layers.py 26.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

X
Xin Pan 已提交
15
import collections
16 17 18
import contextlib
import sys
import numpy as np
M
minqiyang 已提交
19
import collections
20
import six
21
import re
C
chengduo 已提交
22
from . import parallel_helper
X
Xin Pan 已提交
23
from .. import unique_name
24
from paddle.fluid import core
25
from .layer_object_helper import LayerObjectHelper
26
from .base import program_desc_tracing_guard
27
from paddle.fluid import framework
28
from ..param_attr import ParamAttr
H
hong 已提交
29
import copy
30
import weakref
H
hong 已提交
31
import warnings
32

33
__all__ = ['Layer']
34

35 36 37 38 39 40 41 42
_first_cap_re = re.compile('(.)([A-Z][a-z]+)')
_all_cap_re = re.compile('([a-z])([A-Z])')


def _convert_camel_to_snake(name):
    s1 = _first_cap_re.sub(r'\1_\2', name)
    return _all_cap_re.sub(r'\1_\2', s1).lower()

43

44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59
class HookRemoveHelper(object):
    """ A HookRemoveHelper that can be used to remove hook. """

    next_hook_id = 0

    def __init__(self, hooks):
        self._hooks_ref = weakref.ref(hooks)
        self._hook_id = HookRemoveHelper.next_hook_id
        HookRemoveHelper.next_hook_id += 1

    def remove(self):
        hooks = self._hooks_ref()
        if hooks is not None and self._hook_id in hooks:
            del hooks[self._hook_id]


X
Xin Pan 已提交
60
class Layer(core.Layer):
61
    """Dynamic graph Layer based on OOD, includes the parameters of the layer, the structure of the forward graph and so on.
X
Xin Pan 已提交
62

63
    Parameters:
64 65
        name_scope (str, optional): prefix name used by the layer to name parameters.
            If prefix is "my_layer", parameter name in MyLayer
66 67 68
            can be "my_layer_0.w_n", where "w" is the parameter
            base name and "n" is an unique suffix auto-generated.
            If None, prefix name will be snake cased class name. Default: None.
69 70 71 72 73 74 75
        dtype(str or core.VarDesc.VarType, optional): data type of this parameter.
                If set str, it can be "bool",  "float16", "float32", "float64",
                "int8", "int16", "int32", "int64", "uint8" or "uint16".
                Default: ``core.VarDesc.VarType.FP32``
    
    Returns:
        None
X
Xin Pan 已提交
76
    """
X
Xin Pan 已提交
77

78 79
    def __init__(self, name_scope=None, dtype=core.VarDesc.VarType.FP32):
        if name_scope is None:
80 81
            name_scope = _convert_camel_to_snake(self.__class__.__name__)
        self._full_name = unique_name.generate(name_scope)
82
        self._helper = LayerObjectHelper(self._full_name)
X
Xin Pan 已提交
83
        self._built = False
M
minqiyang 已提交
84
        self._dtype = dtype
85

X
Xin Pan 已提交
86 87
        self._parameters = collections.OrderedDict()
        self._sub_layers = collections.OrderedDict()
L
lujun 已提交
88
        self._loaddict_holder = collections.OrderedDict()
89

90 91 92
        self._forward_pre_hooks = collections.OrderedDict()
        self._forward_post_hooks = collections.OrderedDict()

M
minqiyang 已提交
93
    def train(self):
M
minqiyang 已提交
94
        framework._dygraph_tracer().train_mode()
M
minqiyang 已提交
95 96

    def eval(self):
M
minqiyang 已提交
97
        framework._dygraph_tracer().eval_mode()
M
minqiyang 已提交
98

X
Xin Pan 已提交
99
    def full_name(self):
100
        """Full name for this layer, composed by name_scope + "/" + MyLayer.__class__.__name__
X
Xin Pan 已提交
101

102 103
        Returns:
            str: full name of this layer.
X
Xin Pan 已提交
104 105 106
        """
        return self._full_name

107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124
    def register_forward_post_hook(self, hook):
        """Register a forward post-hook for Layer. The hook will be called after `forward` function has been computed.

        It should have the following form, `input` and `output` of the `hook` is `input` and `output` of the `Layer` respectively.
        User can use forward post-hook to change the output of the Layer or perform information statistics tasks on the Layer.
 
        hook(Layer, input, output) -> None or modified output

        Parameters:
            hook(function): a function registered as a forward post-hook

        Returns:
            HookRemoveHelper: a HookRemoveHelper object that can be used to remove the added hook by calling `hook_remove_helper.remove()` .

