Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
Crayon鑫
Paddle
提交
67cbb3e3
P
Paddle
项目概览
Crayon鑫
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1
Issue
1
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
67cbb3e3
编写于
12月 13, 2017
作者:
W
wanghaox
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
detection map evaluator for SSD
上级
e72b865c
变更
7
隐藏空白更改
内联
并排
Showing
7 changed file
with
741 addition
and
0 deletion
+741
-0
paddle/operators/detection_map_op.cc
paddle/operators/detection_map_op.cc
+77
-0
paddle/operators/detection_map_op.cu
paddle/operators/detection_map_op.cu
+20
-0
paddle/operators/detection_map_op.h
paddle/operators/detection_map_op.h
+316
-0
paddle/operators/math/detection_util.cc
paddle/operators/math/detection_util.cc
+22
-0
paddle/operators/math/detection_util.cu
paddle/operators/math/detection_util.cu
+23
-0
paddle/operators/math/detection_util.h
paddle/operators/math/detection_util.h
+128
-0
python/paddle/v2/fluid/tests/test_detection_map_op.py
python/paddle/v2/fluid/tests/test_detection_map_op.py
+155
-0
未找到文件。
paddle/operators/detection_map_op.cc
0 → 100644
浏览文件 @
67cbb3e3
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/operators/detection_map_op.h"
namespace
paddle
{
namespace
operators
{
using
Tensor
=
framework
::
Tensor
;
class
DetectionMAPOp
:
public
framework
::
OperatorWithKernel
{
public:
using
framework
::
OperatorWithKernel
::
OperatorWithKernel
;
void
InferShape
(
framework
::
InferShapeContext
*
ctx
)
const
override
{
auto
map_dim
=
framework
::
make_ddim
({
1
});
ctx
->
SetOutputDim
(
"MAP"
,
map_dim
);
}
protected:
framework
::
OpKernelType
GetKernelType
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
return
framework
::
OpKernelType
(
framework
::
ToDataType
(
ctx
.
Input
<
framework
::
Tensor
>
(
"Label"
)
->
type
()),
ctx
.
device_context
());
}
};
class
DetectionMAPOpMaker
:
public
framework
::
OpProtoAndCheckerMaker
{
public:
DetectionMAPOpMaker
(
framework
::
OpProto
*
proto
,
framework
::
OpAttrChecker
*
op_checker
)
:
OpProtoAndCheckerMaker
(
proto
,
op_checker
)
{
AddInput
(
"Detect"
,
"The detection output."
);
AddInput
(
"Label"
,
"The label data."
);
AddOutput
(
"MAP"
,
"The MAP evaluate result of the detection."
);
AddAttr
<
float
>
(
"overlap_threshold"
,
"The overlap threshold."
)
.
SetDefault
(
.3
f
);
AddAttr
<
bool
>
(
"evaluate_difficult"
,
"Switch to control whether the difficult data is evaluated."
)
.
SetDefault
(
true
);
AddAttr
<
std
::
string
>
(
"ap_type"
,
"The AP algorithm type, 'Integral' or '11point'."
)
.
SetDefault
(
"Integral"
);
AddComment
(
R"DOC(
Detection MAP Operator.
Detection MAP evaluator for SSD(Single Shot MultiBox Detector) algorithm.
Please get more information from the following papers:
https://arxiv.org/abs/1512.02325.
)DOC"
);
}
};
}
// namespace operators
}
// namespace paddle
namespace
ops
=
paddle
::
operators
;
REGISTER_OP_WITHOUT_GRADIENT
(
detection_map
,
ops
::
DetectionMAPOp
,
ops
::
DetectionMAPOpMaker
);
REGISTER_OP_CPU_KERNEL
(
detection_map
,
ops
::
DetectionMAPOpKernel
<
paddle
::
platform
::
GPUPlace
,
float
>
,
ops
::
DetectionMAPOpKernel
<
paddle
::
platform
::
GPUPlace
,
double
>
);
paddle/operators/detection_map_op.cu
0 → 100644
浏览文件 @
67cbb3e3
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/operators/detection_map_op.h"
namespace
ops
=
paddle
::
operators
;
REGISTER_OP_CUDA_KERNEL
(
detection_map
,
ops
::
DetectionMAPOpKernel
<
paddle
::
platform
::
GPUPlace
,
float
>
,
ops
::
DetectionMAPOpKernel
<
paddle
::
platform
::
GPUPlace
,
double
>
);
paddle/operators/detection_map_op.h
0 → 100644
浏览文件 @
67cbb3e3
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include "paddle/framework/op_registry.h"
#include "paddle/operators/math/detection_util.h"
#include "paddle/operators/math/math_function.h"
namespace
paddle
{
namespace
operators
{
template
<
typename
T
>
inline
void
GetAccumulation
(
std
::
vector
<
std
::
pair
<
T
,
int
>>
in_pairs
,
std
::
vector
<
int
>*
accu_vec
)
{
std
::
stable_sort
(
in_pairs
.
