detection_map_op.h 17.7 KB
Newer Older
1
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
W
wanghaox 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14 15

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once
16 17 18 19 20
#include <algorithm>
#include <map>
#include <string>
#include <utility>
#include <vector>
W
wanghaox 已提交
21 22
#include "paddle/fluid/framework/eigen.h"
#include "paddle/fluid/framework/op_registry.h"
W
wanghaox 已提交
23 24 25 26

namespace paddle {
namespace operators {

W
wanghaox 已提交
27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44
enum APType { kNone = 0, kIntegral, k11point };

APType GetAPType(std::string str) {
  if (str == "integral") {
    return APType::kIntegral;
  } else if (str == "11point") {
    return APType::k11point;
  } else {
    return APType::kNone;
  }
}

template <typename T>
inline bool SortScorePairDescend(const std::pair<float, T>& pair1,
                                 const std::pair<float, T>& pair2) {
  return pair1.first > pair2.first;
}

W
wanghaox 已提交
45 46 47
template <typename T>
inline void GetAccumulation(std::vector<std::pair<T, int>> in_pairs,
                            std::vector<int>* accu_vec) {
W
wanghaox 已提交
48
  std::stable_sort(in_pairs.begin(), in_pairs.end(), SortScorePairDescend<int>);
W
wanghaox 已提交
49 50 51 52 53 54 55 56 57 58 59 60 61
  accu_vec->clear();
  size_t sum = 0;
  for (size_t i = 0; i < in_pairs.size(); ++i) {
    auto count = in_pairs[i].second;
    sum += count;
    accu_vec->push_back(sum);
  }
}

template <typename Place, typename T>
class DetectionMAPOpKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
W
wanghaox 已提交
62
    auto* in_detect = ctx.Input<framework::LoDTensor>("DetectRes");
W
wanghaox 已提交
63 64
    auto* in_label = ctx.Input<framework::LoDTensor>("Label");
    auto* out_map = ctx.Output<framework::Tensor>("MAP");
W
wanghaox 已提交
65

W
wanghaox 已提交
66 67 68 69
    auto* in_pos_count = ctx.Input<framework::Tensor>("PosCount");
    auto* in_true_pos = ctx.Input<framework::LoDTensor>("TruePos");
    auto* in_false_pos = ctx.Input<framework::LoDTensor>("FalsePos");

W
wanghaox 已提交
70 71 72
    auto* out_pos_count = ctx.Output<framework::Tensor>("AccumPosCount");
    auto* out_true_pos = ctx.Output<framework::LoDTensor>("AccumTruePos");
    auto* out_false_pos = ctx.Output<framework::LoDTensor>("AccumFalsePos");
W
wanghaox 已提交
73

W
wanghaox 已提交
74
    float overlap_threshold = ctx.Attr<float>("overlap_threshold");
75
    bool evaluate_difficult = ctx.Attr<bool>("evaluate_difficult");
W
wanghaox 已提交
76
    auto ap_type = GetAPType(ctx.Attr<std::string>("ap_type"));
77
    int class_num = ctx.Attr<int>("class_num");
W
wanghaox 已提交
78

Y
Yu Yang 已提交
79 80
    auto& label_lod = in_label->lod();
    auto& detect_lod = in_detect->lod();
W
wanghaox 已提交
81 82
    PADDLE_ENFORCE_EQ(label_lod.size(), 1UL,
                      "Only support one level sequence now.");
W
wanghaox 已提交
83 84 85 86 87 88 89
    PADDLE_ENFORCE_EQ(label_lod[0].size(), detect_lod[0].size(),
                      "The batch_size of input(Label) and input(Detection) "
                      "must be the same.");

    std::vector<std::map<int, std::vector<Box>>> gt_boxes;
    std::vector<std::map<int, std::vector<std::pair<T, Box>>>> detect_boxes;

90
    GetBoxes(*in_label, *in_detect, &gt_boxes, detect_boxes);
W
wanghaox 已提交
91 92 93 94 95

    std::map<int, int> label_pos_count;
    std::map<int, std::vector<std::pair<T, int>>> true_pos;
    std::map<int, std::vector<std::pair<T, int>>> false_pos;

