detection_map_op.h 17.5 KB
Newer Older
1
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
W
wanghaox 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14 15

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once
16 17 18 19 20
#include <algorithm>
#include <map>
#include <string>
#include <utility>
#include <vector>
W
wanghaox 已提交
21 22
#include "paddle/fluid/framework/eigen.h"
#include "paddle/fluid/framework/op_registry.h"
W
wanghaox 已提交
23 24 25 26

namespace paddle {
namespace operators {

W
wanghaox 已提交
27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44
enum APType { kNone = 0, kIntegral, k11point };

APType GetAPType(std::string str) {
  if (str == "integral") {
    return APType::kIntegral;
  } else if (str == "11point") {
    return APType::k11point;
  } else {
    return APType::kNone;
  }
}

template <typename T>
inline bool SortScorePairDescend(const std::pair<float, T>& pair1,
                                 const std::pair<float, T>& pair2) {
  return pair1.first > pair2.first;
}

W
wanghaox 已提交
45 46 47
template <typename T>
inline void GetAccumulation(std::vector<std::pair<T, int>> in_pairs,
                            std::vector<int>* accu_vec) {
W
wanghaox 已提交
48
  std::stable_sort(in_pairs.begin(), in_pairs.end(), SortScorePairDescend<int>);
W
wanghaox 已提交
49 50 51 52 53 54 55 56 57 58 59 60 61
  accu_vec->clear();
  size_t sum = 0;
  for (size_t i = 0; i < in_pairs.size(); ++i) {
    auto count = in_pairs[i].second;
    sum += count;
    accu_vec->push_back(sum);
  }
}

template <typename Place, typename T>
class DetectionMAPOpKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
W
wanghaox 已提交
62
    auto* in_detect = ctx.Input<framework::LoDTensor>("DetectRes");
W
wanghaox 已提交
63 64
    auto* in_label = ctx.Input<framework::LoDTensor>("Label");
    auto* out_map = ctx.Output<framework::Tensor>("MAP");
W
wanghaox 已提交
65

W
wanghaox 已提交
66 67 68 69
    auto* in_pos_count = ctx.Input<framework::Tensor>("PosCount");
    auto* in_true_pos = ctx.Input<framework::LoDTensor>("TruePos");
    auto* in_false_pos = ctx.Input<framework::LoDTensor>("FalsePos");

W
wanghaox 已提交
70 71 72
    auto* out_pos_count = ctx.Output<framework::Tensor>("AccumPosCount");
    auto* out_true_pos = ctx.Output<framework::LoDTensor>("AccumTruePos");
    auto* out_false_pos = ctx.Output<framework::LoDTensor>("AccumFalsePos");
W
wanghaox 已提交
73

W
wanghaox 已提交
74 75
    float overlap_threshold = ctx.Attr<float>("overlap_threshold");
    float evaluate_difficult = ctx.Attr<bool>("evaluate_difficult");
W
wanghaox 已提交
76
    auto ap_type = GetAPType(ctx.Attr<std::string>("ap_type"));
77
    int class_num = ctx.Attr<int>("class_num");
W
wanghaox 已提交
78

W
wanghaox 已提交
79 80
    auto label_lod = in_label->lod();
    auto detect_lod = in_detect->lod();
W
wanghaox 已提交
81 82
    PADDLE_ENFORCE_EQ(label_lod.size(), 1UL,
                      "Only support one level sequence now.");
W
wanghaox 已提交
83 84 85 86 87 88 89
    PADDLE_ENFORCE_EQ(label_lod[0].size(), detect_lod[0].size(),
                      "The batch_size of input(Label) and input(Detection) "
                      "must be the same.");

    std::vector<std::map<int, std::vector<Box>>> gt_boxes;
    std::vector<std::map<int, std::vector<std::pair<T, Box>>>> detect_boxes;