begin
(),
in_pairs
.
end
(),
math
::
SortScorePairDescend
<
int
>
);
accu_vec
->
clear
();
size_t
sum
=
0
;
for
(
size_t
i
=
0
;
i
<
in_pairs
.
size
();
++
i
)
{
// auto score = in_pairs[i].first;
auto
count
=
in_pairs
[
i
].
second
;
sum
+=
count
;
accu_vec
->
push_back
(
sum
);
}
}
template
<
typename
Place
,
typename
T
>
class
DetectionMAPOpKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
auto
*
input_label
=
ctx
.
Input
<
framework
::
LoDTensor
>
(
"Label"
);
auto
*
input_detect
=
ctx
.
Input
<
framework
::
Tensor
>
(
"Detect"
);
auto
*
map_out
=
ctx
.
Output
<
framework
::
Tensor
>
(
"MAP"
);
float
overlap_threshold
=
ctx
.
Attr
<
float
>
(
"overlap_threshold"
);
float
evaluate_difficult
=
ctx
.
Attr
<
bool
>
(
"evaluate_difficult"
);
std
::
string
ap_type
=
ctx
.
Attr
<
std
::
string
>
(
"ap_type"
);
auto
label_lod
=
input_label
->
lod
();
PADDLE_ENFORCE_EQ
(
label_lod
.
size
(),
1UL
,
"Only support one level sequence now."
);
auto
batch_size
=
label_lod
[
0
].
size
()
-
1
;
std
::
vector
<
std
::
map
<
int
,
std
::
vector
<
operators
::
math
::
BBox
<
T
>>>>
gt_bboxes
;
std
::
vector
<
std
::
map
<
int
,
std
::
vector
<
std
::
pair
<
T
,
operators
::
math
::
BBox
<
T
>>>>>
detect_bboxes
;
if
(
platform
::
is_gpu_place
(
ctx
.
GetPlace
()))
{
framework
::
LoDTensor
input_label_cpu
;
framework
::
Tensor
input_detect_cpu
;
input_label_cpu
.
set_lod
(
input_label
->
lod
());
input_label_cpu
.
Resize
(
input_label
->
dims
());
input_detect_cpu
.
Resize
(
input_detect
->
dims
());
input_label_cpu
.
mutable_data
<
T
>
(
platform
::
CPUPlace
());
input_detect_cpu
.
mutable_data
<
T
>
(
platform
::
CPUPlace
());
framework
::
CopyFrom
(
*
input_label
,
platform
::
CPUPlace
(),
ctx
.
device_context
(),
&
input_label_cpu
);
framework
::
CopyFrom
(
*
input_detect
,
platform
::
CPUPlace
(),
ctx
.
device_context
(),
&
input_detect_cpu
);
GetBBoxes
(
input_label_cpu
,
input_detect_cpu
,
gt_bboxes
,
detect_bboxes
);
}
else
{
GetBBoxes
(
*
input_label
,
*
input_detect
,
gt_bboxes
,
detect_bboxes
);
}
std
::
map
<
int
,
int
>
label_pos_count
;
std
::
map
<
int
,
std
::
vector
<
std
::
pair
<
T
,
int
>>>
true_pos
;
std
::
map
<
int
,
std
::
vector
<
std
::
pair
<
T
,
int
>>>
false_pos
;
CalcTrueAndFalsePositive
(
batch_size
,
evaluate_difficult
,
overlap_threshold
,
gt_bboxes
,
detect_bboxes
,
label_pos_count
,
true_pos
,
false_pos
);
T
map
=
CalcMAP
(
ap_type
,
label_pos_count
,
true_pos
,
false_pos
);
T
*
map_data
=
nullptr
;
framework
::
Tensor
map_cpu
;
map_out
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
if
(
platform
::
is_gpu_place
(
ctx
.
