“72108d8dbec02dfc5a4df6990c4078550450e01d”上不存在“git@gitcode.net:RobotFutures/Paddle.git”
layers.py 39.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

X
Xin Pan 已提交
15
import collections
16 17 18
import contextlib
import sys
import numpy as np
19
import six
20
import re
21 22 23 24
import copy
import weakref
import warnings

C
chengduo 已提交
25
from . import parallel_helper
X
Xin Pan 已提交
26
from .. import unique_name
27
from paddle.fluid import core
28
from .layer_object_helper import LayerObjectHelper
29
from .base import program_desc_tracing_guard, param_guard
30
from paddle.fluid import framework
31
from ..param_attr import ParamAttr
32 33 34
from paddle.fluid.executor import Executor, global_scope
from paddle.fluid.framework import in_dygraph_mode
from paddle.fluid.framework import _current_expected_place as _get_device
35

36
__all__ = ['Layer']
37

38 39 40 41 42 43 44 45
_first_cap_re = re.compile('(.)([A-Z][a-z]+)')
_all_cap_re = re.compile('([a-z])([A-Z])')


def _convert_camel_to_snake(name):
    s1 = _first_cap_re.sub(r'\1_\2', name)
    return _all_cap_re.sub(r'\1_\2', s1).lower()

46

47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62
class HookRemoveHelper(object):
    """ A HookRemoveHelper that can be used to remove hook. """

    next_hook_id = 0

    def __init__(self, hooks):
        self._hooks_ref = weakref.ref(hooks)
        self._hook_id = HookRemoveHelper.next_hook_id
        HookRemoveHelper.next_hook_id += 1

    def remove(self):
        hooks = self._hooks_ref()
        if hooks is not None and self._hook_id in hooks:
            del hooks[self._hook_id]


X
Xin Pan 已提交
63
class Layer(core.Layer):
64 65 66 67 68 69
    """
    :alias_main: paddle.nn.Layer
	:alias: paddle.nn.Layer
	:old_api: paddle.fluid.dygraph.layers.Layer

    Dynamic graph Layer based on OOD, includes the parameters of the layer, the structure of the forward graph and so on.
X
Xin Pan 已提交
70

71
    Parameters:
72 73
        name_scope (str, optional): prefix name used by the layer to name parameters.
            If prefix is "my_layer", parameter name in MyLayer
74 75 76
            can be "my_layer_0.w_n", where "w" is the parameter
            base name and "n" is an unique suffix auto-generated.
            If None, prefix name will be snake cased class name. Default: None.
77 78 79 80 81 82 83
        dtype(str or core.VarDesc.VarType, optional): data type of this parameter.
                If set str, it can be "bool",  "float16", "float32", "float64",
                "int8", "int16", "int32", "int64", "uint8" or "uint16".
                Default: ``core.VarDesc.VarType.FP32``
    
    Returns:
        None
X
Xin Pan 已提交
84
    """
X
Xin Pan 已提交
85

86
    def __init__(self, name_scope=None, dtype=core.VarDesc.VarType.FP32):
87
        self.training = True
88
        if name_scope is None:
89 90
            name_scope = _convert_camel_to_snake(self.__class__.__name__)
        self._full_name = unique_name.generate(name_scope)
91
        self._helper = LayerObjectHelper(self._full_name)
X
Xin Pan 已提交
92
        self._built = False
M
minqiyang 已提交
93
        self._dtype = dtype
94

X
Xin Pan 已提交
95
        self._parameters = collections.OrderedDict()
96 97 98
        # Buffers the variable (not parameter) created in layer
        self._buffers = collections.OrderedDict()
        self._non_persistable_buffer_names_set = set()
X
Xin Pan 已提交
99
        self._sub_layers = collections.OrderedDict()
L
lujun 已提交
100
        self._loaddict_holder = collections.OrderedDict()
101

102 103 104
        self._forward_pre_hooks = collections.OrderedDict()
        self._forward_post_hooks = collections.OrderedDict()

M
minqiyang 已提交
105
    def train(self):
106 107 108 109 110 111 112 113
        """
        Sets this Layer and all its sublayers to training mode.
        This only effects certain modules like `Dropout` and `BatchNorm`.

        Returns:
            None
        """
        # global setting
M
minqiyang 已提交
114
        framework._dygraph_tracer().train_mode()
115 116 117 118
        # Layer-level setting
        self.training = True
        for layer in self.sublayers():
            layer.train()
M
minqiyang 已提交
119 120

    def eval(self):
121 122 123 124 125 126 127 128
        """
        Sets this Layer and all its sublayers to evaluation mode.
        This only effects certain modules like `Dropout` and `BatchNorm`.

