layers.py 14.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

X
Xin Pan 已提交
15
import collections
16 17 18
import contextlib
import sys
import numpy as np
M
minqiyang 已提交
19
import collections
20
import six
C
chengduo 已提交
21
from . import parallel_helper
X
Xin Pan 已提交
22
from .. import unique_name
23
from paddle.fluid import core
24
from .layer_object_helper import LayerObjectHelper
25
from paddle.fluid import framework
26
from ..param_attr import ParamAttr
H
hong 已提交
27
from paddle.fluid.framework import Variable
28

29
__all__ = ['Layer']
30 31


X
Xin Pan 已提交
32
class Layer(core.Layer):
33
    """Dynamic graph Layer based on OOD, includes the parameters of the layer, the structure of the forward graph and so on.
X
Xin Pan 已提交
34

35 36
    Parameters:
        name_scope (str): prefix name used by the layer to name parameters.
X
Xin Pan 已提交
37 38 39
            If prefix is "my_model/layer_1", parameter name in MyLayer
            can be "my_model/layer_1/MyLayer/w_n", where w is the parameter
            base name and n is an unique suffix auto-generated.
40 41 42 43 44 45 46
        dtype(str or core.VarDesc.VarType, optional): data type of this parameter.
                If set str, it can be "bool",  "float16", "float32", "float64",
                "int8", "int16", "int32", "int64", "uint8" or "uint16".
                Default: ``core.VarDesc.VarType.FP32``
    
    Returns:
        None
X
Xin Pan 已提交
47
    """
X
Xin Pan 已提交
48

X
Xin Pan 已提交
49 50 51
    def __init__(self, name_scope, dtype=core.VarDesc.VarType.FP32):
        self._full_name = unique_name.generate(name_scope + "/" +
                                               self.__class__.__name__)
X
Xin Pan 已提交
52
        self._built = False
M
minqiyang 已提交
53
        self._dtype = dtype
X
Xin Pan 已提交
54 55
        self._parameters = collections.OrderedDict()
        self._sub_layers = collections.OrderedDict()
L
lujun 已提交
56
        self._loaddict_holder = collections.OrderedDict()
57

58 59
        self._helper = LayerObjectHelper(self._full_name)

M
minqiyang 已提交
60
    def train(self):
M
minqiyang 已提交
61
        framework._dygraph_tracer().train_mode()
M
minqiyang 已提交
62 63

    def eval(self):
M
minqiyang 已提交
64
        framework._dygraph_tracer().eval_mode()
M
minqiyang 已提交
65

X
Xin Pan 已提交
66
    def full_name(self):
67
        """Full name for this layer, composed by name_scope + "/" + MyLayer.__class__.__name__
X
Xin Pan 已提交
68

69 70
        Returns:
            str: full name of this layer.
X
Xin Pan 已提交
71 72 73
        """
        return self._full_name

74 75 76 77 78 79
    def create_parameter(self,
                         attr,
                         shape,
                         dtype,
                         is_bias=False,
                         default_initializer=None):
80 81 82 83 84 85 86 87 88 89 90 91
        """Create parameters for this layer.
        
        Parameters:
            attr(ParamAttr): Parameter attribute of weight. Please refer to :ref:`api_fluid_ParamAttr`
            shape(list): shape of the parameter
            dtype(str or core.VarDesc.VarType): data type of this parameter.
                If set str, it can be "bool",  "float16", "float32", "float64",
                "int8", "int16", "int32", "int64", "uint8" or "uint16".
            is_bias(bool, optional): if this is a bias parameter. Default: False
            default_initializer(Initializer, optional): the default initializer for this parameter.
                If set None, default initializer will be set to :ref:`api_fluid_initializer_XavierInitializer` and :ref:`api_fluid_initializer_ConstantInitializer`
                for non-bias and bias parameter, respectively. Default: None
92