96 97 98 99 100 101 102
    auto* has_state = ctx.Input<framework::LoDTensor>("HasState");
    int state = 0;
    if (has_state) {
      state = has_state->data<int>()[0];
    }

    if (in_pos_count != nullptr && state) {
103 104
      GetInputPos(*in_pos_count, *in_true_pos, *in_false_pos, &label_pos_count,
                  &true_pos, &false_pos, class_num);
W
wanghaox 已提交
105 106
    }

W
wanghaox 已提交
107
    CalcTrueAndFalsePositive(gt_boxes, detect_boxes, evaluate_difficult,
108 109
                             overlap_threshold, &label_pos_count, &true_pos,
                             &false_pos);
W
wanghaox 已提交
110

111 112 113
    int background_label = ctx.Attr<int>("background_label");
    T map = CalcMAP(ap_type, label_pos_count, true_pos, false_pos,
                    background_label);
W
wanghaox 已提交
114

115 116
    GetOutputPos(ctx, label_pos_count, true_pos, false_pos, out_pos_count,
                 out_true_pos, out_false_pos, class_num);
W
wanghaox 已提交
117

W
wanghaox 已提交
118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134
    T* map_data = out_map->mutable_data<T>(ctx.GetPlace());
    map_data[0] = map;
  }

 protected:
  struct Box {
    Box(T xmin, T ymin, T xmax, T ymax)
        : xmin(xmin), ymin(ymin), xmax(xmax), ymax(ymax), is_difficult(false) {}

    T xmin, ymin, xmax, ymax;
    bool is_difficult;
  };

  inline T JaccardOverlap(const Box& box1, const Box& box2) const {
    if (box2.xmin > box1.xmax || box2.xmax < box1.xmin ||
        box2.ymin > box1.ymax || box2.ymax < box1.ymin) {
      return 0.0;
W
wanghaox 已提交
135
    } else {
W
wanghaox 已提交
136 137 138 139 140 141 142 143 144 145 146 147 148
      T inter_xmin = std::max(box1.xmin, box2.xmin);
      T inter_ymin = std::max(box1.ymin, box2.ymin);
      T inter_xmax = std::min(box1.xmax, box2.xmax);
      T inter_ymax = std::min(box1.ymax, box2.ymax);

      T inter_width = inter_xmax - inter_xmin;
      T inter_height = inter_ymax - inter_ymin;
      T inter_area = inter_width * inter_height;

      T bbox_area1 = (box1.xmax - box1.xmin) * (box1.ymax - box1.ymin);
      T bbox_area2 = (box2.xmax - box2.xmin) * (box2.ymax - box2.ymin);

      return inter_area / (bbox_area1 + bbox_area2 - inter_area);
W
wanghaox 已提交
149 150 151
    }
  }

152 153 154 155 156 157 158 159 160
  inline void ClipBBox(const Box& bbox, Box* clipped_bbox) const {
    T one = static_cast<T>(1.0);
    T zero = static_cast<T>(0.0);
    clipped_bbox->xmin = std::max(std::min(bbox.xmin, one), zero);
    clipped_bbox->ymin = std::max(std::min(bbox.ymin, one), zero);
    clipped_bbox->xmax = std::max(std::min(bbox.xmax, one), zero);
    clipped_bbox->ymax = std::max(std::min(bbox.ymax, one), zero);
  }

W
wanghaox 已提交
161 162
  void GetBoxes(const framework::LoDTensor& input_label,
                const framework::LoDTensor& input_detect,
163
                std::vector<std::map<int, std::vector<Box>>>* gt_boxes,
W
wanghaox 已提交
164 165 166 167
                std::vector<std::map<int, std::vector<std::pair<T, Box>>>>&
                    detect_boxes) const {
    auto labels = framework::EigenTensor<T, 2>::From(input_label);
    auto detect = framework::EigenTensor<T, 2>::From(input_detect);
W
wanghaox 已提交
168

