buffered_reader.cc 16.1 KB
Newer Older
1
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
Y
yuyang18 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14 15
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "paddle/fluid/operators/reader/buffered_reader.h"
16

17
#include "paddle/fluid/framework/convert_utils.h"
18
#include "paddle/fluid/platform/device/device_wrapper.h"
19
#include "paddle/fluid/platform/profiler.h"
20
#include "paddle/fluid/platform/profiler/event_tracing.h"
21

Y
yuyang18 已提交
22 23 24
namespace paddle {
namespace operators {
namespace reader {
F
fengjiayi 已提交
25
BufferedReader::~BufferedReader() {
Q
Qiao Longfei 已提交
26
  VLOG(1) << "~BufferedReader";
F
fengjiayi 已提交
27 28
  reader_->Shutdown();
  while (!position_.empty()) {
Z
Zeng Jinle 已提交
29 30 31 32
    auto &front = position_.front();
    if (front.valid()) {
      front.wait();
    }
F
fengjiayi 已提交
33 34 35 36
    position_.pop();
  }
}

Y
yuyang18 已提交
37 38
BufferedReader::BufferedReader(
    const std::shared_ptr<framework::ReaderBase> &reader,
39
    const platform::Place &place, size_t buffer_size, bool pin_memory)
Y
yuyang18 已提交
40 41 42
    : framework::DecoratedReader(reader),
      thread_pool_(1),
      place_(place),
43 44
      buffer_size_(buffer_size),
      pin_memory_(pin_memory) {
Q
Qiao Longfei 已提交
45
  VLOG(1) << "BufferedReader";
46
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
47
  if (platform::is_gpu_place(place_) && !pin_memory) {
48
    int dev_idx = place_.device;
49 50 51 52 53 54 55 56 57 58 59
    compute_stream_ =
        ((platform::CUDADeviceContext *)(platform::DeviceContextPool::Instance()
                                             .Get(place_)))
            ->stream();
    events_.resize(buffer_size);
    for (auto &event : events_) {
      event = platform::CudaEventResourcePool::Instance().New(dev_idx);
    }
    stream_ = platform::CudaStreamResourcePool::Instance().New(dev_idx);
  }
#endif
60 61 62

#ifdef PADDLE_WITH_ASCEND_CL
  if (platform::is_npu_place(place_)) {
63
    int dev_idx = place_.device;
64 65 66 67 68 69 70 71 72 73 74
    compute_stream_ =
        ((platform::NPUDeviceContext *)(platform::DeviceContextPool::Instance()
                                            .Get(place_)))
            ->stream();
    events_.resize(buffer_size);
    for (auto &event : events_) {
      event = platform::NpuEventResourcePool::Instance().New(dev_idx);
    }
    stream_ = platform::NpuStreamResourcePool::Instance().New(dev_idx);
  }
#endif
F
fwenguang 已提交
75 76 77 78 79 80 81 82 83 84 85 86 87 88 89

#ifdef PADDLE_WITH_MLU
  if (platform::is_mlu_place(place_)) {
    int dev_idx = place_.device;
    compute_stream_ =
        ((platform::MLUDeviceContext *)(platform::DeviceContextPool::Instance()
                                            .Get(place_)))
            ->stream();
    events_.resize(buffer_size);
    for (auto &event : events_) {
      event = platform::MluEventResourcePool::Instance().New(dev_idx);
    }
    stream_ = platform::MluStreamResourcePool::Instance().New(dev_idx);
  }
#endif
90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105

#ifdef PADDLE_WITH_XPU
  if (platform::is_xpu_place(place_)) {
    int dev_idx = place_.device;
    compute_stream_ =
        ((platform::XPUDeviceContext *)(platform::DeviceContextPool::Instance()
                                            .Get(place_)))
            ->stream();
    events_.resize(buffer_size);
    for (auto &event : events_) {
      event = platform::XpuEventResourcePool::Instance().New(dev_idx);
    }
    stream_ = platform::XpuStreamResourcePool::Instance().New(dev_idx);
  }
#endif