GetPlace
()))
{
map_data
=
map_cpu
.
mutable_data
<
T
>
(
map_out
->
dims
(),
platform
::
CPUPlace
());
map_data
[
0
]
=
map
;
framework
::
CopyFrom
(
map_cpu
,
platform
::
CPUPlace
(),
ctx
.
device_context
(),
map_out
);
}
else
{
map_data
=
map_out
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
map_data
[
0
]
=
map
;
}
}
protected:
void
GetBBoxes
(
const
framework
::
LoDTensor
&
input_label
,
const
framework
::
Tensor
&
input_detect
,
std
::
vector
<
std
::
map
<
int
,
std
::
vector
<
operators
::
math
::
BBox
<
T
>>>>&
gt_bboxes
,
std
::
vector
<
std
::
map
<
int
,
std
::
vector
<
std
::
pair
<
T
,
operators
::
math
::
BBox
<
T
>>>>>&
detect_bboxes
)
const
{
const
T
*
label_data
=
input_label
.
data
<
T
>
();
const
T
*
detect_data
=
input_detect
.
data
<
T
>
();
auto
label_lod
=
input_label
.
lod
();
auto
batch_size
=
label_lod
[
0
].
size
()
-
1
;
auto
label_index
=
label_lod
[
0
];
for
(
size_t
n
=
0
;
n
<
batch_size
;
++
n
)
{
std
::
map
<
int
,
std
::
vector
<
operators
::
math
::
BBox
<
T
>>>
bboxes
;
for
(
int
i
=
label_index
[
n
];
i
<
label_index
[
n
+
1
];
++
i
)
{
std
::
vector
<
operators
::
math
::
BBox
<
T
>>
bbox
;
math
::
GetBBoxFromLabelData
<
T
>
(
label_data
+
i
*
6
,
1
,
bbox
);
int
label
=
static_cast
<
int
>
(
label_data
[
i
*
6
]);
bboxes
[
label
].
push_back
(
bbox
[
0
]);
}
gt_bboxes
.
push_back
(
bboxes
);
}
size_t
n
=
0
;
size_t
detect_box_count
=
input_detect
.
dims
()[
0
];
for
(
size_t
img_id
=
0
;
img_id
<
batch_size
;
++
img_id
)
{
std
::
map
<
int
,
std
::
vector
<
std
::
pair
<
T
,
operators
::
math
::
BBox
<
T
>>>>
bboxes
;
size_t
cur_img_id
=
static_cast
<
size_t
>
((
detect_data
+
n
*
7
)[
0
]);
while
(
cur_img_id
==
img_id
&&
n
<
detect_box_count
)
{
std
::
vector
<
T
>
label
;
std
::
vector
<
T
>
score
;
std
::
vector
<
operators
::
math
::
BBox
<
T
>>
bbox
;
math
::
GetBBoxFromDetectData
<
T
>
(
detect_data
+
n
*
7
,
1
,
label
,
score
,
bbox
);
bboxes
[
label
[
0
]].
push_back
(
std
::
make_pair
(
score
[
0
],
bbox
[
0
]));
++
n
;
cur_img_id
=
static_cast
<
size_t
>
((
detect_data
+
n
*
7
)[
0
]);
}
detect_bboxes
.
push_back
(
bboxes
);
}
}
void
CalcTrueAndFalsePositive
(
size_t
batch_size
,
bool
evaluate_difficult
,
float
overlap_threshold
,
const
std
::
vector
<
std
::
map
<
int
,
std
::
vector
<
operators
::
math
::
BBox
<
T
>>>>&
gt_bboxes
,
const
std
::
vector
<
std
::
map
<
int
,
std
::
vector
<
std
::
pair
<
T
,
operators
::
math
::
BBox
<
T
>>>>>&
detect_bboxes
,
std
::
map
<
int
,
int
>&
label_pos_count
,
std
::
map
<
int
,
std
::
vector
<
std
::
pair
<
T
,
int
>>>&
true_pos
,
std
::
map
<
int
,
std
::
vector
<
std
::
pair
<
T
,
int
>>>&
false_pos
)
const
{
for
(
size_t
n
=
0
;
n
<
batch_size
;
++
n
)
{
auto
image_gt_bboxes
=
gt_bboxes
[
n
];
for
(
auto
it
=
image_gt_bboxes
.
begin
();
it
!=
image_gt_bboxes
.
end
();
++
it
)
{
size_t
count
=
0
;
auto
labeled_bboxes
=
it
->
second
;
if
(
evaluate_difficult
)
{
count
=
labeled_bboxes
.
size
();
}
else
{
for
(
size_t
i
=
0
;
i
<
labeled_bboxes
.
size
();
++
i
)
if
(
!
