unpool_op.cc 6.6 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6 7 8 9 10 11 12 13

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
Indicesou may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
S
sweetsky0901 已提交
14

Y
Yi Wang 已提交
15
#include "paddle/fluid/operators/unpool_op.h"
16
#include <memory>
17 18
#include <string>
#include <vector>
S
sweetsky0901 已提交
19 20 21 22 23
namespace paddle {
namespace operators {

class Unpool2dOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
Y
Yu Yang 已提交
24
  void Make() override {
S
sweetsky0901 已提交
25 26
    AddInput(
        "X",
S
sweetsky0901 已提交
27 28 29
        "(Tensor) The input tensor of unpool operator. "
        "The format of input tensor is NCHW. Where N is batch size, C is the "
        "number of channels, H and W is the height and width of feature.");
S
sweetsky0901 已提交
30 31
    AddInput(
        "Indices",
S
sweetsky0901 已提交
32 33 34
        "(Tensor) The input tensor of the indices given out by MaxPool2d. "
        "The format of input tensor is NCHW. Where N is batch size, C is the "
        "number of channels, H and W is the height and width of feature.");
S
sweetsky0901 已提交
35
    AddOutput("Out",
S
sweetsky0901 已提交
36 37 38 39 40
              "(Tensor) The output tensor of unpool operator."
              "The format of output tensor is also NCHW."
              "Where N is batch size, C is "
              "the number of channels, H and W is the height and "
              "width of feature.");
S
sweetsky0901 已提交
41 42
    AddAttr<std::vector<int>>(
        "ksize",
S
sweetsky0901 已提交
43
        "(vector), the unpooling window size(height, width) "
S
sweetsky0901 已提交
44
        "of unpooling operator.");
S
sweetsky0901 已提交
45 46 47
    AddAttr<std::vector<int>>("strides",
                              "(vector, default:{1, 1}), "
                              "strides (height, width) of unpooling operator.")
S
sweetsky0901 已提交
48
        .SetDefault({1, 1});
S
sweetsky0901 已提交
49
    AddAttr<std::vector<int>>("paddings",
翟飞跃 已提交
50
                              "(vector default:{0,0}), "
S
sweetsky0901 已提交
51
                              "paddings (height, width) of unpooling operator.")
S
sweetsky0901 已提交
52
        .SetDefault({0, 0});
S
sweetsky0901 已提交
53 54
    AddAttr<std::string>(
        "unpooling_type",
S
sweetsky0901 已提交
55 56
        "(string), unpooling type, can be \"max\" for max-unpooling ")
        .InEnum({"max"});
S
sweetsky0901 已提交
57
    AddComment(R"DOC(
Y
ying 已提交
58 59
Input shape is: $(N, C_{in}, H_{in}, W_{in})$, Output shape is:
$(N, C_{out}, H_{out}, W_{out})$, where
Y
ying 已提交
60
$$
P
peizhilin 已提交
61 62
H_{out} = (H_{in}-1) * strides[0] - 2 * paddings[0] + ksize[0] \\
W_{out} = (W_{in}-1) * strides[1] - 2 * paddings[1] + ksize[1]
Y
ying 已提交
63 64 65
$$
Paper: http://www.matthewzeiler.com/wp-content/uploads/2017/07/iccv2011.pdf
)DOC");
S
sweetsky0901 已提交
66 67 68
  }
};

Y
Yang Yang 已提交
69
int UnpoolOutputSize(int input_size, int ksize, int padding, int stride) {
S
sweetsky0901 已提交
70
  int output_size = (input_size - 1) * stride - 2 * padding + ksize;
S
sweetsky0901 已提交
71 72 73 74
  return output_size;
}

class UnpoolOp : public framework::OperatorWithKernel {
S
sweetsky0901 已提交
75
 protected:
76
  framework::OpKernelType GetExpectedKernelType(
S
sweetsky0901 已提交
77
      const framework::ExecutionContext& ctx) const override {
78 79 80
    return framework::OpKernelType(
        OperatorWithKernel::IndicateVarDataType(ctx, "X"),
        ctx.device_context());
S
sweetsky0901 已提交
81
  }
S
sweetsky0901 已提交
82