93 94
        Returns:
            :ref:`api_guide_Variable_en` : created parameter.
95
        """
96 97 98 99
        if isinstance(attr, ParamAttr) and (attr.name is not None):
            attr.name = ".".join([self._full_name, attr.name])
        elif isinstance(attr, six.string_types):
            attr = ".".join([self._full_name, attr])
100 101 102 103 104 105 106 107 108
        return self._helper.create_parameter(attr, shape, dtype, is_bias,
                                             default_initializer)

    # TODO: Add more parameter list when we need them
    def create_variable(self,
                        name=None,
                        persistable=None,
                        dtype=None,
                        type=core.VarDesc.VarType.LOD_TENSOR):
109
        """Create Variable for this layer.
110

111 112 113 114 115 116 117 118
        Parameters:
            name(str, optional): name of the variable. Please refer to :ref:`api_guide_Name` . Default: None
            persistable(bool, optional): if set this variable persistable. Default: False
            dtype(str or core.VarDesc.VarType, optional): data type of this parameter.
                If set str, it can be "bool",  "float16", "float32", "float64",
                "int8", "int16", "int32", "int64", "uint8" or "uint16".
                If set None, it will be ``core.VarDesc.VarType.FP32``. Default: None
            type(core.VarDesc.VarType, optional): type of the variable. No need to set this parameter. Default: ``core.VarDesc.VarType.LOD_TENSOR``
119

120 121
        Returns:
            :ref:`api_guide_Variable_en` : created Variable.
122 123 124 125 126 127 128 129 130 131
        """
        if name is not None:
            var_name = ".".join([self._full_name, name])
        else:
            var_name = unique_name.generate(".".join(
                [self._full_name, "_generated_var"]))

        return self._helper.main_program.current_block().create_var(
            name=var_name, persistable=persistable, dtype=dtype, type=type)

X
polish  
Xin Pan 已提交
132
    def parameters(self, include_sublayers=True):
133
        """Returns a list of all Parameters from current layer and its sub-layers.
X
Xin Pan 已提交
134

135 136
        Parameters:
            include_sublayers(bool, optional): Whether include the parameters of sublayers. If True, also include the parameters from sublayers. Default: True
X
Xin Pan 已提交
137

138 139
        Returns:
            list of :ref:`api_guide_Variable_en` : a list of Parameters.
X
Xin Pan 已提交
140
        """
X
polish  
Xin Pan 已提交
141 142 143 144 145 146
        ret = [p for p in self._parameters.values()]
        if include_sublayers:
            for l in self._sub_layers.values():
                for p in l.parameters(include_sublayers):
                    ret.append(p)
        return ret
X
Xin Pan 已提交
147

X
Xin Pan 已提交
148 149 150
    def sublayers(self, include_sublayers=True):
        """Returns a list of sub layers.

151 152
        Parameters:
            include_sublayers(bool, optional): Whether return the sublayers of sublayers. If True, also include the sublayers of sublayers. Default: True
X
Xin Pan 已提交
153

154 155
        Returns:
            list of Layer : a list of sub layers.
X
Xin Pan 已提交
156 157 158 159 160 161 162 163
        """
        ret = [l for l in self._sub_layers.values()]
        if include_sublayers:
            for l in self._sub_layers.values():
                for sub_l in l.sublayers(include_sublayers):
                    ret.append(sub_l)
        return ret

X
Xin Pan 已提交
164 165
    def clear_gradients(self):
        for p in self.parameters():
166 167
            if p.trainable:
                p.clear_gradient()
X
Xin Pan 已提交
168

169
    def _build_once(self, *args, **kwargs):
170 171
        pass

172
    def __call__(self, *inputs, **kwargs):
X
Xin Pan 已提交
173
        if not self._built:
174
            self._build_once(*inputs, **kwargs)
C
chengduo 已提交
175 176
            if parallel_helper._is_data_parallel_mode():
                parallel_helper._broadcast_parameters(self._parameters.values())
177

178
        outputs = self.forward(*inputs, **kwargs)
X
Xin Pan 已提交
179
        self._built = True
M
minqiyang 已提交
180
        return outputs
M
minqiyang 已提交
181

182
    def forward(self, *inputs, **kwargs):
183 184 185 186 187 188 189 190
        """
        Defines the computation performed at every call.
        Should be overridden by all subclasses.