(
labeled_bboxes
[
i
].
is_difficult
))
++
count
;
}
if
(
count
==
0
)
{
continue
;
}
int
label
=
it
->
first
;
if
(
label_pos_count
.
find
(
label
)
==
label_pos_count
.
end
())
{
label_pos_count
[
label
]
=
count
;
}
else
{
label_pos_count
[
label
]
+=
count
;
}
}
}
for
(
size_t
n
=
0
;
n
<
detect_bboxes
.
size
();
++
n
)
{
auto
image_gt_bboxes
=
gt_bboxes
[
n
];
auto
detections
=
detect_bboxes
[
n
];
if
(
image_gt_bboxes
.
size
()
==
0
)
{
for
(
auto
it
=
detections
.
begin
();
it
!=
detections
.
end
();
++
it
)
{
auto
pred_bboxes
=
it
->
second
;
int
label
=
it
->
first
;
for
(
size_t
i
=
0
;
i
<
pred_bboxes
.
size
();
++
i
)
{
auto
score
=
pred_bboxes
[
i
].
first
;
true_pos
[
label
].
push_back
(
std
::
make_pair
(
score
,
0
));
false_pos
[
label
].
push_back
(
std
::
make_pair
(
score
,
1
));
}
}
continue
;
}
for
(
auto
it
=
detections
.
begin
();
it
!=
detections
.
end
();
++
it
)
{
int
label
=
it
->
first
;
auto
pred_bboxes
=
it
->
second
;
if
(
image_gt_bboxes
.
find
(
label
)
==
image_gt_bboxes
.
end
())
{
for
(
size_t
i
=
0
;
i
<
pred_bboxes
.
size
();
++
i
)
{
auto
score
=
pred_bboxes
[
i
].
first
;
true_pos
[
label
].
push_back
(
std
::
make_pair
(
score
,
0
));
false_pos
[
label
].
push_back
(
std
::
make_pair
(
score
,
1
));
}
continue
;
}
auto
matched_bboxes
=
image_gt_bboxes
.
find
(
label
)
->
second
;
std
::
vector
<
bool
>
visited
(
matched_bboxes
.
size
(),
false
);
// Sort detections in descend order based on scores
std
::
sort
(
pred_bboxes
.
begin
(),
pred_bboxes
.
end
(),
math
::
SortScorePairDescend
<
operators
::
math
::
BBox
<
T
>>
);
for
(
size_t
i
=
0
;
i
<
pred_bboxes
.
size
();
++
i
)
{
float
max_overlap
=
-
1.0
;
size_t
max_idx
=
0
;
auto
score
=
pred_bboxes
[
i
].
first
;
for
(
size_t
j
=
0
;
j
<
matched_bboxes
.
size
();
++
j
)
{
float
overlap
=
JaccardOverlap
(
pred_bboxes
[
i
].
second
,
matched_bboxes
[
j
]);
if
(
overlap
>
max_overlap
)
{
max_overlap
=
overlap
;
max_idx
=
j
;
}
}
if
(
max_overlap
>
overlap_threshold
)
{
bool
match_evaluate_difficult
=
evaluate_difficult
||
(
!
evaluate_difficult
&&
!
matched_bboxes
[
max_idx
].
is_difficult
);
if
(
match_evaluate_difficult
)
{
if
(
!
visited
[
max_idx
])
{
true_pos
[
label
].
push_back
(
std
::
make_pair
(
score
,
1
));
false_pos
[
label
].
push_back
(
std
::
make_pair
(
score
,
0
));
visited
[
max_idx
]
=
true
;
}
else
{
true_pos
[
label
].
push_back
(
std
::
make_pair
(
score
,
0
));
false_pos
[
label
].
push_back
(
std
::
make_pair
(
score
,
1
));
}
}
}
else
{
true_pos
[
label
].
push_back
(
std
::
make_pair
(
score
,
0
));
false_pos
[
label
].
