transpose_mkldnn_op.cc 5.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

   Licensed under the Apache License, Version 2.0 (the "License");
   you may not use this file except in compliance with the License.
   You may obtain a copy of the License at

   http://www.apache.org/licenses/LICENSE-2.0

   Unless required by applicable law or agreed to in writing, software
   distributed under the License is distributed on an "AS IS" BASIS,
   WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
   See the License for the specific language governing permissions and
   limitations under the License. */

#include "paddle/fluid/framework/data_layout_transform.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/memory/malloc.h"
18
#include "paddle/fluid/operators/transpose_op.h"
19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42
#include "paddle/fluid/platform/mkldnn_reuse.h"

namespace paddle {
namespace operators {

using Tensor = framework::Tensor;
using framework::DataLayout;

template <typename T>
class TransposeMKLDNNOpKernel : public paddle::framework::OpKernel<T> {
 public:
  void Compute(const paddle::framework::ExecutionContext& ctx) const override {
    PADDLE_ENFORCE(paddle::platform::is_cpu_place(ctx.GetPlace()),
                   "It must use CPUPlace.");
    auto& dev_ctx =
        ctx.template device_context<paddle::platform::MKLDNNDeviceContext>();
    const auto& mkldnn_engine = dev_ctx.GetEngine();
    std::vector<int> axis = ctx.Attr<std::vector<int>>("axis");
    int ndims = axis.size();
    auto* input = ctx.Input<Tensor>("X");
    auto* output = ctx.Output<Tensor>("Out");
    const T* input_data = input->data<T>();

    if (ndims == 1) {
43 44
      framework::TensorCopy(*input, input->place(), output);
      output->set_format(input->format());
45 46 47
      return;
    }

A
Adam 已提交
48
    auto nchw_tz = paddle::framework::vectorize<int64_t>(input->dims());
49

H
hong 已提交
50
    const std::string key = platform::CreateKey(nchw_tz, ctx.OutputName("Out"));
51

52 53
    platform::TransposeMKLDNNHandler<T> handler(nchw_tz, axis, dev_ctx,
                                                mkldnn_engine, key);
54

55
    auto transpose_src_memory_p = handler.AcquireSrcMemory(
56
        input->format(), platform::to_void_cast<T>(input_data));
57 58 59 60
    auto transpose_dst_memory_p =
        handler.AcquireDstMemory(output, ctx.GetPlace());
    auto transpose_p = handler.AcquireTranspose(transpose_dst_memory_p,
                                                transpose_src_memory_p);
61

A
Adam 已提交
62 63 64 65
    mkldnn::stream astream(mkldnn_engine);
    transpose_p->execute(astream, *transpose_src_memory_p,
                         *transpose_dst_memory_p);
    astream.wait();
66

67
    output->set_layout(DataLayout::kNCHW);
A
Adam 已提交
68
    output->set_format(MKLDNNMemoryFormat::undef);
69 70 71
  }
};

72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88
template <typename T>
class TransposeMKLDNNGradOpKernel : public paddle::framework::OpKernel<T> {
 public:
  void Compute(const paddle::framework::ExecutionContext& ctx) const override {
    PADDLE_ENFORCE(paddle::platform::is_cpu_place(ctx.GetPlace()),
                   "It must use CPUPlace.");
    auto* out_grad =
        ctx.Input<framework::Tensor>(framework::GradVarName("Out"));
    auto* x_grad = ctx.Output<framework::Tensor>(framework::GradVarName("X"));
    if (!x_grad) return;
    auto& dev_ctx =
        ctx.template device_context<paddle::platform::MKLDNNDeviceContext>();
    const auto& mkldnn_engine = dev_ctx.GetEngine();
    std::vector<int> axis = ctx.Attr<std::vector<int>>("axis");
    std::vector<int> reversed_axis(axis);
    int ndims = axis.size();
    if (ndims == 1) {
89 90
      framework::TensorCopy(*out_grad, out_grad->place(), x_grad);
      x_grad->set_format(out_grad->format());
91 92 93 94 95 96 97 98 99 100
      return;
    }

    for (size_t i = 0; i < axis.size(); i++) {
      reversed_axis[axis[i]] = i;
    }

    const T* out_grad_data = out_grad->data<T>();
    x_grad->mutable_data<T>(ctx.GetPlace());

A
Adam 已提交
101
    auto nchw_tz = paddle::framework::vectorize<int64_t>(out_grad->dims());
102

103
    const std::string key = platform::CreateKey(
H
hong 已提交
104
        nchw_tz, ctx.OutputName(framework::GradVarName("X")));
105

106 107
    platform::TransposeMKLDNNHandler<T> handler(nchw_tz, reversed_axis, dev_ctx,
                                                mkldnn_engine, key);
108

109 110
    auto transpose_src_memory_p = handler.AcquireSrcMemory(
        out_grad->format(), platform::to_void_cast<T>(out_grad_data));
111 112 113 114 115
    auto transpose_dst_memory_p =
        handler.AcquireDstMemory(x_grad, ctx.GetPlace());
    auto transpose_p = handler.AcquireTranspose(transpose_dst_memory_p,
                                                transpose_src_memory_p);

A
Adam 已提交
116 117 118 119
    mkldnn::stream astream(mkldnn_engine);
    transpose_p->execute(astream, *transpose_src_memory_p,
                         *transpose_dst_memory_p);
    astream.wait();
120 121 122
  }
};

123 124 125 126 127
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;

128 129 130 131 132 133 134 135 136 137 138 139 140 141 142
REGISTER_OP_KERNEL_WITH_CUSTOM_TYPE(transpose2, MKLDNN,
                                    ::paddle::platform::CPUPlace, FP32,
                                    ops::kTransposeMKLDNNFP32,
                                    ops::TransposeMKLDNNOpKernel<float>);

REGISTER_OP_KERNEL_WITH_CUSTOM_TYPE(transpose2, MKLDNN,
                                    ::paddle::platform::CPUPlace, U8,
                                    ops::kTransposeMKLDNNINT8,
                                    ops::TransposeMKLDNNOpKernel<uint8_t>);

REGISTER_OP_KERNEL_WITH_CUSTOM_TYPE(transpose2, MKLDNN,
                                    ::paddle::platform::CPUPlace, S8,
                                    ops::kTransposeMKLDNNINT8,
                                    ops::TransposeMKLDNNOpKernel<int8_t>);

143 144
REGISTER_OP_KERNEL(transpose, MKLDNN, ::paddle::platform::CPUPlace,
                   ops::TransposeMKLDNNOpKernel<float>);
145 146 147

REGISTER_OP_KERNEL(transpose_grad, MKLDNN, ::paddle::platform::CPUPlace,
                   ops::TransposeMKLDNNGradOpKernel<float>);
148

149 150
REGISTER_OP_KERNEL(transpose2_grad, MKLDNN, ::paddle::platform::CPUPlace,
                   ops::TransposeMKLDNNGradOpKernel<float>);