        Examples:
            .. code-block:: python

              import paddle.fluid as fluid
Z
zhongpu 已提交
125
              import numpy as np
126 127 128 129 130 131 132 133 134 135 136 137 138 139

              # the forward_post_hook change the output of the layer: output = output * 2 
              def forward_post_hook(layer, input, output):
                  # user can use layer, input and output for information statistis tasks

                  # change the output 
                  return output * 2

              with fluid.dygraph.guard():
                  linear = fluid.Linear(13, 5, dtype="float32")

                  # register the hook
                  forward_post_hook_handle = linear.register_forward_post_hook(forward_post_hook)
                  
Z
zhongpu 已提交
140 141
                  value1 = np.arange(26).reshape(2, 13).astype("float32")
                  in1 = fluid.dygraph.to_variable(value1)
142
                  
Z
zhongpu 已提交
143
                  out0 = linear(in1)
144 145 146 147
                  
                  # remove the hook
                  forward_post_hook_handle.remove()

Z
zhongpu 已提交
148
                  out1 = linear(in1)
149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176

                  # hook change the linear's output to output * 2, so out0 is equal to out1 * 2.
                  assert (out0.numpy() == (out1.numpy()) * 2).any()
        """
        hook_remove_helper = HookRemoveHelper(self._forward_post_hooks)
        self._forward_post_hooks[hook_remove_helper._hook_id] = hook
        return hook_remove_helper

    def register_forward_pre_hook(self, hook):
        """Register a forward pre-hook for Layer. The hook will be called before `forward` function has been computed.
        
        It should have the following form, `input` of the `hook` is `input` of the `Layer`,
        hook can either return a tuple or a single modified value in the hook. We will wrap the value into a tuple if 
        a single value is returned(unless that value is already a tuple).
        User can use forward pre-hook to change the input of the Layer or perform information statistics tasks on the Layer.

        hook(Layer, input) -> None or modified input

        Parameters:
            hook(function): a function registered as a forward pre-hook

        Returns:
            HookRemoveHelper: a HookRemoveHelper object that can be used to remove the added hook by calling `hook_remove_helper.remove()` .

        Examples:
            .. code-block:: python

              import paddle.fluid as fluid
Z
zhongpu 已提交
177
              import numpy as np
178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210

              # the forward_post_hook change the input of the layer: input = input * 2
              def forward_pre_hook(layer, input):
                  # user can use layer and input for information statistis tasks

                  # change the input
                  input_return = (input[0] * 2)
                  return input_return

              with fluid.dygraph.guard():
                  linear = fluid.Linear(13, 5, dtype="float32")

                  # register the hook
                  forward_pre_hook_handle = linear.register_forward_pre_hook(forward_pre_hook)

                  value0 = np.arange(26).reshape(2, 13).astype("float32")
                  in0 = fluid.dygraph.to_variable(value0)
                  out0 = linear(in0)

                  # remove the hook
                  forward_pre_hook_handle.remove()

                  value1 = value0 * 2
                  in1 = fluid.dygraph.to_variable(value1)
                  out1 = linear(in1)

                  # hook change the linear's input to input * 2, so out0 is equal to out1.
                  assert (out0.numpy() == out1.numpy()).any()
        """
        hook_remove_helper = HookRemoveHelper(self._forward_pre_hooks)
        self._forward_pre_hooks[hook_remove_helper._hook_id] = hook
        return hook_remove_helper

211 212
    def create_parameter(self,
                         shape,
213 214
                         attr=None,
                         dtype='float32',
215 216
                         is_bias=False,
                         default_initializer=None):
217 218 219
        """Create parameters for this layer.
        
        Parameters:
220 221 222
            shape(list): Shape of the parameter.
            attr(ParamAttr, optional): Parameter attribute of weight. Please refer to :ref:`api_fluid_ParamAttr`. Default: None.
            dtype(str or core.VarDesc.VarType or str, optional): Data type of this parameter.
223
                If set str, it can be "bool",  "float16", "float32", "float64",
224 225
                "int8", "int16", "int32", "int64", "uint8" or "uint16". Default: "float32".
            is_bias(bool, optional): if this is a bias parameter. Default: False.
226 227
            default_initializer(Initializer, optional): the default initializer for this parameter.
                If set None, default initializer will be set to :ref:`api_fluid_initializer_XavierInitializer` and :ref:`api_fluid_initializer_ConstantInitializer`
228
                for non-bias and bias parameter, respectively. Default: None.
229