push_back
(
std
::
make_pair
(
score
,
1
));
}
}
}
}
}
T
CalcMAP
(
std
::
string
ap_type
,
const
std
::
map
<
int
,
int
>&
label_pos_count
,
const
std
::
map
<
int
,
std
::
vector
<
std
::
pair
<
T
,
int
>>>&
true_pos
,
const
std
::
map
<
int
,
std
::
vector
<
std
::
pair
<
T
,
int
>>>&
false_pos
)
const
{
T
mAP
=
0.0
;
int
count
=
0
;
for
(
auto
it
=
label_pos_count
.
begin
();
it
!=
label_pos_count
.
end
();
++
it
)
{
int
label
=
it
->
first
;
int
label_num_pos
=
it
->
second
;
if
(
label_num_pos
==
0
||
true_pos
.
find
(
label
)
==
true_pos
.
end
())
continue
;
auto
label_true_pos
=
true_pos
.
find
(
label
)
->
second
;
auto
label_false_pos
=
false_pos
.
find
(
label
)
->
second
;
// Compute average precision.
std
::
vector
<
int
>
tp_sum
;
GetAccumulation
<
T
>
(
label_true_pos
,
&
tp_sum
);
std
::
vector
<
int
>
fp_sum
;
GetAccumulation
<
T
>
(
label_false_pos
,
&
fp_sum
);
std
::
vector
<
float
>
precision
,
recall
;
size_t
num
=
tp_sum
.
size
();
// Compute Precision.
for
(
size_t
i
=
0
;
i
<
num
;
++
i
)
{
// CHECK_LE(tpCumSum[i], labelNumPos);
precision
.
push_back
(
static_cast
<
float
>
(
tp_sum
[
i
])
/
static_cast
<
float
>
(
tp_sum
[
i
]
+
fp_sum
[
i
]));
recall
.
push_back
(
static_cast
<
float
>
(
tp_sum
[
i
])
/
label_num_pos
);
}
// VOC2007 style
if
(
ap_type
==
"11point"
)
{
std
::
vector
<
float
>
max_precisions
(
11
,
0.0
);
int
start_idx
=
num
-
1
;
for
(
int
j
=
10
;
j
>=
0
;
--
j
)
for
(
int
i
=
start_idx
;
i
>=
0
;
--
i
)
{
if
(
recall
[
i
]
<
j
/
10.
)
{
start_idx
=
i
;
if
(
j
>
0
)
max_precisions
[
j
-
1
]
=
max_precisions
[
j
];
break
;
}
else
{
if
(
max_precisions
[
j
]
<
precision
[
i
])
max_precisions
[
j
]
=
precision
[
i
];
}
}
for
(
int
j
=
10
;
j
>=
0
;
--
j
)
mAP
+=
max_precisions
[
j
]
/
11
;
++
count
;
}
else
if
(
ap_type
==
"Integral"
)
{
// Nature integral
float
average_precisions
=
0.
;
float
prev_recall
=
0.
;
for
(
size_t
i
=
0
;
i
<
num
;
++
i
)
{
if
(
fabs
(
recall
[
i
]
-
prev_recall
)
>
1e-6
)
average_precisions
+=
precision
[
i
]
*
fabs
(
recall
[
i
]
-
prev_recall
);
prev_recall
=
recall
[
i
];
}
mAP
+=
average_precisions
;
++
count
;
}
else
{
LOG
(
FATAL
)
<<
"Unkown ap version: "
<<
ap_type
;
}
}
if
(
count
!=
0
)
mAP
/=
count
;
return
mAP
*
100
;
}
};
// namespace operators
}
// namespace operators
}
// namespace paddle
paddle/operators/math/detection_util.cc
0 → 100644
浏览文件 @
67cbb3e3
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/operators/math/detection_util.h"
#include "paddle/operators/math/math_function.h"
namespace
paddle
{
namespace
operators
{
namespace
math
{}
// namespace math
}
// namespace operators
}
// namespace paddle
paddle/operators/math/detection_util.cu
0 → 100644
浏览文件 @
67cbb3e3
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/operators/math/detection_util.h"
#include "paddle/operators/math/math_function.h"
