transpose_mkldnn_op.cc 6.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

   Licensed under the Apache License, Version 2.0 (the "License");
   you may not use this file except in compliance with the License.
   You may obtain a copy of the License at

   http://www.apache.org/licenses/LICENSE-2.0

   Unless required by applicable law or agreed to in writing, software
   distributed under the License is distributed on an "AS IS" BASIS,
   WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
   See the License for the specific language governing permissions and
   limitations under the License. */

#include "paddle/fluid/framework/data_layout_transform.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/memory/malloc.h"
18
#include "paddle/fluid/operators/transpose_op.h"
19 20 21 22 23 24 25 26 27 28 29 30
#include "paddle/fluid/platform/mkldnn_reuse.h"

namespace paddle {
namespace operators {

using Tensor = framework::Tensor;
using framework::DataLayout;

template <typename T>
class TransposeMKLDNNOpKernel : public paddle::framework::OpKernel<T> {
 public:
  void Compute(const paddle::framework::ExecutionContext& ctx) const override {
31 32 33
    PADDLE_ENFORCE_EQ(platform::is_cpu_place(ctx.GetPlace()), true,
                      paddle::platform::errors::PreconditionNotMet(
                          "Operator DNNL Transpose must use CPUPlace"));
34 35 36 37 38 39 40 41 42 43
    auto& dev_ctx =
        ctx.template device_context<paddle::platform::MKLDNNDeviceContext>();
    const auto& mkldnn_engine = dev_ctx.GetEngine();
    std::vector<int> axis = ctx.Attr<std::vector<int>>("axis");
    int ndims = axis.size();
    auto* input = ctx.Input<Tensor>("X");
    auto* output = ctx.Output<Tensor>("Out");
    const T* input_data = input->data<T>();

    if (ndims == 1) {
44 45
      framework::TensorCopy(*input, input->place(), output);
      output->set_format(input->format());
46 47 48
      return;
    }

A
Adam 已提交
49
    auto nchw_tz = paddle::framework::vectorize<int64_t>(input->dims());
50

51 52
    const std::string key =
        platform::CreateKey(dev_ctx, nchw_tz, ctx.OutputName("Out"));
53

54 55
    platform::TransposeMKLDNNHandler<T> handler(nchw_tz, axis, dev_ctx,
                                                mkldnn_engine, key);
56

57
    auto transpose_src_memory_p = handler.AcquireSrcMemory(
58
        input->format(), platform::to_void_cast<T>(input_data));
59 60 61 62
    auto transpose_dst_memory_p =
        handler.AcquireDstMemory(output, ctx.GetPlace());
    auto transpose_p = handler.AcquireTranspose(transpose_dst_memory_p,
                                                transpose_src_memory_p);
63

64
    auto& astream = platform::MKLDNNDeviceContext::tls().get_stream();
A
Adam 已提交
65 66 67
    transpose_p->execute(astream, *transpose_src_memory_p,
                         *transpose_dst_memory_p);
    astream.wait();
68

69
    output->set_layout(DataLayout::kNCHW);
A
Adam 已提交
70
    output->set_format(MKLDNNMemoryFormat::undef);
71 72 73
  }
};

74 75 76 77
template <typename T>
class TransposeMKLDNNGradOpKernel : public paddle::framework::OpKernel<T> {
 public:
  void Compute(const paddle::framework::ExecutionContext& ctx) const override {
78 79 80
    PADDLE_ENFORCE_EQ(platform::is_cpu_place(ctx.GetPlace()), true,
                      paddle::platform::errors::PreconditionNotMet(
                          "Operator DNNL TransposeGrad must use CPUPlace"));
81 82 83 84 85 86 87 88 89 90 91
    auto* out_grad =
        ctx.Input<framework::Tensor>(framework::GradVarName("Out"));
    auto* x_grad = ctx.Output<framework::Tensor>(framework::GradVarName("X"));
    if (!x_grad) return;
    auto& dev_ctx =
        ctx.template device_context<paddle::platform::MKLDNNDeviceContext>();
    const auto& mkldnn_engine = dev_ctx.GetEngine();
    std::vector<int> axis = ctx.Attr<std::vector<int>>("axis");
    std::vector<int> reversed_axis(axis);
    int ndims = axis.size();
    if (ndims == 1) {
92 93
      framework::TensorCopy(*out_grad, out_grad->place(), x_grad);
      x_grad->set_format(out_grad->format());
94 95 96 97 98 99 100 101 102 103
      return;
    }