        Returns:
            None
        """
        # global setting
M
minqiyang 已提交
129
        framework._dygraph_tracer().eval_mode()
130 131 132 133
        # Layer-level setting
        self.training = False
        for layer in self.sublayers():
            layer.eval()
M
minqiyang 已提交
134

L
LielinJiang 已提交
135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151
    def apply(self, fn):
        """
        Applies ``fn`` recursively to every sublayer (as returned by ``.sublayers()``)
        as well as self. Typical use includes initializing the parameters of a model.

        Parameters:
            fn (function): a function to be applied to each sublayer

        Returns:
            Layer: self

        Example::
            .. code-block:: python

              import paddle
              import paddle.nn as nn
              
152
              paddle.disable_static()
L
LielinJiang 已提交
153 154 155 156 157 158 159 160 161 162 163 164 165 166
              
              net = nn.Sequential(nn.Linear(2, 2), nn.Linear(2, 2))

              def init_weights(layer):
                  if type(layer) == nn.Linear:
                      print('before init weight:', layer.weight.numpy())
                      new_weight = paddle.fill_constant(layer.weight.shape, layer.weight.dtype, value=0.9)
                      layer.weight.set_value(new_weight)
                      print('after init weight:', layer.weight.numpy())

              net.apply(init_weights)

              print(net.state_dict())
        """
167
        for layer in self.children():
L
LielinJiang 已提交
168 169 170 171 172 173
            layer.apply(fn)

        fn(self)

        return self

X
Xin Pan 已提交
174
    def full_name(self):
175
        """Full name for this layer, composed by name_scope + "/" + MyLayer.__class__.__name__
X
Xin Pan 已提交
176

177 178
        Returns:
            str: full name of this layer.
X
Xin Pan 已提交
179 180 181
        """
        return self._full_name

182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199
    def register_forward_post_hook(self, hook):
        """Register a forward post-hook for Layer. The hook will be called after `forward` function has been computed.

        It should have the following form, `input` and `output` of the `hook` is `input` and `output` of the `Layer` respectively.
        User can use forward post-hook to change the output of the Layer or perform information statistics tasks on the Layer.
 
        hook(Layer, input, output) -> None or modified output

        Parameters:
            hook(function): a function registered as a forward post-hook

        Returns:
            HookRemoveHelper: a HookRemoveHelper object that can be used to remove the added hook by calling `hook_remove_helper.remove()` .

        Examples:
            .. code-block:: python

              import paddle.fluid as fluid
Z
zhongpu 已提交
200
              import numpy as np
201 202 203 204 205 206 207 208 209 210 211 212 213 214

              # the forward_post_hook change the output of the layer: output = output * 2 
              def forward_post_hook(layer, input, output):
                  # user can use layer, input and output for information statistis tasks

                  # change the output 
                  return output * 2

              with fluid.dygraph.guard():
                  linear = fluid.Linear(13, 5, dtype="float32")

                  # register the hook
                  forward_post_hook_handle = linear.register_forward_post_hook(forward_post_hook)
                  
Z
zhongpu 已提交
215 216
                  value1 = np.arange(26).reshape(2, 13).astype("float32")
                  in1 = fluid.dygraph.to_variable(value1)
217
                  
Z
zhongpu 已提交
218
                  out0 = linear(in1)
219 220 221 222
                  
                  # remove the hook
                  forward_post_hook_handle.remove()

Z
zhongpu 已提交
223
                  out1 = linear(in1)
224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251

                  # hook change the linear's output to output * 2, so out0 is equal to out1 * 2.
                  assert (out0.numpy() == (out1.numpy()) * 2).any()
        """
        hook_remove_helper = HookRemoveHelper(self._forward_post_hooks)
        self._forward_post_hooks[hook_remove_helper._hook_id] = hook
        return hook_remove_helper

    def register_forward_pre_hook(self, hook):
        """Register a forward pre-hook for Layer. The hook will be called before `forward` function has been computed.
        
        It should have the following form, `input` of the `hook` is `input` of the `Layer`,
        hook can either return a tuple or a single modified value in the hook. We will wrap the value into a tuple if 
        a single value is returned(unless that value is already a tuple).
        User can use forward pre-hook to change the input of the Layer or perform information statistics tasks on the Layer.

        hook(Layer, input) -> None or modified input

        Parameters:
            hook(function): a function registered as a forward pre-hook

        Returns:
            HookRemoveHelper: a HookRemoveHelper object that can be used to remove the added hook by calling `hook_remove_helper.remove()` .