#include "paddle/platform/cuda_helper.h"
namespace
paddle
{
namespace
operators
{
namespace
math
{}
// namespace math
}
// namespace operators
}
// namespace paddle
paddle/operators/math/detection_util.h
0 → 100644
浏览文件 @
67cbb3e3
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include "paddle/framework/selected_rows.h"
#include "paddle/platform/device_context.h"
namespace
paddle
{
namespace
operators
{
namespace
math
{
template
<
typename
T
>
struct
BBox
{
BBox
(
T
x_min
,
T
y_min
,
T
x_max
,
T
y_max
)
:
x_min
(
x_min
),
y_min
(
y_min
),
x_max
(
x_max
),
y_max
(
y_max
),
is_difficult
(
false
)
{}
BBox
()
{}
T
get_width
()
const
{
return
x_max
-
x_min
;
}
T
get_height
()
const
{
return
y_max
-
y_min
;
}
T
get_center_x
()
const
{
return
(
x_min
+
x_max
)
/
2
;
}
T
get_center_y
()
const
{
return
(
y_min
+
y_max
)
/
2
;
}
T
get_area
()
const
{
return
get_width
()
*
get_height
();
}
// coordinate of bounding box
T
x_min
;
T
y_min
;
T
x_max
;
T
y_max
;
// whether difficult object (e.g. object with heavy occlusion is difficult)
bool
is_difficult
;
};
template
<
typename
T
>
void
GetBBoxFromDetectData
(
const
T
*
detect_data
,
const
size_t
num_bboxes
,
std
::
vector
<
T
>&
labels
,
std
::
vector
<
T
>&
scores
,
std
::
vector
<
BBox
<
T
>>&
bboxes
)
{
size_t
out_offset
=
bboxes
.
size
();
labels
.
resize
(
out_offset
+
num_bboxes
);
scores
.
resize
(
out_offset
+
num_bboxes
);
bboxes
.
resize
(
out_offset
+
num_bboxes
);
for
(
size_t
i
=
0
;
i
<
num_bboxes
;
++
i
)
{
labels
[
out_offset
+
i
]
=
*
(
detect_data
+
i
*
7
+
1
);
scores
[
out_offset
+
i
]
=
*
(
detect_data
+
i
*
7
+
2
);
BBox
<
T
>
bbox
;
bbox
.
x_min
=
*
(
detect_data
+
i
*
7
+
3
);
bbox
.
y_min
=
*
(
detect_data
+
i
*
7
+
4
);
bbox
.
x_max
=
*
(
detect_data
+
i
*
7
+
5
);
bbox
.
y_max
=
*
(
detect_data
+
i
*
7
+
6
);
bboxes
[
out_offset
+
i
]
=
bbox
;
};
}
template
<
typename
T
>
void
GetBBoxFromLabelData
(
const
T
*
label_data
,
const
size_t
num_bboxes
,
std
::
vector
<
BBox
<
T
>>&
bboxes
)
{
size_t
out_offset
=
bboxes
.
size
();
bboxes
.
resize
(
bboxes
.
size
()
+
num_bboxes
);
for
(
size_t
i
=
0
;
i
<
num_bboxes
;
++
i
)
{
BBox
<
T
>
bbox
;
bbox
.
x_min
=
*
(
label_data
+
i
*
6
+
1
);
bbox
.
y_min
=
*
(
label_data
+
i
*
6
+
2
);
bbox
.
x_max
=
*
(
label_data
+
i
*
6
+
3
);
bbox
.
y_max
=
*
(
label_data
+
i
*
6
+
4
);
T
is_difficult
=
*
(
label_data
+
i
*
6
+
5
);
if
(
std
::
abs
(
is_difficult
-
0.0
)
<
1e-6
)
bbox
.
is_difficult
=
false
;
else
bbox
.
is_difficult
=
true
;
bboxes
[
out_offset
+
i
]
=
bbox
;
}
}
template
<
typename
T
>
inline
float
JaccardOverlap
(
const
BBox
<
T
>&
bbox1
,
const
BBox
<
T
>&
bbox2
)
{
if
(
bbox2
.
x_min
>
bbox1
.
x_max
||
bbox2
.
x_max
<
bbox1
.
x_min
||
bbox2
.
y_min
>
bbox1
.
y_max
||
bbox2
.
y_max
<
bbox1
.
y_min
)
{
return
0.0
;
}
else
{
float
inter_x_min
=
std
::
max
(
bbox1
.
x_min
,
bbox2
.