Y
Yu Yang 已提交
169 170
    auto& label_lod = input_label.lod();
    auto& detect_lod = input_detect.lod();
W
wanghaox 已提交
171 172

    int batch_size = label_lod[0].size() - 1;
Y
Yu Yang 已提交
173
    auto& label_index = label_lod[0];
W
wanghaox 已提交
174

W
wanghaox 已提交
175 176
    for (int n = 0; n < batch_size; ++n) {
      std::map<int, std::vector<Box>> boxes;
Q
QI JUN 已提交
177
      for (size_t i = label_index[n]; i < label_index[n + 1]; ++i) {
W
wanghaox 已提交
178
        int label = labels(i, 0);
179 180 181 182 183 184 185 186 187 188 189 190 191
        if (input_label.dims()[1] == 6) {
          Box box(labels(i, 2), labels(i, 3), labels(i, 4), labels(i, 5));
          auto is_difficult = labels(i, 1);
          if (std::abs(is_difficult - 0.0) < 1e-6)
            box.is_difficult = false;
          else
            box.is_difficult = true;
          boxes[label].push_back(box);
        } else {
          PADDLE_ENFORCE_EQ(input_label.dims()[1], 5);
          Box box(labels(i, 1), labels(i, 2), labels(i, 3), labels(i, 4));
          boxes[label].push_back(box);
        }
W
wanghaox 已提交
192
      }
193
      gt_boxes->push_back(boxes);
W
wanghaox 已提交
194 195
    }

W
wanghaox 已提交
196 197 198
    auto detect_index = detect_lod[0];
    for (int n = 0; n < batch_size; ++n) {
      std::map<int, std::vector<std::pair<T, Box>>> boxes;
Q
QI JUN 已提交
199
      for (size_t i = detect_index[n]; i < detect_index[n + 1]; ++i) {
W
wanghaox 已提交
200 201 202 203
        Box box(detect(i, 2), detect(i, 3), detect(i, 4), detect(i, 5));
        int label = detect(i, 0);
        auto score = detect(i, 1);
        boxes[label].push_back(std::make_pair(score, box));
W
wanghaox 已提交
204
      }
W
wanghaox 已提交
205
      detect_boxes.push_back(boxes);
W
wanghaox 已提交
206 207 208
    }
  }

W
wanghaox 已提交
209 210 211 212 213
  void GetOutputPos(
      const framework::ExecutionContext& ctx,
      const std::map<int, int>& label_pos_count,
      const std::map<int, std::vector<std::pair<T, int>>>& true_pos,
      const std::map<int, std::vector<std::pair<T, int>>>& false_pos,
214 215 216
      framework::Tensor* output_pos_count,
      framework::LoDTensor* output_true_pos,
      framework::LoDTensor* output_false_pos, const int class_num) const {
W
wanghaox 已提交
217 218
    int true_pos_count = 0;
    int false_pos_count = 0;
219 220 221 222 223 224 225
    for (auto it = true_pos.begin(); it != true_pos.end(); ++it) {
      auto tp = it->second;
      true_pos_count += tp.size();
    }
    for (auto it = false_pos.begin(); it != false_pos.end(); ++it) {
      auto fp = it->second;
      false_pos_count += fp.size();
W
wanghaox 已提交
226 227
    }

228
    int* pos_count_data = output_pos_count->mutable_data<int>(
229
        framework::make_ddim({class_num, 1}), ctx.GetPlace());
230

231
    T* true_pos_data = output_true_pos->mutable_data<T>(
W
wanghaox 已提交
232
        framework::make_ddim({true_pos_count, 2}), ctx.GetPlace());
233
    T* false_pos_data = output_false_pos->mutable_data<T>(
W
wanghaox 已提交
234 235 236 237 238
        framework::make_ddim({false_pos_count, 2}), ctx.GetPlace());
    true_pos_count = 0;
    false_pos_count = 0;
    std::vector<size_t> true_pos_starts = {0};
    std::vector<size_t> false_pos_starts = {0};
239
    for (int i = 0; i < class_num; ++i) {
W
wanghaox 已提交
240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274
      auto it_count = label_pos_count.find(i);
      pos_count_data[i] = 0;
      if (it_count != label_pos_count.end()) {
        pos_count_data[i] = it_count->second;
      }
      auto it_true_pos = true_pos.find(i);
      if (it_true_pos != true_pos.end()) {
        const std::vector<std::pair<T, int>>& true_pos_vec =
            it_true_pos->second;
        for (const std::pair<T, int>& tp : true_pos_vec) {
          true_pos_data[true_pos_count * 2] = tp.first;
          true_pos_data[true_pos_count * 2 + 1] = static_cast<T>(tp.second);
          true_pos_count++;
        }
      }
      true_pos_starts.push_back(true_pos_count);