        Examples:
            .. code-block:: python

              import paddle.fluid as fluid
Z
zhongpu 已提交
252
              import numpy as np
253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285

              # the forward_post_hook change the input of the layer: input = input * 2
              def forward_pre_hook(layer, input):
                  # user can use layer and input for information statistis tasks

                  # change the input
                  input_return = (input[0] * 2)
                  return input_return

              with fluid.dygraph.guard():
                  linear = fluid.Linear(13, 5, dtype="float32")

                  # register the hook
                  forward_pre_hook_handle = linear.register_forward_pre_hook(forward_pre_hook)

                  value0 = np.arange(26).reshape(2, 13).astype("float32")
                  in0 = fluid.dygraph.to_variable(value0)
                  out0 = linear(in0)

                  # remove the hook
                  forward_pre_hook_handle.remove()

                  value1 = value0 * 2
                  in1 = fluid.dygraph.to_variable(value1)
                  out1 = linear(in1)

                  # hook change the linear's input to input * 2, so out0 is equal to out1.
                  assert (out0.numpy() == out1.numpy()).any()
        """
        hook_remove_helper = HookRemoveHelper(self._forward_pre_hooks)
        self._forward_pre_hooks[hook_remove_helper._hook_id] = hook
        return hook_remove_helper

286 287
    def create_parameter(self,
                         shape,
288
                         attr=None,
289
                         dtype=None,
290 291
                         is_bias=False,
                         default_initializer=None):
292 293 294
        """Create parameters for this layer.
        
        Parameters:
295 296 297
            shape(list): Shape of the parameter.
            attr(ParamAttr, optional): Parameter attribute of weight. Please refer to :ref:`api_fluid_ParamAttr`. Default: None.
            dtype(str or core.VarDesc.VarType or str, optional): Data type of this parameter.
298
                If set str, it can be "bool",  "float16", "float32", "float64",
299 300
                "int8", "int16", "int32", "int64", "uint8" or "uint16". Default: "float32".
            is_bias(bool, optional): if this is a bias parameter. Default: False.
301 302
            default_initializer(Initializer, optional): the default initializer for this parameter.
                If set None, default initializer will be set to :ref:`api_fluid_initializer_XavierInitializer` and :ref:`api_fluid_initializer_ConstantInitializer`
303
                for non-bias and bias parameter, respectively. Default: None.
304

305 306
        Returns:
            :ref:`api_guide_Variable_en` : created parameter.
307
        """
H
hong 已提交
308 309 310 311
        temp_attr = copy.deepcopy(attr)
        if isinstance(temp_attr, six.string_types) and temp_attr == "":
            temp_attr = None
        return self._helper.create_parameter(temp_attr, shape, dtype, is_bias,
312 313 314 315 316 317 318 319
                                             default_initializer)

    # TODO: Add more parameter list when we need them
    def create_variable(self,
                        name=None,
                        persistable=None,
                        dtype=None,
                        type=core.VarDesc.VarType.LOD_TENSOR):
320
        """Create Variable for this layer.
321

322 323 324 325 326 327 328 329
        Parameters:
            name(str, optional): name of the variable. Please refer to :ref:`api_guide_Name` . Default: None
            persistable(bool, optional): if set this variable persistable. Default: False
            dtype(str or core.VarDesc.VarType, optional): data type of this parameter.
                If set str, it can be "bool",  "float16", "float32", "float64",
                "int8", "int16", "int32", "int64", "uint8" or "uint16".
                If set None, it will be ``core.VarDesc.VarType.FP32``. Default: None
            type(core.VarDesc.VarType, optional): type of the variable. No need to set this parameter. Default: ``core.VarDesc.VarType.LOD_TENSOR``
330

331 332
        Returns:
            :ref:`api_guide_Variable_en` : created Variable.
333 334 335 336 337 338 339 340 341 342
        """
        if name is not None:
            var_name = ".".join([self._full_name, name])
        else:
            var_name = unique_name.generate(".".join(
                [self._full_name, "_generated_var"]))

        return self._helper.main_program.current_block().create_var(
            name=var_name, persistable=persistable, dtype=dtype, type=type)

X
polish  
Xin Pan 已提交
343
    def parameters(self, include_sublayers=True):
344
        """Returns a list of all Parameters from current layer and its sub-layers.
X
Xin Pan 已提交
345

346 347
        Parameters:
            include_sublayers(bool, optional): Whether include the parameters of sublayers. If True, also include the parameters from sublayers. Default: True
X
Xin Pan 已提交
348

349 350
        Returns:
            list of :ref:`api_guide_Variable_en` : a list of Parameters.
X
Xin Pan 已提交
351
        """
352 353 354 355 356
        ret = [
            param
            for _, param in self.named_parameters(
                include_sublayers=include_sublayers)
        ]
X
polish  
Xin Pan 已提交
357
        return ret
X
Xin Pan 已提交
358

359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408
    def children(self):
        """Returns an iterator over immediate children layers.