        Parameters:
            *inputs(tuple): unpacked tuple arguments
            **kwargs(dict): unpacked dict arguments
        """
191
        raise NotImplementedError
X
Xin Pan 已提交
192 193 194 195

    def backward(self, *inputs):
        raise ValueError("Layer shouldn't implement backward")

X
Xin Pan 已提交
196 197 198
    def add_sublayer(self, name, sublayer):
        """Adds a sub Layer instance.

199
        Added sublayer can be accessed by self.name
X
Xin Pan 已提交
200

201 202 203
        Parameters:
            name(str): name of this sublayer.
            sublayer(Layer): an instance of Layer.
X
Xin Pan 已提交
204
        Returns:
205
            Layer: the sublayer passed in.
X
Xin Pan 已提交
206 207
        """
        assert isinstance(sublayer, core.Layer)
208

X
Xin Pan 已提交
209 210 211 212 213 214
        self._sub_layers[name] = sublayer
        return sublayer

    def add_parameter(self, name, parameter):
        """Adds a Parameter instance.

215
        Added parameter can be accessed by self.name
X
Xin Pan 已提交
216

217 218 219
        Parameters:
            name(str): name of this sublayer.
            parameter(Parameter): an instance of Parameter.
X
Xin Pan 已提交
220
        Returns:
221
            Parameter: the parameter passed in.
X
Xin Pan 已提交
222 223
        """
        assert isinstance(parameter, framework.Parameter)
224

H
hong 已提交
225 226 227 228 229
        if len(self._loaddict_holder) > 0:
            assert parameter.name in self._loaddict_holder, "Parameter not found, Can't not find [ {} ] in stat_dict".format(
                parameter.name)

            parameter.set_value(self._loaddict_holder[parameter.name])
230 231

        self._parameters[name] = parameter
X
Xin Pan 已提交
232 233
        return parameter

X
Xin Pan 已提交
234 235 236 237 238
    def __getattr__(self, name):
        if name in self._parameters:
            return self._parameters[name]
        elif name in self._sub_layers:
            return self._sub_layers[name]
239 240
        else:
            return object.__getattribute__(self, name)
X
Xin Pan 已提交
241 242

    def __setattr__(self, name, value):
243 244
        if isinstance(getattr(type(self), name, None), property):
            object.__setattr__(self, name, value)
X
Xin Pan 已提交
245 246 247 248 249
        if isinstance(value, framework.Parameter):
            params = self.__dict__.get('_parameters', None)
            if params is None:
                raise ValueError(
                    "super(YourLayer, self).__init__() should be called first")
H
hong 已提交
250 251 252 253 254 255
            if len(self._loaddict_holder) > 0:
                assert value.name in self._loaddict_holder, "Parameter not found, Can't not find [ {} ] in stat_dict".format(
                    value.name)

                value.set_value(self._loaddict_holder[value.name])

256 257 258 259 260
            if name in params:
                # remove unused param in tracer
                if framework._dygraph_tracer_ is not None:
                    framework._dygraph_tracer_._vars.pop(params[name].name,
                                                         None)
261
            params[name] = value
X
Xin Pan 已提交
262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278
        elif isinstance(value, core.Layer):
            layers = self.__dict__.get('_sub_layers', None)
            if layers is None:
                raise ValueError(
                    "super(YourLayer, self).__init__() should be called first")
            layers[name] = value
        else:
            object.__setattr__(self, name, value)

    def __delattr__(self, name):
        if name in self._parameters:
            del self._parameters[name]
        elif name in self._sub_layers:
            del self._sub_layers[name]
        else:
            object.__delattr__(self, name)

279
    def state_dict(self, destination=None, include_sublayers=True):
H
hong 已提交
280
        '''
281
        Get all parameters of current layer and its sub-layers. And set all the parameters into a dict
H
hong 已提交
282