S
sweetsky0901 已提交
83 84 85
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;
  void InferShape(framework::InferShapeContext* ctx) const override {
86 87 88
    OP_INOUT_CHECK(ctx->HasInput("X"), "Input", "X", "Unpool");
    OP_INOUT_CHECK(ctx->HasInput("Indices"), "Input", "Indices", "Unpool");
    OP_INOUT_CHECK(ctx->HasOutput("Out"), "Output", "Out", "Unpool");
S
sweetsky0901 已提交
89 90
    auto in_x_dims = ctx->GetInputDim("X");
    auto in_y_dims = ctx->GetInputDim("Indices");
S
sweetsky0901 已提交
91 92
    std::string unpooling_type =
        ctx->Attrs().Get<std::string>("unpooling_type");
S
sweetsky0901 已提交
93 94
    std::vector<int> ksize = ctx->Attrs().Get<std::vector<int>>("ksize");
    std::vector<int> strides = ctx->Attrs().Get<std::vector<int>>("strides");
S
sweetsky0901 已提交
95
    std::vector<int> paddings = ctx->Attrs().Get<std::vector<int>>("paddings");
96 97
    PADDLE_ENFORCE_EQ(in_x_dims.size() == 4, true,
                      platform::errors::InvalidArgument(
98 99
                          "Unpooling Intput(X) must be of 4-dimensional, but "
                          "received Input(X)'s dimension is %d.",
100
                          in_x_dims.size()));
S
sweetsky0901 已提交
101
    PADDLE_ENFORCE_EQ(in_x_dims, in_y_dims);
T
tink2123 已提交
102

S
sweetsky0901 已提交
103 104
    std::vector<int64_t> output_shape({in_x_dims[0], in_x_dims[1]});
    for (size_t i = 0; i < ksize.size(); ++i) {
T
tink2123 已提交
105
      if (!ctx->IsRuntime() && in_x_dims[i + 2] <= 0) {
T
tink2123 已提交
106 107 108 109 110
        output_shape.push_back(-1);
      } else {
        output_shape.push_back(UnpoolOutputSize(in_x_dims[i + 2], ksize[i],
                                                paddings[i], strides[i]));
      }
S
sweetsky0901 已提交
111 112 113
    }
    ctx->SetOutputDim("Out", framework::make_ddim(output_shape));
  }
S
sweetsky0901 已提交
114 115
};

116 117 118 119
template <typename T>
class UnpoolOpGradMaker : public framework::SingleGradOpMaker<T> {
 public:
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;
120
  void Apply(GradOpPtr<T> op) const override {
121 122 123 124 125 126 127 128 129 130
    op->SetType(this->ForwardOpType() + "_grad");
    op->SetInput("X", this->Input("X"));
    op->SetInput("Indices", this->Input("Indices"));
    op->SetInput("Out", this->Output("Out"));
    op->SetInput(framework::GradVarName("Out"), this->OutputGrad("Out"));
    op->SetOutput(framework::GradVarName("X"), this->InputGrad("X"));
    op->SetAttrMap(this->Attrs());
  }
};

S
sweetsky0901 已提交
131
class UnpoolOpGrad : public framework::OperatorWithKernel {
S
sweetsky0901 已提交
132
 protected:
133
  framework::OpKernelType GetExpectedKernelType(
S
sweetsky0901 已提交
134
      const framework::ExecutionContext& ctx) const override {
135 136 137
    return framework::OpKernelType(
        OperatorWithKernel::IndicateVarDataType(ctx, "X"),
        ctx.device_context());
S
sweetsky0901 已提交
138
  }
S
sweetsky0901 已提交
139

S
sweetsky0901 已提交
140 141 142
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;
  void InferShape(framework::InferShapeContext* ctx) const override {
143 144 145
    OP_INOUT_CHECK(ctx->HasInput("X"), "Input", "X", "UnpoolGrad");
    OP_INOUT_CHECK(ctx->HasOutput(framework::GradVarName("X")), "Output",
                   framework::GradVarName("X"), "UnpoolGrad");
S
sweetsky0901 已提交
146 147
    ctx->SetOutputDim(framework::GradVarName("X"), ctx->GetInputDim("X"));
  }
S
sweetsky0901 已提交
148
};
S
sweetsky0901 已提交
149 150
}  // namespace operators
}  // namespace paddle
S
sweetsky0901 已提交
151 152

namespace ops = paddle::operators;
153 154 155
REGISTER_OPERATOR(unpool, ops::UnpoolOp, ops::Unpool2dOpMaker,
                  ops::UnpoolOpGradMaker<paddle::framework::OpDesc>,
                  ops::UnpoolOpGradMaker<paddle::imperative::OpBase>);
H
hong 已提交
156

157
REGISTER_OPERATOR(unpool_grad, ops::UnpoolOpGrad);
S
sweetsky0901 已提交
158
REGISTER_OP_CPU_KERNEL(
Q
QI JUN 已提交
159 160 161 162 163 164
    unpool, ops::UnpoolKernel<paddle::platform::CPUDeviceContext, float>,
    ops::UnpoolKernel<paddle::platform::CPUDeviceContext, double>);
REGISTER_OP_CPU_KERNEL(
    unpool_grad,
    ops::UnpoolGradKernel<paddle::platform::CPUDeviceContext, float>,
    ops::UnpoolGradKernel<paddle::platform::CPUDeviceContext, double>);