        Yields:
            Layer: a child layer

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                with fluid.dygraph.guard():
                    fc1 = fluid.Linear(10, 3)
                    fc2 = fluid.Linear(3, 10, bias_attr=False)
                    model = fluid.dygraph.Sequential(fc1, fc2)
                    
                    layer_list = list(model.children())

                    print(layer_list)

        """
        for _, layer in self.named_children():
            yield layer

    def named_children(self):
        """Returns an iterator over immediate children layers, yielding both
        the name of the layer as well as the layer itself.

        Yields:
            (string, Layer): Tuple containing a name and child layer

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                with fluid.dygraph.guard():
                    fc1 = fluid.Linear(10, 3)
                    fc2 = fluid.Linear(3, 10, bias_attr=False)
                    model = fluid.dygraph.Sequential(fc1, fc2)
                    for prefix, layer in model.named_children():
                        print(prefix, layer)

        """
        memo = set()
        for name, layer in self._sub_layers.items():
            if layer is not None and layer not in memo:
                memo.add(layer)
                yield name, layer

X
Xin Pan 已提交
409 410 411
    def sublayers(self, include_sublayers=True):
        """Returns a list of sub layers.

412 413
        Parameters:
            include_sublayers(bool, optional): Whether return the sublayers of sublayers. If True, also include the sublayers of sublayers. Default: True
X
Xin Pan 已提交
414

415 416
        Returns:
            list of Layer : a list of sub layers.
X
Xin Pan 已提交
417
        """
418 419 420 421 422
        ret = [
            layer
            for _, layer in self.named_sublayers(
                include_sublayers=include_sublayers)
        ]
X
Xin Pan 已提交
423 424
        return ret

425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511
    def named_parameters(self, prefix='', include_sublayers=True):
        """
        Returns an iterator over all parameters in the Layer, yielding tuple of name and parameter.

        Parameters:
            prefix(str, optional): Prefix to prepend to all parameter names. Default: ''.
            include_sublayers(bool, optional): Whether include the parameters of sublayers.
                If True, also include the named parameters from sublayers. Default: True.

        Yields:
            (string, Parameter): Tuple of name and Parameter

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                with fluid.dygraph.guard():
                    fc1 = fluid.Linear(10, 3)
                    fc2 = fluid.Linear(3, 10, bias_attr=False)
                    model = fluid.dygraph.Sequential(fc1, fc2)
                    for name, param in model.named_parameters():
                        print(name, param)

        """
        params_set = set()
        named_sublayers = self.named_sublayers(
            prefix=prefix,
            include_sublayers=include_sublayers,
            include_self=True)
        for layer_prefix, sublayer in named_sublayers:
            params = sublayer._parameters.items()
            for key, param in params:
                if param is None or param in params_set:
                    continue
                params_set.add(param)
                name = layer_prefix + ('.' if layer_prefix else '') + key
                yield name, param

    def named_sublayers(self,
                        prefix='',
                        include_sublayers=True,
                        include_self=False,
                        layers_set=None):
        """
        Returns an iterator over all sublayers in the Layer, yielding tuple of name and sublayer.
        The duplicate sublayer will only be yielded once.

        Parameters:
            prefix(str, optional): Prefix to prepend to all parameter names. Default: ''.
            include_sublayers(bool, optional): Whether include the sublayers. Default: True.
            include_self(bool, optional): Whether include the Layer itself. Default: False.
            layers_set(set, optioanl): The set to record duplicate sublayers. Default: None.

        Yields:
            (string, Layer): Tuple of name and Layer

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                with fluid.dygraph.guard():
                    fc1 = fluid.Linear(10, 3)
                    fc2 = fluid.Linear(3, 10, bias_attr=False)
                    model = fluid.dygraph.Sequential(fc1, fc2)
                    for prefix, layer in model.named_sublayers():
                        print(prefix, layer)

        """
        if layers_set is None:
            layers_set = set()
        if include_self and self not in layers_set:
            layers_set.add(self)
            yield prefix, self
        if include_sublayers:
            for key, layer in self._sub_layers.items():
                if layer is None:
                    continue
                layer_prefix = prefix + ('.' if prefix else '') + key
                for p, l in layer.named_sublayers(
                        prefix=layer_prefix,
                        include_sublayers=include_sublayers,
                        include_self=True,
                        layers_set=layers_set):
                    yield p, l

512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558
    def register_buffer(self, name, variable, persistable=True):
        """
        Registers a variable as buffer into the layer.

        `buffer` is a non-parameteric variable and will not be updated by optimizer,
        but is necessary for evaluation and inference. For example, the mean and variance in BatchNorm layers.
        The registered buffer is persistable by default, and will be saved into
        `state_dict` alongside parameters. If set persistable=False, it registers
        a non-persistable buffer, so that it will not be a part of `state_dict` .