x_min
);
float
inter_y_min
=
std
::
max
(
bbox1
.
y_min
,
bbox2
.
y_min
);
float
inter_x_max
=
std
::
min
(
bbox1
.
x_max
,
bbox2
.
x_max
);
float
inter_y_max
=
std
::
min
(
bbox1
.
y_max
,
bbox2
.
y_max
);
float
inter_width
=
inter_x_max
-
inter_x_min
;
float
inter_height
=
inter_y_max
-
inter_y_min
;
float
inter_area
=
inter_width
*
inter_height
;
float
bbox_area1
=
bbox1
.
get_area
();
float
bbox_area2
=
bbox2
.
get_area
();
return
inter_area
/
(
bbox_area1
+
bbox_area2
-
inter_area
);
}
}
template
<
typename
T
>
bool
SortScorePairDescend
(
const
std
::
pair
<
float
,
T
>&
pair1
,
const
std
::
pair
<
float
,
T
>&
pair2
)
{
return
pair1
.
first
>
pair2
.
first
;
}
// template <>
// bool SortScorePairDescend(const std::pair<float, NormalizedBBox>& pair1,
// const std::pair<float, NormalizedBBox>& pair2) {
// return pair1.first > pair2.first;
// }
}
// namespace math
}
// namespace operators
}
// namespace paddle
python/paddle/v2/fluid/tests/test_detection_map_op.py
0 → 100644
浏览文件 @
67cbb3e3
import
unittest
import
numpy
as
np
import
sys
import
collections
import
math
from
op_test
import
OpTest
class
TestDetectionMAPOp
(
OpTest
):
def
set_data
(
self
):
self
.
init_test_case
()
self
.
mAP
=
[
self
.
calc_map
(
self
.
tf_pos
)]
self
.
label
=
np
.
array
(
self
.
label
).
astype
(
'float32'
)
self
.
detect
=
np
.
array
(
self
.
detect
).
astype
(
'float32'
)
self
.
mAP
=
np
.
array
(
self
.
mAP
).
astype
(
'float32'
)
self
.
inputs
=
{
'Label'
:
(
self
.
label
,
self
.
label_lod
),
'Detect'
:
self
.
detect
}
self
.
attrs
=
{
'overlap_threshold'
:
self
.
overlap_threshold
,
'evaluate_difficult'
:
self
.
evaluate_difficult
,
'ap_type'
:
self
.
ap_type
}
self
.
outputs
=
{
'MAP'
:
self
.
mAP
}
def
init_test_case
(
self
):
self
.
overlap_threshold
=
0.3
self
.
evaluate_difficult
=
True
self
.
ap_type
=
"Integral"
self
.
label_lod
=
[[
0
,
2
,
4
]]
# label xmin ymin xmax ymax difficult
self
.
label
=
[[
1
,
0.1
,
0.1
,
0.3
,
0.3
,
0
],
[
1
,
0.6
,
0.6
,
0.8
,
0.8
,
1
],
[
2
,
0.3
,
0.3
,
0.6
,
0.5
,
0
],
[
1
,
0.7
,
0.1
,
0.9
,
0.3
,
0
]]
# image_id label score xmin ymin xmax ymax difficult
self
.
detect
=
[
[
0
,
1
,
0.3
,
0.1
,
0.0
,
0.4
,
0.3
],
[
0
,
1
,
0.7
,
0.0
,
0.1
,
0.2
,
0.3
],
[
0
,
1
,
0.9
,
0.7
,
0.6
,
0.8
,
0.8
],
[
1
,
2
,
0.8
,
0.2
,
0.1
,
0.4
,
0.4
],
[
1
,
2
,
0.1
,
0.4
,
0.3
,
0.7
,
0.5
],
[
1
,
1
,
0.2
,
0.8
,
0.1
,
1.0
,
0.3
],
[
1
,
3
,
0.2
,
0.8
,
0.1
,
1.0
,
0.3
]
]
# image_id label score false_pos false_pos
# [-1, 1, 3, -1, -1],
# [-1, 2, 1, -1, -1]
self
.
