unpool_op.cc 6.0 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6 7 8 9 10 11 12 13

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
Indicesou may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
S
sweetsky0901 已提交
14

Y
Yi Wang 已提交
15
#include "paddle/fluid/operators/unpool_op.h"
16 17
#include <string>
#include <vector>
S
sweetsky0901 已提交
18 19 20 21 22
namespace paddle {
namespace operators {

class Unpool2dOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
Y
Yu Yang 已提交
23
  void Make() override {
S
sweetsky0901 已提交
24 25
    AddInput(
        "X",
S
sweetsky0901 已提交
26 27 28
        "(Tensor) The input tensor of unpool operator. "
        "The format of input tensor is NCHW. Where N is batch size, C is the "
        "number of channels, H and W is the height and width of feature.");
S
sweetsky0901 已提交
29 30
    AddInput(
        "Indices",
S
sweetsky0901 已提交
31 32 33
        "(Tensor) The input tensor of the indices given out by MaxPool2d. "
        "The format of input tensor is NCHW. Where N is batch size, C is the "
        "number of channels, H and W is the height and width of feature.");
S
sweetsky0901 已提交
34
    AddOutput("Out",
S
sweetsky0901 已提交
35 36 37 38 39
              "(Tensor) The output tensor of unpool operator."
              "The format of output tensor is also NCHW."
              "Where N is batch size, C is "
              "the number of channels, H and W is the height and "
              "width of feature.");
S
sweetsky0901 已提交
40 41
    AddAttr<std::vector<int>>(
        "ksize",
S
sweetsky0901 已提交
42
        "(vector), the unpooling window size(height, width) "
S
sweetsky0901 已提交
43
        "of unpooling operator.");
S
sweetsky0901 已提交
44 45 46
    AddAttr<std::vector<int>>("strides",
                              "(vector, default:{1, 1}), "
                              "strides (height, width) of unpooling operator.")
S
sweetsky0901 已提交
47
        .SetDefault({1, 1});
S
sweetsky0901 已提交
48
    AddAttr<std::vector<int>>("paddings",
翟飞跃 已提交
49
                              "(vector default:{0,0}), "
S
sweetsky0901 已提交
50
                              "paddings (height, width) of unpooling operator.")
S
sweetsky0901 已提交
51
        .SetDefault({0, 0});
S
sweetsky0901 已提交
52 53
    AddAttr<std::string>(
        "unpooling_type",
S
sweetsky0901 已提交
54 55
        "(string), unpooling type, can be \"max\" for max-unpooling ")
        .InEnum({"max"});
S
sweetsky0901 已提交
56
    AddComment(R"DOC(
Y
ying 已提交
57 58
Input shape is: $(N, C_{in}, H_{in}, W_{in})$, Output shape is:
$(N, C_{out}, H_{out}, W_{out})$, where
Y
ying 已提交
59
$$
P
peizhilin 已提交
60 61
H_{out} = (H_{in}-1) * strides[0] - 2 * paddings[0] + ksize[0] \\
W_{out} = (W_{in}-1) * strides[1] - 2 * paddings[1] + ksize[1]
Y
ying 已提交
62 63 64
$$
Paper: http://www.matthewzeiler.com/wp-content/uploads/2017/07/iccv2011.pdf
)DOC");
S
sweetsky0901 已提交
65 66 67
  }
};

Y
Yang Yang 已提交
68
int UnpoolOutputSize(int input_size, int ksize, int padding, int stride) {
S
sweetsky0901 已提交
69
  int output_size = (input_size - 1) * stride - 2 * padding + ksize;
S
sweetsky0901 已提交
70 71 72 73
  return output_size;
}

class UnpoolOp : public framework::OperatorWithKernel {
S
sweetsky0901 已提交
74
 protected:
75
  framework::OpKernelType GetExpectedKernelType(
S
sweetsky0901 已提交
76
      const framework::ExecutionContext& ctx) const override {
77 78 79
    return framework::OpKernelType(
        OperatorWithKernel::IndicateVarDataType(ctx, "X"),
        ctx.device_context());
S
sweetsky0901 已提交
80
  }
S
sweetsky0901 已提交
81