Y
yuyang18 已提交
106
  cpu_buffer_.resize(buffer_size);
107
  cuda_buffer_.resize(buffer_size);
108
  npu_buffer_.resize(buffer_size);
F
fwenguang 已提交
109
  mlu_buffer_.resize(buffer_size);
110
  xpu_buffer_.resize(buffer_size);
Y
yuyang18 已提交
111
  ReadTillBufferFullAsync();
Y
yuyang18 已提交
112
}
F
fengjiayi 已提交
113

Y
yuyang18 已提交
114
void BufferedReader::ReadTillBufferFullAsync() {
Y
yuyang18 已提交
115
  for (size_t i = 0; i < buffer_size_; ++i) {
Y
yuyang18 已提交
116
    ReadAsync(i);
Y
yuyang18 已提交
117 118
  }
}
F
fengjiayi 已提交
119

Y
yuyang18 已提交
120
void BufferedReader::ReadAsync(size_t i) {
Y
yuyang18 已提交
121 122 123
  position_.emplace(thread_pool_.enqueue([this, i]() -> size_t {
    TensorVec &cpu = cpu_buffer_[i];
    reader_->ReadNext(&cpu);
Y
yuyang18 已提交
124

Y
yuyang18 已提交
125 126 127
    if (cpu.empty()) {
      return -1UL;
    }
Y
yuyang18 已提交
128

129
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)  // @{ Group GPU Place
Y
yuyang18 已提交
130
    if (platform::is_gpu_place(place_)) {
131 132 133
      TensorVec &cuda = cuda_buffer_[i];
      if (cuda.empty()) {
        cuda.resize(cpu.size());
134
      } else {
135
        PADDLE_ENFORCE_EQ(
136
            cuda.size(), cpu.size(),
137 138
            platform::errors::InvalidArgument(
                "Input tensor number on GPU and CPU devices are not matched."));
139
      }
140 141 142 143 144 145 146 147 148 149 150 151 152 153
      if (pin_memory_) {
        // NOTE: [Copy processing of different input devices]
        // We may accept input tensor in three different devices:
        //   - CPUPlace
        //   - CUDAPinnedPlace
        //   - CUDAPlace
        // CUDA Stream Synchronizing is slow, in order to avoid Synchronizing
        // in BufferedReader thread, we do data copy as follows:
        //   - If src Tensor on CPU memory, we copy it to CUDAPinned memory
        //   - IF src Tensor on CUDAPinned memory, we use it directly
        //   - IF src Tensor on CUDA memory, we use it directly
        platform::CUDAPinnedPlace cuda_pinned_place;
        std::vector<void *> cuda_pinned_ptrs;
        cuda_pinned_ptrs.reserve(cpu.size());
154 155 156
        platform::RecordEvent record_event(
            "BufferedReader:MemoryCopy", platform::TracerEventType::UserDefined,
            1);
157
        // NODE(chenweihang): When we use CUDAPinned Memory, we need call
158 159 160
        // cudaHostAlloc, that is a CUDA API, calling CUDA API need load
        // cuda lib into device, it will cost hundreds of MB of GPU memory.
        // If we don't set Device here, which will use CUDAPlace(0) default.
161
        platform::SetDeviceId(place_.device);
162 163 164 165
        for (size_t i = 0; i < cpu.size(); ++i) {
          if (platform::is_cpu_place(cpu[i].place())) {
            cuda[i].Resize(cpu[i].dims());
            cuda[i].set_layout(cpu[i].layout());
166 167
            cuda_pinned_ptrs[i] =
                cuda[i].mutable_data(cuda_pinned_place, cpu[i].type());
168 169
            auto size = cpu[i].numel() *
                        paddle::framework::DataTypeSize(cpu[i].dtype());
170

171
            memory::Copy(cuda_pinned_place, cuda_pinned_ptrs[i], cpu[i].place(),
172
                         cpu[i].data(), size);
173