90
    GetBoxes(*in_label, *in_detect, &gt_boxes, detect_boxes);
W
wanghaox 已提交
91 92 93 94 95

    std::map<int, int> label_pos_count;
    std::map<int, std::vector<std::pair<T, int>>> true_pos;
    std::map<int, std::vector<std::pair<T, int>>> false_pos;

96 97 98 99 100 101 102
    auto* has_state = ctx.Input<framework::LoDTensor>("HasState");
    int state = 0;
    if (has_state) {
      state = has_state->data<int>()[0];
    }

    if (in_pos_count != nullptr && state) {
103 104
      GetInputPos(*in_pos_count, *in_true_pos, *in_false_pos, &label_pos_count,
                  &true_pos, &false_pos, class_num);
W
wanghaox 已提交
105 106
    }

W
wanghaox 已提交
107
    CalcTrueAndFalsePositive(gt_boxes, detect_boxes, evaluate_difficult,
108 109
                             overlap_threshold, &label_pos_count, &true_pos,
                             &false_pos);
W
wanghaox 已提交
110

111 112 113
    int background_label = ctx.Attr<int>("background_label");
    T map = CalcMAP(ap_type, label_pos_count, true_pos, false_pos,
                    background_label);
W
wanghaox 已提交
114

115 116
    GetOutputPos(ctx, label_pos_count, true_pos, false_pos, out_pos_count,
                 out_true_pos, out_false_pos, class_num);
W
wanghaox 已提交
117

W
wanghaox 已提交
118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134
    T* map_data = out_map->mutable_data<T>(ctx.GetPlace());
    map_data[0] = map;
  }

 protected:
  struct Box {
    Box(T xmin, T ymin, T xmax, T ymax)
        : xmin(xmin), ymin(ymin), xmax(xmax), ymax(ymax), is_difficult(false) {}

    T xmin, ymin, xmax, ymax;
    bool is_difficult;
  };

  inline T JaccardOverlap(const Box& box1, const Box& box2) const {
    if (box2.xmin > box1.xmax || box2.xmax < box1.xmin ||
        box2.ymin > box1.ymax || box2.ymax < box1.ymin) {
      return 0.0;
W
wanghaox 已提交
135
    } else {
W
wanghaox 已提交
136 137 138 139 140 141 142 143 144 145 146 147 148
      T inter_xmin = std::max(box1.xmin, box2.xmin);
      T inter_ymin = std::max(box1.ymin, box2.ymin);
      T inter_xmax = std::min(box1.xmax, box2.xmax);
      T inter_ymax = std::min(box1.ymax, box2.ymax);

      T inter_width = inter_xmax - inter_xmin;
      T inter_height = inter_ymax - inter_ymin;
      T inter_area = inter_width * inter_height;

      T bbox_area1 = (box1.xmax - box1.xmin) * (box1.ymax - box1.ymin);
      T bbox_area2 = (box2.xmax - box2.xmin) * (box2.ymax - box2.ymin);

      return inter_area / (bbox_area1 + bbox_area2 - inter_area);
W
wanghaox 已提交
149 150 151
    }
  }

152 153 154 155 156 157 158 159 160
  inline void ClipBBox(const Box& bbox, Box* clipped_bbox) const {
    T one = static_cast<T>(1.0);
    T zero = static_cast<T>(0.0);
    clipped_bbox->xmin = std::max(std::min(bbox.xmin, one), zero);
    clipped_bbox->ymin = std::max(std::min(bbox.ymin, one), zero);
    clipped_bbox->xmax = std::max(std::min(bbox.xmax, one), zero);
    clipped_bbox->ymax = std::max(std::min(bbox.ymax, one), zero);
  }

W
wanghaox 已提交
161 162
  void GetBoxes(const framework::LoDTensor& input_label,
                const framework::LoDTensor& input_detect,
163
                std::vector<std::map<int, std::vector<Box>>>* gt_boxes,
W
wanghaox 已提交
164 165 166 167
                std::vector<std::map<int, std::vector<std::pair<T, Box>>>>&
                    detect_boxes) const {
    auto labels = framework::EigenTensor<T, 2>::From(input_label);
    auto detect = framework::EigenTensor<T, 2>::From(input_detect);
W
wanghaox 已提交
168 169

    auto label_lod = input_label.lod();
W
wanghaox 已提交
170 171 172
    auto detect_lod = input_detect.lod();

    int batch_size = label_lod[0].size() - 1;
W
wanghaox 已提交
173 174
    auto label_index = label_lod[0];