        Buffers can be accessed as attributes using given names.

        Parameters:
            name (string): name of the buffer. The buffer can be accessed
                from this layer using the given name
            variable (Variable): the variable to be registered as buffer.
            persistable (bool): whether the buffer is part of this layer's
                state_dict.

        Returns:
            None
        
        Examples:
            .. code-block:: python

                import numpy as np
                import paddle.fluid as fluid

                with fluid.dygraph.guard():
                    linear = fluid.Linear(10, 3)
                    value = np.array([0]).astype("float32")
                    buffer = fluid.dygraph.to_variable(value)
                    linear.register_buffer("buf_name", buffer, persistable=True)
                    
                    # get the buffer by attribute.
                    print(linear.buf_name)

        """

        if '_buffers' not in self.__dict__:
            raise ValueError(
                "super(YourLayer, self).__init__() should be called first")
        elif not isinstance(name, six.string_types):
            raise TypeError(
                "The name of buffer should be a string, but received {}.".
                format(type(name).__name__))
        elif '.' in name:
559 560 561 562
            raise KeyError(
                "The name of buffer can not contain `.`, "
                "because when you access the newly added buffer in the "
                "form of `self.**.**`, it will cause AttributeError.")
563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645
        elif name == '':
            raise KeyError("The name of buffer can not be empty.")
        elif hasattr(self, name) and name not in self._buffers:
            raise KeyError("attribute '{}' already exists.".format(name))
        elif variable is not None and not type(variable) == core.VarBase:
            raise TypeError(
                "The registered buffer should be a core.VarBase, but received {}.".
                format(type(variable).__name__))
        else:
            self._buffers[name] = variable
            if persistable:
                self._non_persistable_buffer_names_set.discard(name)
            else:
                self._non_persistable_buffer_names_set.add(name)

    def buffers(self, include_sublayers=True):
        """
        Returns a list of all buffers from current layer and its sub-layers.

        Parameters:
            include_sublayers(bool, optional): Whether include the buffers of sublayers. If True, also include the buffers from sublayers. Default: True

        Returns:
            list of :ref:`api_guide_Variable_en` : a list of buffers.
        """
        ret = [
            buffer
            for _, buffer in self.named_buffers(
                include_sublayers=include_sublayers)
        ]
        return ret

    def named_buffers(self, prefix='', include_sublayers=True):
        """
        Returns an iterator over all buffers in the Layer, yielding tuple of name and Variable.

        Parameters:
            prefix(str, optional): Prefix to prepend to all buffer names. Default: ''.
            include_sublayers(bool, optional): Whether include the buffers of sublayers.
                If True, also include the named buffers from sublayers. Default: True.

        Yields:
            (string, Variable): Tuple of name and Variable

        Examples:
            .. code-block:: python

                import numpy as np
                import paddle.fluid as fluid

                with fluid.dygraph.guard():
                    fc1 = fluid.Linear(10, 3)
                    buffer1 = fluid.dygraph.to_variable(np.array([0]).astype("float32"))
                    # register a variable as buffer by specific `persistable`
                    fc1.register_buffer("buf_name_1", buffer1, persistable=True)

                    fc2 = fluid.Linear(3, 10)
                    buffer2 = fluid.dygraph.to_variable(np.array([1]).astype("float32"))
                    # register a buffer by assigning an attribute with Variable.
                    # The `persistable` can only be False by this way.
                    fc2.buf_name_2 = buffer2

                    model = fluid.dygraph.Sequential(fc1, fc2)

                    # get all named buffers
                    for name, buffer in model.named_buffers():
                        print(name, buffer)

        """
        buffers_set = set()
        named_sublayers = self.named_sublayers(
            prefix=prefix,
            include_sublayers=include_sublayers,
            include_self=True)
        for layer_prefix, sublayer in named_sublayers:
            buffers = sublayer._buffers.items()
            for key, buffer in buffers:
                if buffer is None or buffer in buffers_set:
                    continue
                buffers_set.add(buffer)
                name = layer_prefix + ('.' if layer_prefix else '') + key
                yield name, buffer

X
Xin Pan 已提交
646
    def clear_gradients(self):
647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670
        """
        Clear the gradients of all parameters for this layer.
        