      auto it_false_pos = false_pos.find(i);
      if (it_false_pos != false_pos.end()) {
        const std::vector<std::pair<T, int>>& false_pos_vec =
            it_false_pos->second;
        for (const std::pair<T, int>& fp : false_pos_vec) {
          false_pos_data[false_pos_count * 2] = fp.first;
          false_pos_data[false_pos_count * 2 + 1] = static_cast<T>(fp.second);
          false_pos_count++;
        }
      }
      false_pos_starts.push_back(false_pos_count);
    }

    framework::LoD true_pos_lod;
    true_pos_lod.emplace_back(true_pos_starts);
    framework::LoD false_pos_lod;
    false_pos_lod.emplace_back(false_pos_starts);

275 276
    output_true_pos->set_lod(true_pos_lod);
    output_false_pos->set_lod(false_pos_lod);
W
wanghaox 已提交
277 278
  }

279 280 281
  void GetInputPos(const framework::Tensor& input_pos_count,
                   const framework::LoDTensor& input_true_pos,
                   const framework::LoDTensor& input_false_pos,
282 283 284
                   std::map<int, int>* label_pos_count,
                   std::map<int, std::vector<std::pair<T, int>>>* true_pos,
                   std::map<int, std::vector<std::pair<T, int>>>* false_pos,
285
                   const int class_num) const {
W
wanghaox 已提交
286
    const int* pos_count_data = input_pos_count.data<int>();
287
    for (int i = 0; i < class_num; ++i) {
288
      (*label_pos_count)[i] = pos_count_data[i];
W
wanghaox 已提交
289 290
    }

W
wanghaox 已提交
291 292 293
    auto SetData = [](const framework::LoDTensor& pos_tensor,
                      std::map<int, std::vector<std::pair<T, int>>>& pos) {
      const T* pos_data = pos_tensor.data<T>();
Y
Yu Yang 已提交
294
      auto& pos_data_lod = pos_tensor.lod()[0];
295 296
      for (size_t i = 0; i < pos_data_lod.size() - 1; ++i) {
        for (size_t j = pos_data_lod[i]; j < pos_data_lod[i + 1]; ++j) {
W
wanghaox 已提交
297
          T score = pos_data[j * 2];
298
          int flag = pos_data[j * 2 + 1];
W
wanghaox 已提交
299 300
          pos[i].push_back(std::make_pair(score, flag));
        }
W
wanghaox 已提交
301
      }
W
wanghaox 已提交
302 303
    };

304 305
    SetData(input_true_pos, *true_pos);
    SetData(input_false_pos, *false_pos);
W
wanghaox 已提交
306 307 308
    return;
  }