283 284 285
        Parameters:
            destination(dict, optional) : If provide, all the parameters will set to this dict . Default: None
            include_sublayers(bool, optional) : If true, also include the parameters from sublayers. Default: True
H
hong 已提交
286 287

        Retruns:
288
            dict: a dict contains all the parameters
H
hong 已提交
289 290

        Examples:
291 292
            .. code-block:: python

H
hong 已提交
293 294 295 296 297 298 299 300 301
                import paddle.fluid as fluid
                with fluid.dygraph.guard():
                    emb = fluid.dygraph.Embedding( "emb", [10, 10])

                    state_dict = emb.state_dict()
                    fluid.save_dygraph( state_dict, "paddle_dy")

        '''

302 303 304 305
        if destination is None:
            destination = collections.OrderedDict()
        for name, data in self._parameters.items():
            if data is not None:
306
                destination[data.name] = data
307 308 309 310 311 312

        if include_sublayers:
            for layer_name, layer_item in self._sub_layers.items():
                if layer_item is not None:
                    destination_temp = destination.copy()
                    destination_temp.update(
313
                        layer_item.state_dict(destination_temp,
314 315 316 317
                                              include_sublayers))
                    destination = destination_temp
        return destination

H
hong 已提交
318 319
    def set_dict(self, stat_dict, include_sublayers=True):
        '''
320
        Set parameters from stat_dict. All the parameters will be reset by the tensor in the stat_dict
H
hong 已提交
321

322 323 324
        Parameters:
            state_dict(dict) : Dict contains all the parameters
            include_sublayers(bool, optional) : If true, also include the parameters from sublayers. Default: True
H
hong 已提交
325 326 327 328
        Returns:
            None

        Examples:
329 330
            .. code-block:: python

H
hong 已提交
331 332 333 334 335 336 337 338 339 340 341 342 343 344
                import paddle.fluid as fluid
                with fluid.dygraph.guard():
                    emb = fluid.dygraph.Embedding( "emb", [10, 10])

                    state_dict = emb.state_dict()
                    fluid.save_dygraph( state_dict, "paddle_dy")
                    
                    para_state_dict, _ = fluid.load_dygraph( "paddle_dy")

                    emb.set_dict( para_state_dict )

        '''
        self.load_dict(stat_dict, include_sublayers=include_sublayers)

345
    def load_dict(self, stat_dict, include_sublayers=True):
H
hong 已提交
346
        '''
347
        Set parameters from stat_dict. All the parameters will be reset by the tensor in the stat_dict
H
hong 已提交
348 349 350

        This api will be Deprecated. Please use set_dict

351 352 353
        Parameters:
            state_dict(dict) : Dict contains all the parameters
            include_sublayers(bool, optional) : If true, also include the parameters from sublayers. Default: True
H
hong 已提交
354 355 356 357
        Returns:
            None

        Examples:
358 359
            .. code-block:: python

H
hong 已提交
360 361 362 363 364 365 366 367 368 369 370 371 372
                import paddle.fluid as fluid
                with fluid.dygraph.guard():
                    emb = fluid.dygraph.Embedding( "emb", [10, 10])

                    state_dict = emb.state_dict()
                    fluid.save_dygraph( state_dict, "paddle_dy")
                    
                    para_state_dict, _ = fluid.load_dygraph( "paddle_dy")

                    emb.load_dict( para_state_dict )

        '''

L
lujun 已提交
373
        self._loaddict_holder = stat_dict
374 375
        for name, item in self.__dict__.get('_parameters', None).items():
            if item.name in stat_dict:
H
hong 已提交
376 377 378 379 380
                item.set_value(stat_dict[item.name])
            else:
                raise RuntimeError(
                    "Parameter not found, Can't not find [ {} ] in stat_dict".
                    format(item.name))
381 382 383 384 385

        if include_sublayers:
            for layer_name, layer_item in self._sub_layers.items():
                if layer_item is not None:
                    layer_item.load_dict(stat_dict)