tf_pos
=
[[
0
,
1
,
0.9
,
1
,
0
],
[
0
,
1
,
0.7
,
1
,
0
],
[
0
,
1
,
0.3
,
0
,
1
],
[
1
,
1
,
0.2
,
1
,
0
],
[
1
,
2
,
0.8
,
0
,
1
],
[
1
,
2
,
0.1
,
1
,
0
],
[
1
,
3
,
0.2
,
0
,
1
]]
def
calc_map
(
self
,
tf_pos
):
mAP
=
0.0
count
=
0
class_pos_count
=
{}
true_pos
=
{}
false_pos
=
{}
def
get_accumulation
(
pos_list
):
sorted_list
=
sorted
(
pos_list
,
key
=
lambda
pos
:
pos
[
0
],
reverse
=
True
)
sum
=
0
accu_list
=
[]
for
(
score
,
count
)
in
sorted_list
:
sum
+=
count
accu_list
.
append
(
sum
)
return
accu_list
label_count
=
collections
.
Counter
()
for
(
label
,
xmin
,
ymin
,
xmax
,
ymax
,
difficult
)
in
self
.
label
:
if
self
.
evaluate_difficult
:
label_count
[
label
]
+=
1
elif
not
difficult
:
label_count
[
label
]
+=
1
true_pos
=
collections
.
defaultdict
(
list
)
false_pos
=
collections
.
defaultdict
(
list
)
for
(
image_id
,
label
,
score
,
tp
,
fp
)
in
tf_pos
:
true_pos
[
label
].
append
([
score
,
tp
])
false_pos
[
label
].
append
([
score
,
fp
])
for
(
label
,
label_pos_num
)
in
label_count
.
items
():
if
label_pos_num
==
0
or
label
not
in
true_pos
:
continue
label_true_pos
=
true_pos
[
label
]
label_false_pos
=
false_pos
[
label
]
accu_tp_sum
=
get_accumulation
(
label_true_pos
)
accu_fp_sum
=
get_accumulation
(
label_false_pos
)
precision
=
[]
recall
=
[]
for
i
in
range
(
len
(
accu_tp_sum
)):
precision
.
append
(
float
(
accu_tp_sum
[
i
])
/
float
(
accu_tp_sum
[
i
]
+
accu_fp_sum
[
i
]))
recall
.
append
(
float
(
accu_tp_sum
[
i
])
/
label_pos_num
)
if
self
.
ap_type
==
"11point"
:
max_precisions
=
[
11.0
,
0.0
]
start_idx
=
len
(
accu_tp_sum
)
-
1
for
j
in
range
(
10
,
0
,
-
1
):
for
i
in
range
(
start_idx
,
0
,
-
1
):
if
recall
[
i
]
<
j
/
10.0
:
start_idx
=
i
if
j
>
0
:
max_precisions
[
j
-
1
]
=
max_precisions
[
j
]
break
else
:
if
max_precisions
[
j
]
<
accu_precision
[
i
]:
max_precisions
[
j
]
=
accu_precision
[
i
]
for
j
in
range
(
10
,
0
,
-
1
):
mAP
+=
max_precisions
[
j
]
/
11
count
+=
1
elif
self
.
ap_type
==
"Integral"
:
average_precisions
=
0.0
prev_recall
=
0.0
for
i
in
range
(
len
(
accu_tp_sum
)):
if
math
.
fabs
(
recall
[
i
]
-
prev_recall
)
>
1e-6
:
average_precisions
+=
precision
[
i
]
*
\
math
.
fabs
(
recall
[
i
]
-
prev_recall
)
prev_recall
=
recall
[
i
]
mAP
+=
average_precisions
count
+=
1
if
count
!=
0
:
mAP
/=
count
return
mAP
*
100.0
def
setUp
(
self
):
self
.
op_type
=
"detection_map"
self
.
set_data
()
def
test_check_output
(
self
):
self
.
check_output
()
class
TestDetectionMAPOpSkipDiff
(
TestDetectionMAPOp
):
def
init_test_case
(
self
):
super
(
TestDetectionMAPOpSkipDiff
,
self
).
init_test_case
()
self
.
evaluate_difficult
=
False
self
.
tf_pos
=
[[
0
,
1
,
0.7
,
1
,
0
],
[
0
,
1
,
0.3
,
0
,
1
],
[
1
,
1
,
0.2
,
1
,
0
],
[
1
,
2
,
0.8
,
0
,
1
],
[
1
,
2
,
0.1
,
1
,
0
],
[
1
,
3
,
0.2
,
0
,
1
]]
if
__name__
==
'__main__'
:
unittest
.
main
()
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录