W
wanghaox 已提交
309
  void CalcTrueAndFalsePositive(
W
wanghaox 已提交
310 311 312 313
      const std::vector<std::map<int, std::vector<Box>>>& gt_boxes,
      const std::vector<std::map<int, std::vector<std::pair<T, Box>>>>&
          detect_boxes,
      bool evaluate_difficult, float overlap_threshold,
314 315 316
      std::map<int, int>* label_pos_count,
      std::map<int, std::vector<std::pair<T, int>>>* true_pos,
      std::map<int, std::vector<std::pair<T, int>>>* false_pos) const {
W
wanghaox 已提交
317 318
    int batch_size = gt_boxes.size();
    for (int n = 0; n < batch_size; ++n) {
Y
Yu Yang 已提交
319 320
      auto& image_gt_boxes = gt_boxes[n];
      for (auto& image_gt_box : image_gt_boxes) {
W
wanghaox 已提交
321
        size_t count = 0;
Y
Yu Yang 已提交
322
        auto& labeled_bboxes = image_gt_box.second;
W
wanghaox 已提交
323 324 325
        if (evaluate_difficult) {
          count = labeled_bboxes.size();
        } else {
Y
Yu Yang 已提交
326 327 328 329 330
          for (auto& box : labeled_bboxes) {
            if (!box.is_difficult) {
              ++count;
            }
          }
W
wanghaox 已提交
331 332 333 334
        }
        if (count == 0) {
          continue;
        }
Y
Yu Yang 已提交
335
        int label = image_gt_box.first;
336 337
        if (label_pos_count->find(label) == label_pos_count->end()) {
          (*label_pos_count)[label] = count;
W
wanghaox 已提交
338
        } else {
339
          (*label_pos_count)[label] += count;
W
wanghaox 已提交
340 341 342 343
        }
      }
    }

W
wanghaox 已提交
344 345 346
    for (size_t n = 0; n < detect_boxes.size(); ++n) {
      auto image_gt_boxes = gt_boxes[n];
      auto detections = detect_boxes[n];
W
wanghaox 已提交
347

W
wanghaox 已提交
348
      if (image_gt_boxes.size() == 0) {
W
wanghaox 已提交
349
        for (auto it = detections.begin(); it != detections.end(); ++it) {
W
wanghaox 已提交
350
          auto pred_boxes = it->second;
W
wanghaox 已提交
351
          int label = it->first;
W
wanghaox 已提交
352 353
          for (size_t i = 0; i < pred_boxes.size(); ++i) {
            auto score = pred_boxes[i].first;
354 355
            (*true_pos)[label].push_back(std::make_pair(score, 0));
            (*false_pos)[label].push_back(std::make_pair(score, 1));
W
wanghaox 已提交
356 357 358 359 360 361 362
          }
        }
        continue;
      }

      for (auto it = detections.begin(); it != detections.end(); ++it) {
        int label = it->first;
W
wanghaox 已提交
363 364 365 366
        auto pred_boxes = it->second;
        if (image_gt_boxes.find(label) == image_gt_boxes.end()) {
          for (size_t i = 0; i < pred_boxes.size(); ++i) {
            auto score = pred_boxes[i].first;
367 368
            (*true_pos)[label].push_back(std::make_pair(score, 0));
            (*false_pos)[label].push_back(std::make_pair(score, 1));
W
wanghaox 已提交
369 370 371 372
          }
          continue;
        }

W
wanghaox 已提交
373
        auto matched_bboxes = image_gt_boxes.find(label)->second;
W
wanghaox 已提交
374 375
        std::vector<bool> visited(matched_bboxes.size(), false);
        // Sort detections in descend order based on scores
W
wanghaox 已提交
376 377 378 379
        std::sort(pred_boxes.begin(), pred_boxes.end(),
                  SortScorePairDescend<Box>);
        for (size_t i = 0; i < pred_boxes.size(); ++i) {
          T max_overlap = -1.0;
W
wanghaox 已提交
380
          size_t max_idx = 0;
W
wanghaox 已提交
381
          auto score = pred_boxes[i].first;
W
wanghaox 已提交
382
          for (size_t j = 0; j < matched_bboxes.size(); ++j) {
383 384 385
            Box& pred_box = pred_boxes[i].second;
            ClipBBox(pred_box, &pred_box);
            T overlap = JaccardOverlap(pred_box, matched_bboxes[j]);
W
wanghaox 已提交
386 387 388 389 390 391 392 393 394 395 396
            if (overlap > max_overlap) {
              max_overlap = overlap;
              max_idx = j;
            }
          }
          if (max_overlap > overlap_threshold) {
            bool match_evaluate_difficult =
                evaluate_difficult ||
                (!evaluate_difficult && !matched_bboxes[max_idx].is_difficult);
            if (match_evaluate_difficult) {
              if (!visited[max_idx]) {
397 398
                (*true_pos)[label].push_back(std::make_pair(score, 1));
                (*false_pos)[label].push_back(std::make_pair(score, 0));
W
wanghaox 已提交
399 400
                visited[max_idx] = true;
              } else {
401 402
                (*true_pos)[label].push_back(std::make_pair(score, 0));
                (*false_pos)[label].push_back(std::make_pair(score, 1));
W
wanghaox 已提交
403 404 405
              }
            }
          } else {
406 407
            (*true_pos)[label].push_back(std::make_pair(score, 0));
            (*false_pos)[label].push_back(std::make_pair(score, 1));
W
wanghaox 已提交
408 409 410 411 412 413
          }
        }
      }
    }
  }