174 175
            cuda[i].set_lod(cpu[i].lod());
          } else {
176 177 178 179
            // Here the cpu[i]'s place may be CUDAPlace, CUDAPinnedPlace, or
            // others, we don't copy the memory of it to CUDAPinnedPlace, but
            // we should share tensor data to cuda[i]
            cuda[i].ShareDataWith(cpu[i]);
180 181 182 183 184 185 186 187 188 189 190 191 192 193
          }
        }
      } else {
        // NOTE(liangdun): using async copy instead of TensorCopySync
        // TensorCopySync would block other stream, because TensorCopySync
        // issues the copying command to the default stream, it will make two
        // commands from different streams cannot run concurrently.
        std::vector<void *> gpu_ptrs;
        gpu_ptrs.reserve(cpu.size());
        for (size_t i = 0; i < cpu.size(); ++i) {
          cuda[i].Resize(cpu[i].dims());
          cuda[i].set_layout(cpu[i].layout());
          gpu_ptrs.emplace_back(cuda[i].mutable_data(place_, cpu[i].type()));
        }
194

195 196 197
        // NOTE(zjl): cudaStreamWaitEvent() must be called after all
        // cuda[i].mutable_data() is called, since some ops release
        // cuda memory immediately without waiting cuda kernel ends
198
        platform::SetDeviceId(place_.device);
199
#ifdef PADDLE_WITH_HIP
200
        PADDLE_ENFORCE_GPU_SUCCESS(
201
            hipEventRecord(events_[i].get(), compute_stream_));
202
        PADDLE_ENFORCE_GPU_SUCCESS(
203 204
            hipStreamWaitEvent(stream_.get(), events_[i].get(), 0));
#else
205
        PADDLE_ENFORCE_GPU_SUCCESS(
206
            cudaEventRecord(events_[i].get(), compute_stream_));
207
        PADDLE_ENFORCE_GPU_SUCCESS(
208
            cudaStreamWaitEvent(stream_.get(), events_[i].get(), 0));
209
#endif
210

211 212 213
        platform::RecordEvent record_event(
            "BufferedReader:MemoryCopy", platform::TracerEventType::UserDefined,
            1);
214 215
        for (size_t i = 0; i < cpu.size(); ++i) {
          auto cpu_place = cpu[i].place();
216
          auto cpu_ptr = cpu[i].data();
217
          auto gpu_ptr = gpu_ptrs[i];
218
          auto size =
219
              cpu[i].numel() * paddle::framework::DataTypeSize(cpu[i].dtype());
220
          if (platform::is_cuda_pinned_place(cpu_place)) {
221 222
            memory::Copy(place_, gpu_ptr, cpu_place, cpu_ptr, size,
                         stream_.get());
223
          } else if ((platform::is_gpu_place(cpu_place))) {
224 225
            memory::Copy(place_, gpu_ptr, cpu_place, cpu_ptr, size,
                         stream_.get());
226 227 228 229 230 231
          } else {
            platform::CUDAPinnedPlace cuda_pinned_place;
            framework::LoDTensor cuda_pinned_tensor;
            cuda_pinned_tensor.Resize(cpu[i].dims());
            auto cuda_pinned_ptr = cuda_pinned_tensor.mutable_data(
                cuda_pinned_place, cpu[i].type());
232 233 234 235
            memory::Copy(cuda_pinned_place, cuda_pinned_ptr, cpu_place, cpu_ptr,
                         size);
            memory::Copy(place_, gpu_ptr, cuda_pinned_place, cuda_pinned_ptr,
                         size, stream_.get());
236 237

            platform::GpuStreamSync(stream_.get());
238 239
          }
          cuda[i].set_lod(cpu[i].lod());
S
sneaxiy 已提交
240
        }
241
        platform::GpuStreamSync(stream_.get());
Y
yuyang18 已提交
242
      }
Y
yuyang18 已提交
243
    }
244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267
#endif

#ifdef PADDLE_WITH_ASCEND_CL
    if (platform::is_npu_place(place_)) {
      TensorVec &npu = npu_buffer_[i];
      if (npu.empty()) {
        npu.resize(cpu.size());
      } else {
        PADDLE_ENFORCE_EQ(
            npu.size(), cpu.size(),
            platform::errors::InvalidArgument(
                "Input tensor number on NPU and CPU devices are not matched. "
                "The number on NPU is %d, on CPU is %d",
                npu.size(), cpu.size()));
      }

      std::vector<void *> npu_ptrs;
      npu_ptrs.reserve(cpu.size());
      for (size_t i = 0; i < cpu.size(); ++i) {
        npu[i].Resize(cpu[i].dims());
        npu[i].set_layout(cpu[i].layout());
        npu_ptrs.emplace_back(npu[i].mutable_data(place_, cpu[i].type()));
      }