W
wanghaox 已提交
175 176
    for (int n = 0; n < batch_size; ++n) {
      std::map<int, std::vector<Box>> boxes;
Q
QI JUN 已提交
177
      for (size_t i = label_index[n]; i < label_index[n + 1]; ++i) {
W
wanghaox 已提交
178 179 180 181 182 183 184 185
        Box box(labels(i, 2), labels(i, 3), labels(i, 4), labels(i, 5));
        int label = labels(i, 0);
        auto is_difficult = labels(i, 1);
        if (std::abs(is_difficult - 0.0) < 1e-6)
          box.is_difficult = false;
        else
          box.is_difficult = true;
        boxes[label].push_back(box);
W
wanghaox 已提交
186
      }
187
      gt_boxes->push_back(boxes);
W
wanghaox 已提交
188 189
    }

W
wanghaox 已提交
190 191 192
    auto detect_index = detect_lod[0];
    for (int n = 0; n < batch_size; ++n) {
      std::map<int, std::vector<std::pair<T, Box>>> boxes;
Q
QI JUN 已提交
193
      for (size_t i = detect_index[n]; i < detect_index[n + 1]; ++i) {
W
wanghaox 已提交
194 195 196 197
        Box box(detect(i, 2), detect(i, 3), detect(i, 4), detect(i, 5));
        int label = detect(i, 0);
        auto score = detect(i, 1);
        boxes[label].push_back(std::make_pair(score, box));
W
wanghaox 已提交
198
      }
W
wanghaox 已提交
199
      detect_boxes.push_back(boxes);
W
wanghaox 已提交
200 201 202
    }
  }

W
wanghaox 已提交
203 204 205 206 207
  void GetOutputPos(
      const framework::ExecutionContext& ctx,
      const std::map<int, int>& label_pos_count,
      const std::map<int, std::vector<std::pair<T, int>>>& true_pos,
      const std::map<int, std::vector<std::pair<T, int>>>& false_pos,
208 209 210
      framework::Tensor* output_pos_count,
      framework::LoDTensor* output_true_pos,
      framework::LoDTensor* output_false_pos, const int class_num) const {
W
wanghaox 已提交
211 212
    int true_pos_count = 0;
    int false_pos_count = 0;
213 214 215 216 217 218 219
    for (auto it = true_pos.begin(); it != true_pos.end(); ++it) {
      auto tp = it->second;
      true_pos_count += tp.size();
    }
    for (auto it = false_pos.begin(); it != false_pos.end(); ++it) {
      auto fp = it->second;
      false_pos_count += fp.size();
W
wanghaox 已提交
220 221
    }

222
    int* pos_count_data = output_pos_count->mutable_data<int>(
223
        framework::make_ddim({class_num, 1}), ctx.GetPlace());
224

225
    T* true_pos_data = output_true_pos->mutable_data<T>(
W
wanghaox 已提交
226
        framework::make_ddim({true_pos_count, 2}), ctx.GetPlace());
227
    T* false_pos_data = output_false_pos->mutable_data<T>(
W
wanghaox 已提交
228 229 230 231 232
        framework::make_ddim({false_pos_count, 2}), ctx.GetPlace());
    true_pos_count = 0;
    false_pos_count = 0;
    std::vector<size_t> true_pos_starts = {0};
    std::vector<size_t> false_pos_starts = {0};
233
    for (int i = 0; i < class_num; ++i) {
W
wanghaox 已提交
234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268
      auto it_count = label_pos_count.find(i);
      pos_count_data[i] = 0;
      if (it_count != label_pos_count.end()) {
        pos_count_data[i] = it_count->second;
      }
      auto it_true_pos = true_pos.find(i);
      if (it_true_pos != true_pos.end()) {
        const std::vector<std::pair<T, int>>& true_pos_vec =
            it_true_pos->second;
        for (const std::pair<T, int>& tp : true_pos_vec) {
          true_pos_data[true_pos_count * 2] = tp.first;
          true_pos_data[true_pos_count * 2 + 1] = static_cast<T>(tp.second);
          true_pos_count++;
        }
      }
      true_pos_starts.push_back(true_pos_count);