230 231
        Returns:
            :ref:`api_guide_Variable_en` : created parameter.
232
        """
H
hong 已提交
233 234 235 236
        temp_attr = copy.deepcopy(attr)
        if isinstance(temp_attr, six.string_types) and temp_attr == "":
            temp_attr = None
        return self._helper.create_parameter(temp_attr, shape, dtype, is_bias,
237 238 239 240 241 242 243 244
                                             default_initializer)

    # TODO: Add more parameter list when we need them
    def create_variable(self,
                        name=None,
                        persistable=None,
                        dtype=None,
                        type=core.VarDesc.VarType.LOD_TENSOR):
245
        """Create Variable for this layer.
246

247 248 249 250 251 252 253 254
        Parameters:
            name(str, optional): name of the variable. Please refer to :ref:`api_guide_Name` . Default: None
            persistable(bool, optional): if set this variable persistable. Default: False
            dtype(str or core.VarDesc.VarType, optional): data type of this parameter.
                If set str, it can be "bool",  "float16", "float32", "float64",
                "int8", "int16", "int32", "int64", "uint8" or "uint16".
                If set None, it will be ``core.VarDesc.VarType.FP32``. Default: None
            type(core.VarDesc.VarType, optional): type of the variable. No need to set this parameter. Default: ``core.VarDesc.VarType.LOD_TENSOR``
255

256 257
        Returns:
            :ref:`api_guide_Variable_en` : created Variable.
258 259 260 261 262 263 264 265 266 267
        """
        if name is not None:
            var_name = ".".join([self._full_name, name])
        else:
            var_name = unique_name.generate(".".join(
                [self._full_name, "_generated_var"]))

        return self._helper.main_program.current_block().create_var(
            name=var_name, persistable=persistable, dtype=dtype, type=type)

X
polish  
Xin Pan 已提交
268
    def parameters(self, include_sublayers=True):
269
        """Returns a list of all Parameters from current layer and its sub-layers.
X
Xin Pan 已提交
270

271 272
        Parameters:
            include_sublayers(bool, optional): Whether include the parameters of sublayers. If True, also include the parameters from sublayers. Default: True
X
Xin Pan 已提交
273

274 275
        Returns:
            list of :ref:`api_guide_Variable_en` : a list of Parameters.
X
Xin Pan 已提交
276
        """
277 278 279 280 281
        ret = [
            param
            for _, param in self.named_parameters(
                include_sublayers=include_sublayers)
        ]
X
polish  
Xin Pan 已提交
282
        return ret
X
Xin Pan 已提交
283

X
Xin Pan 已提交
284 285 286
    def sublayers(self, include_sublayers=True):
        """Returns a list of sub layers.

287 288
        Parameters:
            include_sublayers(bool, optional): Whether return the sublayers of sublayers. If True, also include the sublayers of sublayers. Default: True
X
Xin Pan 已提交
289

290 291
        Returns:
            list of Layer : a list of sub layers.
X
Xin Pan 已提交
292
        """
293 294 295 296 297
        ret = [
            layer
            for _, layer in self.named_sublayers(
                include_sublayers=include_sublayers)
        ]
X
Xin Pan 已提交
298 299
        return ret

300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386
    def named_parameters(self, prefix='', include_sublayers=True):
        """
        Returns an iterator over all parameters in the Layer, yielding tuple of name and parameter.

        Parameters:
            prefix(str, optional): Prefix to prepend to all parameter names. Default: ''.
            include_sublayers(bool, optional): Whether include the parameters of sublayers.
                If True, also include the named parameters from sublayers. Default: True.

        Yields:
            (string, Parameter): Tuple of name and Parameter

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                with fluid.dygraph.guard():
                    fc1 = fluid.Linear(10, 3)
                    fc2 = fluid.Linear(3, 10, bias_attr=False)
                    model = fluid.dygraph.Sequential(fc1, fc2)
                    for name, param in model.named_parameters():
                        print(name, param)

        """
        params_set = set()
        named_sublayers = self.named_sublayers(
            prefix=prefix,
            include_sublayers=include_sublayers,
            include_self=True)
        for layer_prefix, sublayer in named_sublayers:
            params = sublayer._parameters.items()
            for key, param in params:
                if param is None or param in params_set:
                    continue
                params_set.add(param)
                name = layer_prefix + ('.' if layer_prefix else '') + key
                yield name, param

    def named_sublayers(self,
                        prefix='',
                        include_sublayers=True,
                        include_self=False,
                        layers_set=None):
        """
        Returns an iterator over all sublayers in the Layer, yielding tuple of name and sublayer.
        The duplicate sublayer will only be yielded once.