268
      platform::SetNPUDeviceId(place_.device);
269 270
      platform::NPUEventRecord(events_[i].get(), compute_stream_);
      platform::NPUStreamWaitEvent(stream_.get(), events_[i].get());
271

272 273 274
      platform::RecordEvent record_event("BufferedReader:MemoryCopy",
                                         platform::TracerEventType::UserDefined,
                                         1);
275 276
      for (size_t i = 0; i < cpu.size(); ++i) {
        auto cpu_place = cpu[i].place();
277
        auto cpu_ptr = cpu[i].data();
278 279
        auto npu_ptr = npu_ptrs[i];
        auto size =
280
            cpu[i].numel() * paddle::framework::DataTypeSize(cpu[i].dtype());
281
        if ((platform::is_npu_place(cpu_place))) {
282 283
          memory::Copy(place_, npu_ptr, cpu_place, cpu_ptr, size,
                       stream_.get());
284
        } else {
285 286
          memory::Copy(place_, npu_ptr, cpu_place, cpu_ptr, size,
                       stream_.get());
287
          platform::NPUStreamSync(stream_.get());
288 289 290
        }
        npu[i].set_lod(cpu[i].lod());
      }
291
      platform::NPUStreamSync(stream_.get());
292 293
    }
#endif
F
fwenguang 已提交
294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343

#ifdef PADDLE_WITH_MLU
    if (platform::is_mlu_place(place_)) {
      TensorVec &mlu = mlu_buffer_[i];
      if (mlu.empty()) {
        mlu.resize(cpu.size());
      } else {
        PADDLE_ENFORCE_EQ(
            mlu.size(), cpu.size(),
            platform::errors::InvalidArgument(
                "Input tensor number on MLU and CPU devices are not matched. "
                "The number on MLU is %d, on CPU is %d",
                mlu.size(), cpu.size()));
      }

      std::vector<void *> mlu_ptrs;
      mlu_ptrs.reserve(cpu.size());
      for (size_t i = 0; i < cpu.size(); ++i) {
        mlu[i].Resize(cpu[i].dims());
        mlu[i].set_layout(cpu[i].layout());
        mlu_ptrs.emplace_back(mlu[i].mutable_data(place_, cpu[i].type()));
      }

      platform::SetMLUDeviceId(place_.device);
      PADDLE_ENFORCE_MLU_SUCCESS(
          cnPlaceNotifier(events_[i].get(), compute_stream_));
      PADDLE_ENFORCE_MLU_SUCCESS(cnWaitNotifier(events_[i].get()));

      platform::RecordEvent record_event("BufferedReader:MemoryCopy",
                                         platform::TracerEventType::UserDefined,
                                         1);
      for (size_t i = 0; i < cpu.size(); ++i) {
        auto cpu_place = cpu[i].place();
        auto cpu_ptr = cpu[i].data();
        auto mlu_ptr = mlu_ptrs[i];
        auto size =
            cpu[i].numel() * paddle::framework::DataTypeSize(cpu[i].dtype());
        if ((platform::is_mlu_place(cpu_place))) {
          memory::Copy(place_, mlu_ptr, cpu_place, cpu_ptr, size,
                       stream_.get());
        } else {
          memory::Copy(place_, mlu_ptr, cpu_place, cpu_ptr, size,
                       stream_.get());
          platform::MLUStreamSync(stream_.get());
        }
        mlu[i].set_lod(cpu[i].lod());
      }
      platform::MLUStreamSync(stream_.get());
    }
#endif
344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394

