [batch_size, 1] storing a weight for "
W
wanghaoshuang 已提交
123 124 125
             "each sample. And it is a dispensable input. The default value of "
             "sample is 1.")
        .AsDispensable();
126 127

    AddInput(
128
        "CustomDistProbs",
129 130 131 132
        "(Tensor) It is used in 'CostumDist' sampler. "
        "It is a tensor with shape [num_total_classes]."
        "The i-th element is the probsbility of the i-th class being sampled.")
        .AsDispensable();
133 134 135 136 137 138 139 140 141 142 143 144 145
    AddInput(
        "CustomDistAlias",
        "(Tensor) It is used in 'CostumDist' sampler. "
        "It is a tensor with shape [num_total_classes]."
        "The i-th element is the probsbility of the i-th class being sampled.")
        .AsDispensable();
    AddInput(
        "CustomDistAliasProbs",
        "(Tensor) It is used in 'CostumDist' sampler. "
        "It is a tensor with shape [num_total_classes]."
        "The i-th element is the probsbility of the i-th class being sampled.")
        .AsDispensable();

W
wanghaoshuang 已提交
146
    AddOutput("Cost",
W
wanghaoshuang 已提交
147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163
              "(Tensor) A tensor of shape [batch_size, 1]. Cost of samples.");
    AddOutput("SampleLogits",
              "An intermediate tensor of shape[batch_size, num_neg_samples + "
              "num_pos_samples]."
              "This tensor is output of forward kernel and used in backward "
              "kernel to compute grads."
              "Given X is  the dot product of input tensor and sampled labels' "
              "weights."
              "Then 'SampleLogits' is sigmoid(X).")
        .AsIntermediate();
    AddOutput("SampleLabels",
              "An intermediate tensor of shape[batch_size, num_neg_samples + "
              "num_pos_samples]."
              "This tensor is output of forward kernel and used in backward "
              "kernel to compute grads."
              "")
        .AsIntermediate();
164

W
wanghaoshuang 已提交
165 166 167 168
    AddAttr<int>("num_total_classes",
                 "Total number of classes in all samples.");
    AddAttr<int>("num_neg_samples",
                 "The number of negative classes. The default value is 10.")
W
wanghaoshuang 已提交
169
        .SetDefault(10);
170 171 172 173 174 175 176 177
    AddAttr<int>("sampler",
                 "(int) Which sampler to be used to sample negative class."
                 "0: Uniform; 1: LogUniform; 2: CostumDist.")
        .SetDefault(0);
    AddAttr<int>("seed",
                 "(int) The seed used in sampler. If it is 0, "
                 "the sampler will generate a seed randomly.")
        .SetDefault(0);
178 179
    AddAttr<bool>("is_sparse", "(boolean, default false) Sparse update.")
        .SetDefault(false);
180

T
tangwei12 已提交
181 182 183
    // for parameter prefetch
    AddAttr<bool>("remote_prefetch", "").SetDefault(false);
    AddAttr<int>("trainer_id", "trainer id from 0 ~ worker_num.").SetDefault(0);
Q
Qiao Longfei 已提交
184 185 186
    AddAttr<std::vector<int64_t>>("height_sections",
                                  "Height for each output SelectedRows.")
        .SetDefault(std::vector<int64_t>({}));
T
tangwei12 已提交
187 188 189 190 191 192 193 194 195 196 197 198
    AddAttr<std::vector<std::string>>(
        "epmap",
        "(string vector, default 127.0.0.1:6164)"
        "Server endpoints in the order of input variables for mapping")
        .SetDefault({});
    AddAttr<std::vector<std::string>>(
        "table_names",
        "(string vector, the splited table names that will be fetched from "
        "parameter server)"
        "in the order of input variables for mapping")
        .SetDefault({});

W
wanghaoshuang 已提交
199 200 201 202
    AddAttr<std::vector<int>>("custom_neg_classes",
                              "This attribute only be used in unitest. Classes "
                              "in this list wiil be used as negative classes "
                              "for every samples. Under normal conditions, "
Y
Yang Yu 已提交
203 204
                              "user should avoid setting this attribute.")
        .SetDefault({});
W
wanghaoshuang 已提交
205
    AddComment(R"DOC(
M
minqiyang 已提交
206 207 208
Compute and return the noise-contrastive estimation training loss. See
`Noise-contrastive estimation: A new estimation principle for unnormalized
statistical models
Y
Yibing Liu 已提交
209
 <http://www.jmlr.org/proceedings/papers/v9/gutmann10a/gutmann10a.pdf>`_.
W
wanghaoshuang 已提交
210
By default this operator uses a uniform distribution for sampling.
W
wanghaoshuang 已提交
211 212 213 214 215 216 217 218
)DOC");
  }
};