        Parameters:
            prefix(str, optional): Prefix to prepend to all parameter names. Default: ''.
            include_sublayers(bool, optional): Whether include the sublayers. Default: True.
            include_self(bool, optional): Whether include the Layer itself. Default: False.
            layers_set(set, optioanl): The set to record duplicate sublayers. Default: None.

        Yields:
            (string, Layer): Tuple of name and Layer

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                with fluid.dygraph.guard():
                    fc1 = fluid.Linear(10, 3)
                    fc2 = fluid.Linear(3, 10, bias_attr=False)
                    model = fluid.dygraph.Sequential(fc1, fc2)
                    for prefix, layer in model.named_sublayers():
                        print(prefix, layer)

        """
        if layers_set is None:
            layers_set = set()
        if include_self and self not in layers_set:
            layers_set.add(self)
            yield prefix, self
        if include_sublayers:
            for key, layer in self._sub_layers.items():
                if layer is None:
                    continue
                layer_prefix = prefix + ('.' if prefix else '') + key
                for p, l in layer.named_sublayers(
                        prefix=layer_prefix,
                        include_sublayers=include_sublayers,
                        include_self=True,
                        layers_set=layers_set):
                    yield p, l

X
Xin Pan 已提交
387
    def clear_gradients(self):
388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411
        """
        Clear the gradients of all parameters for this layer.
        
        Returns:
            None
        
        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                import numpy as np

                with fluid.dygraph.guard():
                    value = np.arange(26).reshape(2, 13).astype("float32")
                    a = fluid.dygraph.to_variable(value)
                    linear = fluid.Linear(13, 5, dtype="float32")
                    adam = fluid.optimizer.Adam(learning_rate=0.01, 
                                                parameter_list=linear.parameters())
                    out = linear(a)
                    out.backward()
                    adam.minimize(out)
                    linear.clear_gradients()

        """
X
Xin Pan 已提交
412
        for p in self.parameters():
413 414
            if p.trainable:
                p.clear_gradient()
X
Xin Pan 已提交
415

416
    def _build_once(self, *args, **kwargs):
417 418
        pass

419
    def __call__(self, *inputs, **kwargs):
420 421 422 423 424 425 426
        for forward_pre_hook in self._forward_pre_hooks.values():
            hook_result = forward_pre_hook(self, inputs)
            if hook_result is not None:
                if not isinstance(hook_result, tuple):
                    hook_result = (hook_result, )
                inputs = hook_result

X
Xin Pan 已提交
427
        if not self._built:
428 429 430 431 432
            with program_desc_tracing_guard(False):
                self._build_once(*inputs, **kwargs)
                if parallel_helper._is_data_parallel_mode():
                    parallel_helper._broadcast_parameters(
                        self._parameters.values())
433
            self._built = True
434

435
        outputs = self.forward(*inputs, **kwargs)
436 437 438 439 440 441

        for forward_post_hook in self._forward_post_hooks.values():
            hook_result = forward_post_hook(self, inputs, outputs)
            if hook_result is not None:
                outputs = hook_result

M
minqiyang 已提交
442
        return outputs
M
minqiyang 已提交
443

444
    def forward(self, *inputs, **kwargs):
445 446 447 448 449 450 451 452
        """
        Defines the computation performed at every call.
        Should be overridden by all subclasses.

        Parameters:
            *inputs(tuple): unpacked tuple arguments
            **kwargs(dict): unpacked dict arguments
        """
453
        raise NotImplementedError
X
Xin Pan 已提交
454 455 456 457

    def backward(self, *inputs):
        raise ValueError("Layer shouldn't implement backward")

X
Xin Pan 已提交
458 459 460
    def add_sublayer(self, name, sublayer):
        """Adds a sub Layer instance.

461
        Added sublayer can be accessed by self.name
X
Xin Pan 已提交
462

463 464 465
        Parameters:
            name(str): name of this sublayer.
            sublayer(Layer): an instance of Layer.
X
Xin Pan 已提交
466
        Returns:
467
            Layer: the sublayer passed in.
X
Xin Pan 已提交
468 469
        """
        assert isinstance(sublayer, core.Layer)
470

X
Xin Pan 已提交
471 472 473 474 475 476
        self._sub_layers[name] = sublayer
        return sublayer

    def add_parameter(self, name, parameter):
        """Adds a Parameter instance.