S
sweetsky0901 已提交
82 83 84
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;
  void InferShape(framework::InferShapeContext* ctx) const override {
S
sweetsky0901 已提交
85 86 87 88 89
    PADDLE_ENFORCE(ctx->HasInput("X"),
                   "Input(X) of UnpoolOp"
                   "should not be null.");
    PADDLE_ENFORCE(ctx->HasInput("Indices"),
                   "Input(Indices) of UnpoolOp"
S
sweetsky0901 已提交
90
                   "should not be null.");
S
sweetsky0901 已提交
91
    PADDLE_ENFORCE(ctx->HasOutput("Out"),
S
sweetsky0901 已提交
92
                   "Output(Out) of UnpoolOp should not be null.");
S
sweetsky0901 已提交
93 94
    auto in_x_dims = ctx->GetInputDim("X");
    auto in_y_dims = ctx->GetInputDim("Indices");
S
sweetsky0901 已提交
95 96
    std::string unpooling_type =
        ctx->Attrs().Get<std::string>("unpooling_type");
S
sweetsky0901 已提交
97 98
    std::vector<int> ksize = ctx->Attrs().Get<std::vector<int>>("ksize");
    std::vector<int> strides = ctx->Attrs().Get<std::vector<int>>("strides");
S
sweetsky0901 已提交
99
    std::vector<int> paddings = ctx->Attrs().Get<std::vector<int>>("paddings");
S
sweetsky0901 已提交
100
    PADDLE_ENFORCE(in_x_dims.size() == 4,
S
sweetsky0901 已提交
101
                   "Unpooling intput must be of 4-dimensional.");
S
sweetsky0901 已提交
102
    PADDLE_ENFORCE_EQ(in_x_dims, in_y_dims);
T
tink2123 已提交
103

S
sweetsky0901 已提交
104 105
    std::vector<int64_t> output_shape({in_x_dims[0], in_x_dims[1]});
    for (size_t i = 0; i < ksize.size(); ++i) {
T
tink2123 已提交
106
      if (!ctx->IsRuntime() && in_x_dims[i + 2] <= 0) {
T
tink2123 已提交
107 108 109 110 111
        output_shape.push_back(-1);
      } else {
        output_shape.push_back(UnpoolOutputSize(in_x_dims[i + 2], ksize[i],
                                                paddings[i], strides[i]));
      }
S
sweetsky0901 已提交
112 113 114
    }
    ctx->SetOutputDim("Out", framework::make_ddim(output_shape));
  }
S
sweetsky0901 已提交
115 116 117
};

class UnpoolOpGrad : public framework::OperatorWithKernel {
S
sweetsky0901 已提交
118
 protected:
119
  framework::OpKernelType GetExpectedKernelType(
S
sweetsky0901 已提交
120
      const framework::ExecutionContext& ctx) const override {
121 122 123
    return framework::OpKernelType(
        OperatorWithKernel::IndicateVarDataType(ctx, "X"),
        ctx.device_context());
S
sweetsky0901 已提交
124
  }
S
sweetsky0901 已提交
125

S
sweetsky0901 已提交
126 127 128 129 130
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;
  void InferShape(framework::InferShapeContext* ctx) const override {
    PADDLE_ENFORCE(ctx->HasInput("X"), "Input(X) must not be null.");
    PADDLE_ENFORCE(ctx->HasOutput(framework::GradVarName("X")),
S
sweetsky0901 已提交
131
                   "Input(X@GRAD) should not be null.");
S
sweetsky0901 已提交
132 133
    ctx->SetOutputDim(framework::GradVarName("X"), ctx->GetInputDim("X"));
  }
S
sweetsky0901 已提交
134
};
S
sweetsky0901 已提交
135 136
}  // namespace operators
}  // namespace paddle
S
sweetsky0901 已提交
137 138

namespace ops = paddle::operators;
H
hong 已提交
139 140 141 142 143
REGISTER_OPERATOR(
    unpool, ops::UnpoolOp, ops::Unpool2dOpMaker,
    paddle::framework::DefaultGradOpMaker<paddle::framework::OpDesc, true>,
    paddle::framework::DefaultGradOpMaker<paddle::imperative::OpBase, true>);

144
REGISTER_OPERATOR(unpool_grad, ops::UnpoolOpGrad);
S
sweetsky0901 已提交
145
REGISTER_OP_CPU_KERNEL(
Q
QI JUN 已提交
146 147 148 149 150 151
    unpool, ops::UnpoolKernel<paddle::platform::CPUDeviceContext, float>,
    ops::UnpoolKernel<paddle::platform::CPUDeviceContext, double>);
REGISTER_OP_CPU_KERNEL(
    unpool_grad,
    ops::UnpoolGradKernel<paddle::platform::CPUDeviceContext, float>,
    ops::UnpoolGradKernel<paddle::platform::CPUDeviceContext, double>);