transpose_mkldnn_op.cc 8.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

   Licensed under the Apache License, Version 2.0 (the "License");
   you may not use this file except in compliance with the License.
   You may obtain a copy of the License at

   http://www.apache.org/licenses/LICENSE-2.0

   Unless required by applicable law or agreed to in writing, software
   distributed under the License is distributed on an "AS IS" BASIS,
   WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
   See the License for the specific language governing permissions and
   limitations under the License. */

#include "paddle/fluid/framework/data_layout_transform.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/memory/malloc.h"
18
#include "paddle/fluid/operators/transpose_op.h"
19 20 21 22 23 24 25 26
#include "paddle/fluid/platform/mkldnn_reuse.h"

namespace paddle {
namespace operators {

using Tensor = framework::Tensor;
using framework::DataLayout;

27 28 29 30 31
template <typename T>
class TransposeMKLDNNHandler {
 public:
  TransposeMKLDNNHandler(std::vector<int64_t>& dims,  // NOLINT
                         std::vector<int>& axis,      // NOLINT
32
                         dnnl::engine engine)
33 34 35 36 37
      : dims_(dims),
        axis_(axis),
        logical_axis_(dims.size(), 0),
        engine_(engine) {}

38 39
  std::shared_ptr<dnnl::memory> AcquireSrcMemory(const MKLDNNMemoryFormat& fmt,
                                                 void* ptr) {
40 41 42 43 44 45 46 47 48 49
    // Make memory descriptor using input format, unless it
    // cannot be trusted (nchw) then make up memory fmt manually
    for (size_t i = 0; i < this->logical_axis_.size(); ++i) {
      this->logical_axis_[i] = i;
    }

    auto src_md = fmt != MKLDNNMemoryFormat::nchw
                      ? platform::MKLDNNMemDesc(
                            dims_, platform::MKLDNNGetDataType<T>(), fmt)
                      : Axis2MemoryDesc(dims_, logical_axis_);
50
    return std::make_shared<dnnl::memory>(src_md, engine_, ptr);
51 52
  }

53 54
  std::shared_ptr<dnnl::memory> AcquireDstMemory(framework::Tensor* output,
                                                 platform::Place place) {
55 56
    auto dst_md = Axis2MemoryDesc(dims_, axis_);
    auto dst_data = output->mutable_data<T>(place, dst_md.get_size());
57
    return std::make_shared<dnnl::memory>(dst_md, engine_, dst_data);
58 59
  }

60 61 62 63
  std::shared_ptr<dnnl::reorder> AcquireTranspose(
      std::shared_ptr<dnnl::memory> dst_memory_p,
      std::shared_ptr<dnnl::memory> src_memory_p) {
    return std::make_shared<dnnl::reorder>(*(src_memory_p), *(dst_memory_p));
64 65 66
  }

 protected:
67 68 69
  dnnl::memory::desc Axis2MemoryDesc(std::vector<int64_t>& nchw_tz,  // NOLINT
                                     std::vector<int>& axis          // NOLINT
                                     ) {
70 71 72 73 74 75 76 77
    size_t ndims = axis.size();

    std::vector<int64_t> strides(ndims);
    unsigned int total_stride = 1;
    for (int i = ndims - 1; i >= 0; --i) {
      strides[axis[i]] = total_stride;
      total_stride *= nchw_tz[axis[i]];
    }
78 79
    dnnl::memory::desc mem_d(nchw_tz, platform::MKLDNNGetDataType<T>(),
                             strides);
80 81 82 83 84 85 86 87

    return mem_d;
  }

 private:
  std::vector<int64_t> dims_;
  std::vector<int> axis_;
  std::vector<int> logical_axis_;
88
  dnnl::engine engine_;
89 90
};

91 92 93 94
template <typename T>
class TransposeMKLDNNOpKernel : public paddle::framework::OpKernel<T> {
 public:
  void Compute(const paddle::framework::ExecutionContext& ctx) const override {
95 96 97
    PADDLE_ENFORCE_EQ(platform::is_cpu_place(ctx.GetPlace()), true,
                      paddle::platform::errors::PreconditionNotMet(
                          "Operator DNNL Transpose must use CPUPlace"));
98 99 100 101 102 103 104 105 106 107
    auto& dev_ctx =
        ctx.template device_context<paddle::platform::MKLDNNDeviceContext>();
    const auto& mkldnn_engine = dev_ctx.GetEngine();
    std::vector<int> axis = ctx.Attr<std::vector<int>>("axis");
    int ndims = axis.size();
    auto* input = ctx.Input<Tensor>("X");
    auto* output = ctx.Output<Tensor>("Out");
    const T* input_data = input->data<T>();

    if (ndims == 1) {
108 109
      framework::TensorCopy(*input, input->place(), output);
      output->set_format(input->format());
110 111 112
      return;
    }