477
        Added parameter can be accessed by self.name
X
Xin Pan 已提交
478

479 480 481
        Parameters:
            name(str): name of this sublayer.
            parameter(Parameter): an instance of Parameter.
X
Xin Pan 已提交
482
        Returns:
483
            Parameter: the parameter passed in.
X
Xin Pan 已提交
484
        """
485 486 487 488 489 490
        if parameter is None:
            self._parameters[name] = None
        elif not isinstance(parameter, framework.Parameter):
            raise TypeError(
                "parameter assignment requires Parameter or None, but got '{}'"
                .format(type(parameter).__name__))
491

H
hong 已提交
492 493 494 495 496
        if len(self._loaddict_holder) > 0:
            assert parameter.name in self._loaddict_holder, "Parameter not found, Can't not find [ {} ] in stat_dict".format(
                parameter.name)

            parameter.set_value(self._loaddict_holder[parameter.name])
497 498

        self._parameters[name] = parameter
X
Xin Pan 已提交
499 500
        return parameter

X
Xin Pan 已提交
501 502 503 504 505
    def __getattr__(self, name):
        if name in self._parameters:
            return self._parameters[name]
        elif name in self._sub_layers:
            return self._sub_layers[name]
506 507
        else:
            return object.__getattribute__(self, name)
X
Xin Pan 已提交
508 509

    def __setattr__(self, name, value):
S
songyouwei 已提交
510 511 512 513 514
        def _remove_if_exist(*dicts):
            for d in dicts:
                if name in d:
                    del d[name]

515 516
        if isinstance(getattr(type(self), name, None), property):
            object.__setattr__(self, name, value)
517
        params = self.__dict__.get('_parameters', None)
X
Xin Pan 已提交
518 519 520 521
        if isinstance(value, framework.Parameter):
            if params is None:
                raise ValueError(
                    "super(YourLayer, self).__init__() should be called first")
H
hong 已提交
522 523 524 525 526 527
            if len(self._loaddict_holder) > 0:
                assert value.name in self._loaddict_holder, "Parameter not found, Can't not find [ {} ] in stat_dict".format(
                    value.name)

                value.set_value(self._loaddict_holder[value.name])

S
songyouwei 已提交
528
            _remove_if_exist(self.__dict__, self._sub_layers)
529
            params[name] = value
530 531 532 533 534 535
        elif params is not None and name in params:
            if value is not None:
                raise TypeError(
                    "assignment to parameter '{}' should be of type Parameter or None, but got '{}'"
                    .format(name, type(value).__name__))
            params[name] = None
X
Xin Pan 已提交
536
        else:
537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553
            layers = self.__dict__.get('_sub_layers', None)
            if isinstance(value, core.Layer):
                if layers is None:
                    raise ValueError(
                        "super(YourLayer, self).__init__() should be called first"
                    )

                _remove_if_exist(self.__dict__, self._parameters)
                layers[name] = value
            elif layers is not None and name in layers:
                if value is not None:
                    raise TypeError(
                        "assignment to sublayer '{}' should be of type Layer or None, but got '{}'"
                        .format(name, type(value).__name__))
                layers[name] = None
            else:
                object.__setattr__(self, name, value)
X
Xin Pan 已提交
554 555 556 557 558 559 560 561 562

    def __delattr__(self, name):
        if name in self._parameters:
            del self._parameters[name]
        elif name in self._sub_layers:
            del self._sub_layers[name]
        else:
            object.__delattr__(self, name)

H
hong 已提交
563 564 565 566
    def state_dict(self,
                   destination=None,
                   include_sublayers=True,
                   structured_name_prefix=""):
H
hong 已提交
567
        '''
568
        Get all parameters of current layer and its sub-layers. And set all the parameters into a dict
H
hong 已提交
569

570 571 572
        Parameters:
            destination(dict, optional) : If provide, all the parameters will set to this dict . Default: None
            include_sublayers(bool, optional) : If true, also include the parameters from sublayers. Default: True
H
hong 已提交
573 574

        Retruns:
575
            dict: a dict contains all the parameters
H
hong 已提交
576 577