    for (size_t i = 0; i < axis.size(); i++) {
      reversed_axis[axis[i]] = i;
    }

    const T* out_grad_data = out_grad->data<T>();
    x_grad->mutable_data<T>(ctx.GetPlace());

A
Adam 已提交
104
    auto nchw_tz = paddle::framework::vectorize<int64_t>(out_grad->dims());
105

106
    const std::string key = platform::CreateKey(
107
        dev_ctx, nchw_tz, ctx.OutputName(framework::GradVarName("X")));
108

109 110
    platform::TransposeMKLDNNHandler<T> handler(nchw_tz, reversed_axis, dev_ctx,
                                                mkldnn_engine, key);
111

112 113
    auto transpose_src_memory_p = handler.AcquireSrcMemory(
        out_grad->format(), platform::to_void_cast<T>(out_grad_data));
114 115 116 117 118
    auto transpose_dst_memory_p =
        handler.AcquireDstMemory(x_grad, ctx.GetPlace());
    auto transpose_p = handler.AcquireTranspose(transpose_dst_memory_p,
                                                transpose_src_memory_p);

119
    auto& astream = platform::MKLDNNDeviceContext::tls().get_stream();
A
Adam 已提交
120 121 122
    transpose_p->execute(astream, *transpose_src_memory_p,
                         *transpose_dst_memory_p);
    astream.wait();
123 124 125
  }
};

126 127 128 129 130
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;

131 132 133 134 135 136 137 138 139 140 141 142 143 144 145
REGISTER_OP_KERNEL_WITH_CUSTOM_TYPE(transpose2, MKLDNN,
                                    ::paddle::platform::CPUPlace, FP32,
                                    ops::kTransposeMKLDNNFP32,
                                    ops::TransposeMKLDNNOpKernel<float>);

REGISTER_OP_KERNEL_WITH_CUSTOM_TYPE(transpose2, MKLDNN,
                                    ::paddle::platform::CPUPlace, U8,
                                    ops::kTransposeMKLDNNINT8,
                                    ops::TransposeMKLDNNOpKernel<uint8_t>);

REGISTER_OP_KERNEL_WITH_CUSTOM_TYPE(transpose2, MKLDNN,
                                    ::paddle::platform::CPUPlace, S8,
                                    ops::kTransposeMKLDNNINT8,
                                    ops::TransposeMKLDNNOpKernel<int8_t>);

146 147 148 149 150
REGISTER_OP_KERNEL_WITH_CUSTOM_TYPE(
    transpose2, MKLDNN, ::paddle::platform::CPUPlace, BF16,
    ops::kTransposeMKLDNNFP32,
    ops::TransposeMKLDNNOpKernel<paddle::platform::bfloat16>);

151 152
REGISTER_OP_KERNEL(transpose, MKLDNN, ::paddle::platform::CPUPlace,
                   ops::TransposeMKLDNNOpKernel<float>);
153 154 155

REGISTER_OP_KERNEL(transpose_grad, MKLDNN, ::paddle::platform::CPUPlace,
                   ops::TransposeMKLDNNGradOpKernel<float>);
156

157 158
REGISTER_OP_KERNEL(transpose2_grad, MKLDNN, ::paddle::platform::CPUPlace,
                   ops::TransposeMKLDNNGradOpKernel<float>);