class NCEOpGrad : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

219
  void InferShape(framework::InferShapeContext *ctx) const override {
W
wanghaoshuang 已提交
220 221 222 223 224 225
    PADDLE_ENFORCE(ctx->HasInput("Input"));
    PADDLE_ENFORCE(ctx->HasInput("Weight"));
    PADDLE_ENFORCE(ctx->HasInput("Cost"));
    PADDLE_ENFORCE(ctx->HasInput("SampleLogits"));
    PADDLE_ENFORCE(ctx->HasInput("SampleLabels"));
    PADDLE_ENFORCE(ctx->HasInput(framework::GradVarName("Cost")),
W
wanghaoshuang 已提交
226
                   "The input(Out@GRAD) should not be null.");
W
wanghaoshuang 已提交
227

W
wanghaoshuang 已提交
228 229
    auto x_dims = ctx->GetInputDim("Input");
    auto x_grad_name = framework::GradVarName("Input");
W
wanghaoshuang 已提交
230 231 232 233
    if (ctx->HasOutput(x_grad_name)) {
      ctx->SetOutputDim(x_grad_name, x_dims);
    }

W
wanghaoshuang 已提交
234 235
    auto w_dims = ctx->GetInputDim("Weight");
    auto w_grad_name = framework::GradVarName("Weight");
W
wanghaoshuang 已提交
236 237 238 239
    if (ctx->HasOutput(w_grad_name)) {
      ctx->SetOutputDim(w_grad_name, w_dims);
    }

W
wanghaoshuang 已提交
240
    auto bias_grad_name = framework::GradVarName("Bias");
W
wanghaoshuang 已提交
241
    if (ctx->HasOutput(bias_grad_name)) {
W
wanghaoshuang 已提交
242
      auto bias_dims = ctx->GetInputDim("Bias");
W
wanghaoshuang 已提交
243 244 245
      ctx->SetOutputDim(bias_grad_name, bias_dims);
    }
  }
W
wanghaoshuang 已提交
246 247

 protected:
248
  framework::OpKernelType GetExpectedKernelType(
249
      const framework::ExecutionContext &ctx) const override {
250 251 252
    return framework::OpKernelType(
        OperatorWithKernel::IndicateVarDataType(ctx, "Input"),
        platform::CPUPlace());
W
wanghaoshuang 已提交
253
  }
W
wanghaoshuang 已提交
254 255
};

256 257
class NCEOpGradVarTypeInference : public framework::VarTypeInference {
 public:
M
minqiyang 已提交
258 259
  void operator()(framework::InferVarTypeContext *ctx) const override {
    auto weight_grad = ctx->Output(framework::GradVarName("Weight")).front();
260

M
minqiyang 已提交
261
    auto attr = ctx->GetAttr("is_sparse");
262 263
    bool is_sparse = boost::get<bool>(attr);
    if (is_sparse) {
264
      VLOG(3) << "nce_op_grad op " << weight_grad << " and "
M
minqiyang 已提交
265
              << " is set to SelectedRows";
M
minqiyang 已提交
266
      ctx->SetType(weight_grad, framework::proto::VarType::SELECTED_ROWS);
267
    } else {
268
      VLOG(3) << "nce_op_grad op " << weight_grad << " and "
M
minqiyang 已提交
269
              << " is set to LoDTensor";
M
minqiyang 已提交
270
      ctx->SetType(weight_grad, framework::proto::VarType::LOD_TENSOR);
271
    }
M
minqiyang 已提交
272
    ctx->SetDataType(weight_grad, ctx->GetDataType(ctx->Input("Input")[0]));
273 274 275
  }
};

W
wanghaoshuang 已提交
276 277 278 279
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
H
hong 已提交
280 281 282 283 284
REGISTER_OPERATOR(
    nce, ops::NCEOp,
    paddle::framework::DefaultGradOpMaker<paddle::framework::OpDesc, true>,
    paddle::framework::DefaultGradOpMaker<paddle::imperative::OpBase, true>,
    ops::NCEOpMaker);
285
REGISTER_OPERATOR(nce_grad, ops::NCEOpGrad, ops::NCEOpGradVarTypeInference);
W
wanghaoshuang 已提交
286 287
REGISTER_OP_CPU_KERNEL(nce, ops::NCEKernel<paddle::platform::CPUPlace, float>,
                       ops::NCEKernel<paddle::platform::CPUPlace, double>);
W
wanghaoshuang 已提交
288
REGISTER_OP_CPU_KERNEL(nce_grad,
W
wanghaoshuang 已提交
289 290
                       ops::NCEGradKernel<paddle::platform::CPUPlace, float>,
                       ops::NCEGradKernel<paddle::platform::CPUPlace, double>);