      auto it_false_pos = false_pos.find(i);
      if (it_false_pos != false_pos.end()) {
        const std::vector<std::pair<T, int>>& false_pos_vec =
            it_false_pos->second;
        for (const std::pair<T, int>& fp : false_pos_vec) {
          false_pos_data[false_pos_count * 2] = fp.first;
          false_pos_data[false_pos_count * 2 + 1] = static_cast<T>(fp.second);
          false_pos_count++;
        }
      }
      false_pos_starts.push_back(false_pos_count);
    }

    framework::LoD true_pos_lod;
    true_pos_lod.emplace_back(true_pos_starts);
    framework::LoD false_pos_lod;
    false_pos_lod.emplace_back(false_pos_starts);

269 270
    output_true_pos->set_lod(true_pos_lod);
    output_false_pos->set_lod(false_pos_lod);
W
wanghaox 已提交
271 272 273
    return;
  }

274 275 276
  void GetInputPos(const framework::Tensor& input_pos_count,
                   const framework::LoDTensor& input_true_pos,
                   const framework::LoDTensor& input_false_pos,
277 278 279
                   std::map<int, int>* label_pos_count,
                   std::map<int, std::vector<std::pair<T, int>>>* true_pos,
                   std::map<int, std::vector<std::pair<T, int>>>* false_pos,
280
                   const int class_num) const {
W
wanghaox 已提交
281
    const int* pos_count_data = input_pos_count.data<int>();
282
    for (int i = 0; i < class_num; ++i) {
283
      (*label_pos_count)[i] = pos_count_data[i];
W
wanghaox 已提交
284 285
    }

W
wanghaox 已提交
286 287 288
    auto SetData = [](const framework::LoDTensor& pos_tensor,
                      std::map<int, std::vector<std::pair<T, int>>>& pos) {
      const T* pos_data = pos_tensor.data<T>();
289 290 291
      auto pos_data_lod = pos_tensor.lod()[0];
      for (size_t i = 0; i < pos_data_lod.size() - 1; ++i) {
        for (size_t j = pos_data_lod[i]; j < pos_data_lod[i + 1]; ++j) {
W
wanghaox 已提交
292
          T score = pos_data[j * 2];
293
          int flag = pos_data[j * 2 + 1];
W
wanghaox 已提交
294 295
          pos[i].push_back(std::make_pair(score, flag));
        }
W
wanghaox 已提交
296
      }
W
wanghaox 已提交
297 298
    };

299 300
    SetData(input_true_pos, *true_pos);
    SetData(input_false_pos, *false_pos);
W
wanghaox 已提交
301 302 303
    return;
  }