        Examples:
578 579
            .. code-block:: python

H
hong 已提交
580 581
                import paddle.fluid as fluid
                with fluid.dygraph.guard():
582
                    emb = fluid.dygraph.Embedding([10, 10])
H
hong 已提交
583 584 585 586 587 588

                    state_dict = emb.state_dict()
                    fluid.save_dygraph( state_dict, "paddle_dy")

        '''

589 590 591 592
        if destination is None:
            destination = collections.OrderedDict()
        for name, data in self._parameters.items():
            if data is not None:
H
hong 已提交
593
                destination[structured_name_prefix + name] = data
594 595 596 597 598 599

        if include_sublayers:
            for layer_name, layer_item in self._sub_layers.items():
                if layer_item is not None:
                    destination_temp = destination.copy()
                    destination_temp.update(
H
hong 已提交
600 601 602
                        layer_item.state_dict(
                            destination_temp, include_sublayers,
                            structured_name_prefix + layer_name + "."))
603 604 605
                    destination = destination_temp
        return destination

H
hong 已提交
606 607 608 609
    def set_dict(self,
                 stat_dict,
                 include_sublayers=True,
                 use_structured_name=True):
H
hong 已提交
610
        '''
611
        Set parameters from stat_dict. All the parameters will be reset by the tensor in the stat_dict
H
hong 已提交
612

613 614 615
        Parameters:
            state_dict(dict) : Dict contains all the parameters
            include_sublayers(bool, optional) : If true, also include the parameters from sublayers. Default: True
H
hong 已提交
616 617
            use_structured_name(bool, optional) : If true, use structured name as key, otherwise, use parameter name as key. 
                                                  Default: True
H
hong 已提交
618 619 620 621
        Returns:
            None

        Examples:
622 623
            .. code-block:: python

H
hong 已提交
624 625
                import paddle.fluid as fluid
                with fluid.dygraph.guard():
626
                    emb = fluid.dygraph.Embedding([10, 10])
H
hong 已提交
627 628 629 630 631 632 633 634 635

                    state_dict = emb.state_dict()
                    fluid.save_dygraph( state_dict, "paddle_dy")
                    
                    para_state_dict, _ = fluid.load_dygraph( "paddle_dy")

                    emb.set_dict( para_state_dict )

        '''
H
hong 已提交
636 637 638 639 640 641 642 643 644
        self.load_dict(
            stat_dict,
            include_sublayers=include_sublayers,
            use_structured_name=use_structured_name)

    def load_dict(self,
                  stat_dict,
                  include_sublayers=True,
                  use_structured_name=True):
H
hong 已提交
645
        '''
646
        Set parameters from stat_dict. All the parameters will be reset by the tensor in the stat_dict
H
hong 已提交
647 648 649

        This api will be Deprecated. Please use set_dict

650 651 652
        Parameters:
            state_dict(dict) : Dict contains all the parameters
            include_sublayers(bool, optional) : If true, also include the parameters from sublayers. Default: True
H
hong 已提交
653 654
            use_structured_name(bool, optional) : If true, use structured name as key, otherwise, use parameter name as key.
                                                  Default: True
H
hong 已提交
655 656 657 658
        Returns:
            None

        Examples:
659 660
            .. code-block:: python

H
hong 已提交
661 662
                import paddle.fluid as fluid
                with fluid.dygraph.guard():
663
                    emb = fluid.dygraph.Embedding([10, 10])
H
hong 已提交
664 665 666 667 668 669 670 671 672 673

                    state_dict = emb.state_dict()
                    fluid.save_dygraph( state_dict, "paddle_dy")
                    
                    para_state_dict, _ = fluid.load_dygraph( "paddle_dy")

                    emb.load_dict( para_state_dict )

        '''

H
hong 已提交
674 675 676 677 678 679
        inner_state_dict = self.state_dict()

        for name, para in inner_state_dict.items():
            key_name = name if use_structured_name else para.name
            if key_name in stat_dict:
                para.set_value(stat_dict[key_name])
H
hong 已提交
680 681
            else:
                raise RuntimeError(
H
hong 已提交
682 683 684 685 686 687 688 689 690 691 692
                    "Parameter not found, Can't not find [ {} ] in stat_dict"
                    "use_structured_name is set to [{}]".format(
                        key_name, use_structured_name))
        unused_para_list = []
        for k, v in stat_dict.items():
            if k not in inner_state_dict:
                unused_para_list.append(k)
        if len(unused_para_list) > 0:
            warnings.warn(
                "Varibale [ {} ] are not used, because not included in layers state_dict".
                format(" ".join(unused_para_list)))