        Returns:
            None
        
        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                import numpy as np

                with fluid.dygraph.guard():
                    value = np.arange(26).reshape(2, 13).astype("float32")
                    a = fluid.dygraph.to_variable(value)
                    linear = fluid.Linear(13, 5, dtype="float32")
                    adam = fluid.optimizer.Adam(learning_rate=0.01, 
                                                parameter_list=linear.parameters())
                    out = linear(a)
                    out.backward()
                    adam.minimize(out)
                    linear.clear_gradients()

        """
X
Xin Pan 已提交
671
        for p in self.parameters():
672 673
            if p.trainable:
                p.clear_gradient()
X
Xin Pan 已提交
674

675
    def _build_once(self, *args, **kwargs):
676 677
        pass

678
    def __call__(self, *inputs, **kwargs):
679 680 681 682 683 684 685
        for forward_pre_hook in self._forward_pre_hooks.values():
            hook_result = forward_pre_hook(self, inputs)
            if hook_result is not None:
                if not isinstance(hook_result, tuple):
                    hook_result = (hook_result, )
                inputs = hook_result

X
Xin Pan 已提交
686
        if not self._built:
687 688 689 690 691
            with program_desc_tracing_guard(False):
                self._build_once(*inputs, **kwargs)
                if parallel_helper._is_data_parallel_mode():
                    parallel_helper._broadcast_parameters(
                        self._parameters.values())
692
            self._built = True
693

694
        with param_guard(self._parameters), param_guard(self._buffers):
695
            outputs = self.forward(*inputs, **kwargs)
696 697 698 699 700 701

        for forward_post_hook in self._forward_post_hooks.values():
            hook_result = forward_post_hook(self, inputs, outputs)
            if hook_result is not None:
                outputs = hook_result

M
minqiyang 已提交
702
        return outputs
M
minqiyang 已提交
703

704
    def forward(self, *inputs, **kwargs):
705 706 707 708 709 710 711 712
        """
        Defines the computation performed at every call.
        Should be overridden by all subclasses.

        Parameters:
            *inputs(tuple): unpacked tuple arguments
            **kwargs(dict): unpacked dict arguments
        """
713
        raise NotImplementedError
X
Xin Pan 已提交
714 715 716 717

    def backward(self, *inputs):
        raise ValueError("Layer shouldn't implement backward")

X
Xin Pan 已提交
718 719 720
    def add_sublayer(self, name, sublayer):
        """Adds a sub Layer instance.

721
        Added sublayer can be accessed by self.name
X
Xin Pan 已提交
722

723 724 725
        Parameters:
            name(str): name of this sublayer.
            sublayer(Layer): an instance of Layer.
X
Xin Pan 已提交
726
        Returns:
727
            Layer: the sublayer passed in.
X
Xin Pan 已提交
728 729
        """
        assert isinstance(sublayer, core.Layer)
730

X
Xin Pan 已提交
731 732 733 734 735 736
        self._sub_layers[name] = sublayer
        return sublayer

    def add_parameter(self, name, parameter):
        """Adds a Parameter instance.

737
        Added parameter can be accessed by self.name
X
Xin Pan 已提交
738

739 740 741
        Parameters:
            name(str): name of this sublayer.
            parameter(Parameter): an instance of Parameter.
X
Xin Pan 已提交
742
        Returns:
743
            Parameter: the parameter passed in.
X
Xin Pan 已提交
744
        """
745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762
        if '_parameters' not in self.__dict__:
            raise RuntimeError(
                "super(YourLayer, self).__init__() should be called firstly.")
        elif not isinstance(name, six.string_types):
            raise TypeError(
                "The name of parameter should be a string, but received {}.".
                format(type(name).__name__))
        elif '.' in name:
            raise KeyError(
                "The name of parameter can not contain `.`, "
                "because when you access the newly added parameter in the "
                "form of `self.**.**`, it will cause AttributeError.")
        elif name == '':
            raise KeyError("The name of parameter can not be empty.")
        elif hasattr(self, name) and name not in self._parameters:
            raise KeyError("The parameter '{}' already exists.".format(name))
        elif parameter is not None and not isinstance(parameter,
                                                      framework.Parameter):
763
            raise TypeError(
764 765 766 767 768
                "The parameter to be added should be a Parameter, but received {}.".
                format(type(parameter).__name__))
        else:
            if parameter is None:
                self._parameters[name] = None
769

770 771 772
            if len(self._loaddict_holder) > 0:
                assert parameter.name in self._loaddict_holder, "Parameter not found, Can't not find [ {} ] in state_dict".format(
                    parameter.name)
H
hong 已提交
773

774
                parameter.set_value(self._loaddict_holder[parameter.name])
775

776
            self._parameters[name] = parameter
X
Xin Pan 已提交
777 778
        return parameter

X
Xin Pan 已提交
779 780 781 782 783
    def __getattr__(self, name):
        if name in self._parameters:
            return self._parameters[name]
        elif name in self._sub_layers:
            return self._sub_layers[name]
784 785
        elif name in self._buffers:
            return self._buffers[name]
786 787
        else:
            return object.__getattribute__(self, name)
X
Xin Pan 已提交
788 789

    def __setattr__(self, name, value):
S
songyouwei 已提交
790 791 792 793 794
        def _remove_if_exist(*dicts):
            for d in dicts:
                if name in d:
                    del d[name]