W
wanghaox 已提交
304
  void CalcTrueAndFalsePositive(
W
wanghaox 已提交
305 306 307 308
      const std::vector<std::map<int, std::vector<Box>>>& gt_boxes,
      const std::vector<std::map<int, std::vector<std::pair<T, Box>>>>&
          detect_boxes,
      bool evaluate_difficult, float overlap_threshold,
309 310 311
      std::map<int, int>* label_pos_count,
      std::map<int, std::vector<std::pair<T, int>>>* true_pos,
      std::map<int, std::vector<std::pair<T, int>>>* false_pos) const {
W
wanghaox 已提交
312 313 314 315
    int batch_size = gt_boxes.size();
    for (int n = 0; n < batch_size; ++n) {
      auto image_gt_boxes = gt_boxes[n];
      for (auto it = image_gt_boxes.begin(); it != image_gt_boxes.end(); ++it) {
W
wanghaox 已提交
316 317 318 319 320 321 322 323 324 325 326 327
        size_t count = 0;
        auto labeled_bboxes = it->second;
        if (evaluate_difficult) {
          count = labeled_bboxes.size();
        } else {
          for (size_t i = 0; i < labeled_bboxes.size(); ++i)
            if (!(labeled_bboxes[i].is_difficult)) ++count;
        }
        if (count == 0) {
          continue;
        }
        int label = it->first;
328 329
        if (label_pos_count->find(label) == label_pos_count->end()) {
          (*label_pos_count)[label] = count;
W
wanghaox 已提交
330
        } else {
331
          (*label_pos_count)[label] += count;
W
wanghaox 已提交
332 333 334 335
        }
      }
    }

W
wanghaox 已提交
336 337 338
    for (size_t n = 0; n < detect_boxes.size(); ++n) {
      auto image_gt_boxes = gt_boxes[n];
      auto detections = detect_boxes[n];
W
wanghaox 已提交
339

W
wanghaox 已提交
340
      if (image_gt_boxes.size() == 0) {
W
wanghaox 已提交
341
        for (auto it = detections.begin(); it != detections.end(); ++it) {
W
wanghaox 已提交
342
          auto pred_boxes = it->second;
W
wanghaox 已提交
343
          int label = it->first;
W
wanghaox 已提交
344 345
          for (size_t i = 0; i < pred_boxes.size(); ++i) {
            auto score = pred_boxes[i].first;
346 347
            (*true_pos)[label].push_back(std::make_pair(score, 0));
            (*false_pos)[label].push_back(std::make_pair(score, 1));
W
wanghaox 已提交
348 349 350 351 352 353 354
          }
        }
        continue;
      }

      for (auto it = detections.begin(); it != detections.end(); ++it) {
        int label = it->first;
W
wanghaox 已提交
355 356 357 358
        auto pred_boxes = it->second;
        if (image_gt_boxes.find(label) == image_gt_boxes.end()) {
          for (size_t i = 0; i < pred_boxes.size(); ++i) {
            auto score = pred_boxes[i].first;
359 360
            (*true_pos)[label].push_back(std::make_pair(score, 0));
            (*false_pos)[label].push_back(std::make_pair(score, 1));
W
wanghaox 已提交
361 362 363 364
          }
          continue;
        }

W
wanghaox 已提交
365
        auto matched_bboxes = image_gt_boxes.find(label)->second;
W
wanghaox 已提交
366 367
        std::vector<bool> visited(matched_bboxes.size(), false);
        // Sort detections in descend order based on scores
W
wanghaox 已提交
368 369 370 371
        std::sort(pred_boxes.begin(), pred_boxes.end(),
                  SortScorePairDescend<Box>);
        for (size_t i = 0; i < pred_boxes.size(); ++i) {
          T max_overlap = -1.0;
W
wanghaox 已提交
372
          size_t max_idx = 0;
W
wanghaox 已提交
373
          auto score = pred_boxes[i].first;
W
wanghaox 已提交
374
          for (size_t j = 0; j < matched_bboxes.size(); ++j) {
375 376 377
            Box& pred_box = pred_boxes[i].second;
            ClipBBox(pred_box, &pred_box);
            T overlap = JaccardOverlap(pred_box, matched_bboxes[j]);
W
wanghaox 已提交
378 379 380 381 382 383 384 385 386 387 388
            if (overlap > max_overlap) {
              max_overlap = overlap;
              max_idx = j;
            }
          }
          if (max_overlap > overlap_threshold) {
            bool match_evaluate_difficult =
                evaluate_difficult ||
                (!evaluate_difficult && !matched_bboxes[max_idx].is_difficult);
            if (match_evaluate_difficult) {
              if (!visited[max_idx]) {
389 390
                (*true_pos)[label].push_back(std::make_pair(score, 1));
                (*false_pos)[label].push_back(std::make_pair(score, 0));
W
wanghaox 已提交
391 392
                visited[max_idx] = true;
              } else {
393 394
                (*true_pos)[label].push_back(std::make_pair(score, 0));
                (*false_pos)[label].push_back(std::make_pair(score, 1));
W
wanghaox 已提交
395 396 397
              }
            }
          } else {
398 399
            (*true_pos)[label].push_back(std::make_pair(score, 0));
            (*false_pos)[label].push_back(std::make_pair(score, 1));
W
wanghaox 已提交
400 401 402 403 404 405
          }
        }
      }
    }
  }