414 415 416 417
  T CalcMAP(APType ap_type, const std::map<int, int>& label_pos_count,
            const std::map<int, std::vector<std::pair<T, int>>>& true_pos,
            const std::map<int, std::vector<std::pair<T, int>>>& false_pos,
            const int background_label) const {
W
wanghaox 已提交
418 419 420 421 422
    T mAP = 0.0;
    int count = 0;
    for (auto it = label_pos_count.begin(); it != label_pos_count.end(); ++it) {
      int label = it->first;
      int label_num_pos = it->second;
423 424
      if (label_num_pos == background_label ||
          true_pos.find(label) == true_pos.end()) {
W
wanghaox 已提交
425
        continue;
426
      }
W
wanghaox 已提交
427 428 429 430 431 432 433
      auto label_true_pos = true_pos.find(label)->second;
      auto label_false_pos = false_pos.find(label)->second;
      // Compute average precision.
      std::vector<int> tp_sum;
      GetAccumulation<T>(label_true_pos, &tp_sum);
      std::vector<int> fp_sum;
      GetAccumulation<T>(label_false_pos, &fp_sum);
W
wanghaox 已提交
434
      std::vector<T> precision, recall;
W
wanghaox 已提交
435 436 437
      size_t num = tp_sum.size();
      // Compute Precision.
      for (size_t i = 0; i < num; ++i) {
W
wanghaox 已提交
438 439 440
        precision.push_back(static_cast<T>(tp_sum[i]) /
                            static_cast<T>(tp_sum[i] + fp_sum[i]));
        recall.push_back(static_cast<T>(tp_sum[i]) / label_num_pos);
W
wanghaox 已提交
441 442
      }
      // VOC2007 style
W
wanghaox 已提交
443 444
      if (ap_type == APType::k11point) {
        std::vector<T> max_precisions(11, 0.0);
W
wanghaox 已提交
445 446 447 448 449 450 451 452 453 454 455 456 457 458
        int start_idx = num - 1;
        for (int j = 10; j >= 0; --j)
          for (int i = start_idx; i >= 0; --i) {
            if (recall[i] < j / 10.) {
              start_idx = i;
              if (j > 0) max_precisions[j - 1] = max_precisions[j];
              break;
            } else {
              if (max_precisions[j] < precision[i])
                max_precisions[j] = precision[i];
            }
          }
        for (int j = 10; j >= 0; --j) mAP += max_precisions[j] / 11;
        ++count;
W
wanghaox 已提交
459
      } else if (ap_type == APType::kIntegral) {
W
wanghaox 已提交
460 461 462 463 464 465 466 467 468 469 470 471 472 473 474
        // Nature integral
        float average_precisions = 0.;
        float prev_recall = 0.;
        for (size_t i = 0; i < num; ++i) {
          if (fabs(recall[i] - prev_recall) > 1e-6)
            average_precisions += precision[i] * fabs(recall[i] - prev_recall);
          prev_recall = recall[i];
        }
        mAP += average_precisions;
        ++count;
      } else {
        LOG(FATAL) << "Unkown ap version: " << ap_type;
      }
    }
    if (count != 0) mAP /= count;
475
    return mAP;
W
wanghaox 已提交
476 477 478 479 480
  }
};  // namespace operators

}  // namespace operators
}  // namespace paddle