795 796
        if isinstance(getattr(type(self), name, None), property):
            object.__setattr__(self, name, value)
797
        params = self.__dict__.get('_parameters', None)
X
Xin Pan 已提交
798 799 800 801
        if isinstance(value, framework.Parameter):
            if params is None:
                raise ValueError(
                    "super(YourLayer, self).__init__() should be called first")
H
hong 已提交
802
            if len(self._loaddict_holder) > 0:
803
                assert value.name in self._loaddict_holder, "Parameter not found, Can't not find [ {} ] in state_dict".format(
H
hong 已提交
804 805 806 807
                    value.name)

                value.set_value(self._loaddict_holder[value.name])

808
            _remove_if_exist(self.__dict__, self._buffers, self._sub_layers)
809
            params[name] = value
810 811 812 813 814 815
        elif params is not None and name in params:
            if value is not None:
                raise TypeError(
                    "assignment to parameter '{}' should be of type Parameter or None, but got '{}'"
                    .format(name, type(value).__name__))
            params[name] = None
X
Xin Pan 已提交
816
        else:
817 818 819 820 821 822 823
            layers = self.__dict__.get('_sub_layers', None)
            if isinstance(value, core.Layer):
                if layers is None:
                    raise ValueError(
                        "super(YourLayer, self).__init__() should be called first"
                    )

824
                _remove_if_exist(self.__dict__, self._parameters, self._buffers)
825 826 827 828 829 830 831 832
                layers[name] = value
            elif layers is not None and name in layers:
                if value is not None:
                    raise TypeError(
                        "assignment to sublayer '{}' should be of type Layer or None, but got '{}'"
                        .format(name, type(value).__name__))
                layers[name] = None
            else:
833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855
                _buffers = self.__dict__.get('_buffers', None)
                if type(value) == core.VarBase:
                    if _buffers is None:
                        raise ValueError(
                            "super(YourLayer, self).__init__() should be called first"
                        )
                    _remove_if_exist(self.__dict__, self._parameters,
                                     self._sub_layers)
                    # Set persistable=False by default. Only `register_buffer` can
                    # add a persistable buffer.
                    if name not in self._buffers:
                        self._non_persistable_buffer_names_set.add(name)
                    _buffers[name] = value
                elif _buffers is not None and name in _buffers:
                    if value is not None:
                        raise TypeError(
                            "assignment to buffers '{}' should be of type core.VarBase or None, but got '{}'"
                            .format(name, type(value).__name__))
                    # Assigning None will remove the buffer, but if re-assign a new varBase to it,
                    # it will be remarked as a buffer with same `persistable` attribute.
                    _buffers[name] = None
                else:
                    object.__setattr__(self, name, value)
X
Xin Pan 已提交
856 857 858 859 860 861

    def __delattr__(self, name):
        if name in self._parameters:
            del self._parameters[name]
        elif name in self._sub_layers:
            del self._sub_layers[name]
862 863 864
        elif name in self._buffers:
            del self._buffers[name]
            self._non_persistable_buffer_names_set.discard(name)
X
Xin Pan 已提交
865 866 867
        else:
            object.__delattr__(self, name)

868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902
    def __dir__(self):
        """
        Return a list. Get all parameters, buffers(non-parameter variables), sublayers, method and attr of Layer.

        Examples:
            import paddle.fluid as fluid
            import numpy as np

            fluid.dygraph.enable_dygraph()

            class Mylayer(fluid.dygraph.Layer):
                def __init__(self):
                    super(Mylayer, self).__init__()
                    self.linear1 = fluid.dygraph.Linear(10, 10)
                    self.linear2 = fluid.dygraph.Linear(5, 5)
                    self.conv2d = fluid.dygraph.Conv2D(3, 2, 3)
                    self.embedding = fluid.dygraph.Embedding(size=[128, 16])
                    self.h_0 = fluid.dygraph.to_variable(np.zeros([10, 10]).astype('float32'))

            mylayer = Mylayer()
            print(dir(mylayer))
            # only parts are shown, because of list have too much content
            # ['__call__', '__class__',  ... , 'conv2d', 'embedding', 'h_0', 'linear1', 'linear2', ... , 'sublayers', 'train']

        """
        method = dir(self.__class__)
        attrs = list(self.__dict__.keys())
        parameters = list(self._parameters.keys())
        sublayers = list(self._sub_layers.keys())
        buffers = list(self._buffers.keys())

        keys = method + attrs + parameters + sublayers + buffers

        return keys

H
hong 已提交
903 904 905 906
    def state_dict(self,
                   destination=None,
                   include_sublayers=True,
                   structured_name_prefix=""):
H
hong 已提交
907
        '''
908
        Get all parameters and persistable buffers of current layer and its sub-layers. And set them into a dict
H
hong 已提交
909