113
    auto nchw_tz = phi::vectorize<int64_t>(input->dims());
114

115
    TransposeMKLDNNHandler<T> handler(nchw_tz, axis, mkldnn_engine);
116

117
    auto transpose_src_memory_p = handler.AcquireSrcMemory(
118
        input->format(), platform::to_void_cast<T>(input_data));
119 120 121 122
    auto transpose_dst_memory_p =
        handler.AcquireDstMemory(output, ctx.GetPlace());
    auto transpose_p = handler.AcquireTranspose(transpose_dst_memory_p,
                                                transpose_src_memory_p);
123

124
    auto& astream = platform::MKLDNNDeviceContext::tls().get_stream();
A
Adam 已提交
125 126 127
    transpose_p->execute(astream, *transpose_src_memory_p,
                         *transpose_dst_memory_p);
    astream.wait();
128

129
    output->set_layout(DataLayout::kNCHW);
A
Adam 已提交
130
    output->set_format(MKLDNNMemoryFormat::undef);
131 132 133
  }
};

134 135 136 137
template <typename T>
class TransposeMKLDNNGradOpKernel : public paddle::framework::OpKernel<T> {
 public:
  void Compute(const paddle::framework::ExecutionContext& ctx) const override {
138 139 140
    PADDLE_ENFORCE_EQ(platform::is_cpu_place(ctx.GetPlace()), true,
                      paddle::platform::errors::PreconditionNotMet(
                          "Operator DNNL TransposeGrad must use CPUPlace"));
141 142 143 144 145 146 147 148 149 150 151
    auto* out_grad =
        ctx.Input<framework::Tensor>(framework::GradVarName("Out"));
    auto* x_grad = ctx.Output<framework::Tensor>(framework::GradVarName("X"));
    if (!x_grad) return;
    auto& dev_ctx =
        ctx.template device_context<paddle::platform::MKLDNNDeviceContext>();
    const auto& mkldnn_engine = dev_ctx.GetEngine();
    std::vector<int> axis = ctx.Attr<std::vector<int>>("axis");
    std::vector<int> reversed_axis(axis);
    int ndims = axis.size();
    if (ndims == 1) {
152 153
      framework::TensorCopy(*out_grad, out_grad->place(), x_grad);
      x_grad->set_format(out_grad->format());
154 155 156 157 158 159 160 161 162 163
      return;
    }

    for (size_t i = 0; i < axis.size(); i++) {
      reversed_axis[axis[i]] = i;
    }

    const T* out_grad_data = out_grad->data<T>();
    x_grad->mutable_data<T>(ctx.GetPlace());

164
    auto nchw_tz = phi::vectorize<int64_t>(out_grad->dims());
165

166
    TransposeMKLDNNHandler<T> handler(nchw_tz, reversed_axis, mkldnn_engine);
167

168 169
    auto transpose_src_memory_p = handler.AcquireSrcMemory(
        out_grad->format(), platform::to_void_cast<T>(out_grad_data));
170 171 172 173 174
    auto transpose_dst_memory_p =
        handler.AcquireDstMemory(x_grad, ctx.GetPlace());
    auto transpose_p = handler.AcquireTranspose(transpose_dst_memory_p,
                                                transpose_src_memory_p);

175
    auto& astream = platform::MKLDNNDeviceContext::tls().get_stream();
A
Adam 已提交
176 177 178
    transpose_p->execute(astream, *transpose_src_memory_p,
                         *transpose_dst_memory_p);
    astream.wait();
179 180 181
  }
};

182 183 184 185 186
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;

187 188 189 190 191 192 193 194 195 196 197 198 199 200 201
REGISTER_OP_KERNEL_WITH_CUSTOM_TYPE(transpose2, MKLDNN,
                                    ::paddle::platform::CPUPlace, FP32,
                                    ops::kTransposeMKLDNNFP32,
                                    ops::TransposeMKLDNNOpKernel<float>);

REGISTER_OP_KERNEL_WITH_CUSTOM_TYPE(transpose2, MKLDNN,
                                    ::paddle::platform::CPUPlace, U8,
                                    ops::kTransposeMKLDNNINT8,
                                    ops::TransposeMKLDNNOpKernel<uint8_t>);

REGISTER_OP_KERNEL_WITH_CUSTOM_TYPE(transpose2, MKLDNN,
                                    ::paddle::platform::CPUPlace, S8,
                                    ops::kTransposeMKLDNNINT8,
                                    ops::TransposeMKLDNNOpKernel<int8_t>);

202 203 204 205 206
REGISTER_OP_KERNEL_WITH_CUSTOM_TYPE(
    transpose2, MKLDNN, ::paddle::platform::CPUPlace, BF16,
    ops::kTransposeMKLDNNFP32,
    ops::TransposeMKLDNNOpKernel<paddle::platform::bfloat16>);

207 208
REGISTER_OP_KERNEL(transpose, MKLDNN, ::paddle::platform::CPUPlace,
                   ops::TransposeMKLDNNOpKernel<float>);
209 210 211

REGISTER_OP_KERNEL(transpose_grad, MKLDNN, ::paddle::platform::CPUPlace,
                   ops::TransposeMKLDNNGradOpKernel<float>);
212

213 214
REGISTER_OP_KERNEL(transpose2_grad, MKLDNN, ::paddle::platform::CPUPlace,
                   ops::TransposeMKLDNNGradOpKernel<float>);