#ifdef PADDLE_WITH_XPU
    if (platform::is_xpu_place(place_)) {
      TensorVec &xpu = xpu_buffer_[i];
      if (xpu.empty()) {
        xpu.resize(cpu.size());
      } else {
        PADDLE_ENFORCE_EQ(
            xpu.size(), cpu.size(),
            platform::errors::InvalidArgument(
                "Input tensor number on XPU and CPU devices are not matched. "
                "The number on XPU is %d, on CPU is %d",
                xpu.size(), cpu.size()));
      }

      std::vector<void *> xpu_ptrs;
      xpu_ptrs.reserve(cpu.size());
      for (size_t i = 0; i < cpu.size(); ++i) {
        xpu[i].Resize(cpu[i].dims());
        xpu[i].set_layout(cpu[i].layout());
        xpu_ptrs.emplace_back(xpu[i].mutable_data(place_, cpu[i].type()));
      }

      platform::XPUDeviceGuard gurad(place_.device);
      int r = xpu_event_record(events_[i].get(), compute_stream_);
      PADDLE_ENFORCE_XDNN_SUCCESS(r, "xpu_event_record");
      r = xpu_stream_wait_event(stream_.get(), events_[i].get());
      PADDLE_ENFORCE_XDNN_SUCCESS(r, "xpu_stream_wait_event");

      platform::RecordEvent record_event("BufferedReader:MemoryCopy",
                                         platform::TracerEventType::UserDefined,
                                         1);
      for (size_t i = 0; i < cpu.size(); ++i) {
        auto cpu_place = cpu[i].place();
        auto cpu_ptr = cpu[i].data();
        auto xpu_ptr = xpu_ptrs[i];
        auto size =
            cpu[i].numel() * paddle::framework::DataTypeSize(cpu[i].dtype());
        // TODO(zhanghuan) for now hardware not support xpu_memcpy_async, maybe
        // KL3
        if ((platform::is_xpu_place(cpu_place))) {
          memory::Copy(place_, xpu_ptr, cpu_place, cpu_ptr, size);
          platform::XPUStreamSync(stream_.get());
        } else {
          memory::Copy(place_, xpu_ptr, cpu_place, cpu_ptr, size);
        }
        xpu[i].set_lod(cpu[i].lod());
      }
      platform::XPUStreamSync(stream_.get());
    }
#endif
Y
yuyang18 已提交
395
    return i;
Y
yuyang18 已提交
396 397
  }));
}
F
fengjiayi 已提交
398

Y
yuyang18 已提交
399
void BufferedReader::ShutdownImpl() {
Q
Qiao Longfei 已提交
400
  VLOG(1) << "ShutdownImpl";
Y
yuyang18 已提交
401
  reader_->Shutdown();
Y
yuyang18 已提交
402 403 404
  while (!position_.empty()) {
    position_.pop();
  }
Y
yuyang18 已提交
405
  prev_pos_ = -1UL;
Y
yuyang18 已提交
406
}
F
fengjiayi 已提交
407

Y
yuyang18 已提交
408 409
void BufferedReader::StartImpl() {
  reader_->Start();
Y
yuyang18 已提交
410
  ReadTillBufferFullAsync();
Y
yuyang18 已提交
411
}
F
fengjiayi 已提交
412

Y
yuyang18 已提交
413
void BufferedReader::ReadNextImpl(std::vector<framework::LoDTensor> *out) {
Y
yuyang18 已提交
414 415 416 417 418 419 420 421 422 423 424 425
  if (position_.empty()) {
    out->clear();
    return;
  }
  size_t i = position_.front().get();
  position_.pop();

  if (i == -1UL) {
    ReadNextImpl(out);
    return;
  }

426
  if (platform::is_gpu_place(place_)) {
427
    *out = std::move(cuda_buffer_[i]);
428
  } else if (platform::is_npu_place(place_)) {
429
    *out = std::move(npu_buffer_[i]);
F
fwenguang 已提交
430 431
  } else if (platform::is_mlu_place(place_)) {
    *out = std::move(mlu_buffer_[i]);
432 433
  } else if (platform::is_xpu_place(place_)) {
    *out = std::move(xpu_buffer_[i]);
434 435 436
  } else {
    *out = std::move(cpu_buffer_[i]);
  }
Y
yuyang18 已提交
437 438 439 440 441 442 443 444

  // Do not push current position into ReadAsync. Push the previous position
  // Since all computation in fluid are async, change the data of
  // current position may cause data error.
  if (prev_pos_ != -1Ul) {
    ReadAsync(prev_pos_);
  }
  prev_pos_ = i;
Y
yuyang18 已提交
445 446 447 448 449
}

}  // namespace reader
}  // namespace operators
}  // namespace paddle