406 407 408 409
  T CalcMAP(APType ap_type, const std::map<int, int>& label_pos_count,
            const std::map<int, std::vector<std::pair<T, int>>>& true_pos,
            const std::map<int, std::vector<std::pair<T, int>>>& false_pos,
            const int background_label) const {
W
wanghaox 已提交
410 411 412 413 414
    T mAP = 0.0;
    int count = 0;
    for (auto it = label_pos_count.begin(); it != label_pos_count.end(); ++it) {
      int label = it->first;
      int label_num_pos = it->second;
415 416
      if (label_num_pos == background_label ||
          true_pos.find(label) == true_pos.end()) {
W
wanghaox 已提交
417
        continue;
418
      }
W
wanghaox 已提交
419 420 421 422 423 424 425
      auto label_true_pos = true_pos.find(label)->second;
      auto label_false_pos = false_pos.find(label)->second;
      // Compute average precision.
      std::vector<int> tp_sum;
      GetAccumulation<T>(label_true_pos, &tp_sum);
      std::vector<int> fp_sum;
      GetAccumulation<T>(label_false_pos, &fp_sum);
W
wanghaox 已提交
426
      std::vector<T> precision, recall;
W
wanghaox 已提交
427 428 429
      size_t num = tp_sum.size();
      // Compute Precision.
      for (size_t i = 0; i < num; ++i) {
W
wanghaox 已提交
430 431 432
        precision.push_back(static_cast<T>(tp_sum[i]) /
                            static_cast<T>(tp_sum[i] + fp_sum[i]));
        recall.push_back(static_cast<T>(tp_sum[i]) / label_num_pos);
W
wanghaox 已提交
433 434
      }
      // VOC2007 style
W
wanghaox 已提交
435 436
      if (ap_type == APType::k11point) {
        std::vector<T> max_precisions(11, 0.0);
W
wanghaox 已提交
437 438 439 440 441 442 443 444 445 446 447 448 449 450
        int start_idx = num - 1;
        for (int j = 10; j >= 0; --j)
          for (int i = start_idx; i >= 0; --i) {
            if (recall[i] < j / 10.) {
              start_idx = i;
              if (j > 0) max_precisions[j - 1] = max_precisions[j];
              break;
            } else {
              if (max_precisions[j] < precision[i])
                max_precisions[j] = precision[i];
            }
          }
        for (int j = 10; j >= 0; --j) mAP += max_precisions[j] / 11;
        ++count;
W
wanghaox 已提交
451
      } else if (ap_type == APType::kIntegral) {
W
wanghaox 已提交
452 453 454 455 456 457 458 459 460 461 462 463 464 465 466
        // Nature integral
        float average_precisions = 0.;
        float prev_recall = 0.;
        for (size_t i = 0; i < num; ++i) {
          if (fabs(recall[i] - prev_recall) > 1e-6)
            average_precisions += precision[i] * fabs(recall[i] - prev_recall);
          prev_recall = recall[i];
        }
        mAP += average_precisions;
        ++count;
      } else {
        LOG(FATAL) << "Unkown ap version: " << ap_type;
      }
    }
    if (count != 0) mAP /= count;
467
    return mAP;
W
wanghaox 已提交
468 469 470 471 472
  }
};  // namespace operators

}  // namespace operators
}  // namespace paddle