910
        Parameters:
911 912
            destination(dict, optional) : If provide, all the parameters and persistable buffers will be set to this dict . Default: None
            include_sublayers(bool, optional) : If true, also include the parameters and persistable buffers from sublayers. Default: True
H
hong 已提交
913 914

        Retruns:
915
            dict: a dict contains all the parameters and persistable buffers.
H
hong 已提交
916 917

        Examples:
918 919
            .. code-block:: python

H
hong 已提交
920 921
                import paddle.fluid as fluid
                with fluid.dygraph.guard():
922
                    emb = fluid.dygraph.Embedding([10, 10])
H
hong 已提交
923 924 925 926 927 928

                    state_dict = emb.state_dict()
                    fluid.save_dygraph( state_dict, "paddle_dy")

        '''

929 930 931 932
        if destination is None:
            destination = collections.OrderedDict()
        for name, data in self._parameters.items():
            if data is not None:
H
hong 已提交
933
                destination[structured_name_prefix + name] = data
934 935 936
        for name, buffer in self._buffers.items():
            if buffer is not None and name not in self._non_persistable_buffer_names_set:
                destination[structured_name_prefix + name] = buffer
937 938 939 940 941 942

        if include_sublayers:
            for layer_name, layer_item in self._sub_layers.items():
                if layer_item is not None:
                    destination_temp = destination.copy()
                    destination_temp.update(
H
hong 已提交
943 944 945
                        layer_item.state_dict(
                            destination_temp, include_sublayers,
                            structured_name_prefix + layer_name + "."))
946 947 948
                    destination = destination_temp
        return destination

949 950 951 952 953
    @framework.deprecate_stat_dict
    def set_state_dict(self,
                       state_dict,
                       include_sublayers=True,
                       use_structured_name=True):
H
hong 已提交
954
        '''
955
        Set parameters and persistable buffers from state_dict. All the parameters and buffers will be reset by the tensor in the state_dict
H
hong 已提交
956

957
        Parameters:
958 959 960
            state_dict(dict) : Dict contains all the parameters and persistable buffers.
            include_sublayers(bool, optional) : If true, also include the parameters and peresistable buffers from sublayers. Default: True
            use_structured_name(bool, optional) : If true, use structured name as key, otherwise, use parameter or buffer name as key. 
H
hong 已提交
961
                                                  Default: True
H
hong 已提交
962 963 964 965
        Returns:
            None

        Examples:
966 967
            .. code-block:: python

968 969 970 971 972
                import paddle
                
                paddle.disable_static()
                
                emb = paddle.nn.Embedding([10, 10])
H
hong 已提交
973

974 975 976 977
                state_dict = emb.state_dict()
                paddle.save(state_dict, "paddle_dy")
                
                para_state_dict, _ = paddle.load("paddle_dy")
H
hong 已提交
978

979
                emb.set_state_dict(para_state_dict)
H
hong 已提交
980

H
hong 已提交
981 982
        '''

983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006
        def _check_match(key, param):
            state = state_dict.get(key, None)
            if state is None:
                raise ValueError("{} is not found in the provided dict.".format(
                    key))
            if list(state.shape) != list(param.shape):
                raise ValueError(
                    "{} receives a shape {}, but the expected shape is {}.".
                    format(key, list(state.shape), list(param.shape)))
            return param, state

        matched_param_state = []
        for key, param in self.state_dict().items():
            key_name = key if use_structured_name else param.name
            try:
                match_res = _check_match(key_name, param)
                matched_param_state.append(match_res)
            except ValueError as err:
                warnings.warn(("Skip loading for {}. ".format(key) + str(err)))

        if in_dygraph_mode():
            for param, state in matched_param_state:
                param.set_value(state)
        else:
H
hong 已提交
1007

1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031
            def _set_var(var, ndarray):
                t = global_scope().find_var(var.name).get_tensor()
                p = t._place()
                if p.is_cpu_place():
                    place = core.CPUPlace()
                elif p.is_cuda_pinned_place():
                    place = core.CUDAPinnedPlace()
                else:
                    p = core.Place()
                    p.set_place(t._place())
                    place = core.CUDAPlace(p.gpu_device_id())
                t.set(ndarray, place)

            executor = Executor(_get_device())._default_executor
            # restore parameter states
            core._create_loaded_parameter(
                [param for param, state in matched_param_state],
                global_scope(), executor)
            for param, state in matched_param_state:
                _set_var(param, state)

    # [aliases] Compatible with old method names
    set_dict = set_state_dict
    load_dict = set_state_dict