lstmp_op.h 21.3 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

Y
Yibing Liu 已提交
7
    http://www.apache.org/licenses/LICENSE-2.0
8 9 10 11 12 13 14 15

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once
16
#include <string>
17
#include <vector>
Y
Yu Yang 已提交
18 19
#include "paddle/fluid/framework/eigen.h"
#include "paddle/fluid/framework/op_registry.h"
Y
Yi Wang 已提交
20
#include "paddle/fluid/operators/activation_op.h"
Y
Yu Yang 已提交
21
#include "paddle/fluid/operators/math/blas.h"
Y
Yi Wang 已提交
22 23 24
#include "paddle/fluid/operators/math/detail/activation_functions.h"
#include "paddle/fluid/operators/math/lstm_compute.h"
#include "paddle/fluid/operators/math/sequence2batch.h"
25
#include "paddle/fluid/platform/place.h"
26
#include "paddle/fluid/platform/transform.h"
27 28 29 30 31 32

namespace paddle {
namespace operators {

using LoDTensor = framework::LoDTensor;
using Tensor = framework::Tensor;
33
using platform::Transform;
34

35 36 37 38
template <typename T, int MajorType = Eigen::RowMajor,
          typename IndexType = Eigen::DenseIndex>
using EigenMatrix = framework::EigenMatrix<T, MajorType, IndexType>;

39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69
template <typename T>
class _ClipFunctor {
 public:
  explicit _ClipFunctor(const T min, const T max) : min_(min), max_(max) {}
  HOSTDEVICE T operator()(const T& x) const {
    if (x < min_)
      return min_;
    else if (x > max_)
      return max_;
    else
      return x;
  }

 private:
  T min_;
  T max_;
};

template <typename T>
class _ClipGradFunctor {
 public:
  explicit _ClipGradFunctor(const T min, const T max) : min_(min), max_(max) {}
  HOSTDEVICE T operator()(const T& x, const T& y) const {
    return (y > min_ && y < max_) ? x : 0;
  }

 private:
  T min_;
  T max_;
};

70 71
template <typename DeviceContext, typename T>
inline void ReorderInitState(const DeviceContext& ctx,
D
dzhwinter 已提交
72 73
                             const framework::Tensor& src,
                             framework::Vector<size_t> index,
74 75 76
                             framework::Tensor* dst, bool indexed_src) {
  math::CopyMatrixRowsFunctor<DeviceContext, T> row_shuffle;
  dst->mutable_data<T>(src.dims(), ctx.GetPlace());
77
  row_shuffle(ctx, src, index, dst, indexed_src);
78 79 80 81 82
}

template <typename DeviceContext, typename T>
class LSTMPKernel : public framework::OpKernel<T> {
 public:
83 84
  template <typename Device, typename X, typename Y>
  void ActCompute(const math::detail::ActivationType act_type, const Device& d,
85 86
                  X x, Y y, platform::Place place) const {
    if (act_type == math::detail::ActivationType::kIdentity) {
87
      y.device(d) = x;
88
    } else if (act_type == math::detail::ActivationType::kSigmoid) {
89
      SigmoidFunctor<T>()(d, x, y);
90
    } else if (act_type == math::detail::ActivationType::kTanh) {
91
      TanhFunctor<T>()(d, x, y);
92 93 94 95 96 97
    } else if (act_type == math::detail::ActivationType::kReLU) {
      if (place == platform::CPUPlace())
        ReluCPUFunctor<T>()(d, x, y);
      else
        ReluCUDAFunctor<T>()(d, x, y);
    } else {
98 99
      PADDLE_THROW(
          platform::errors::InvalidArgument("unsupported activation type"));
100
    }
101 102
  }

103 104 105 106 107 108 109 110 111
  void Compute(const framework::ExecutionContext& ctx) const override {
    auto* input = ctx.Input<LoDTensor>("Input");
    auto* weight = ctx.Input<Tensor>("Weight");
    auto* proj_weight = ctx.Input<Tensor>("ProjWeight");
    auto* bias = ctx.Input<Tensor>("Bias");

    auto* hidden_t0 = ctx.Input<Tensor>("H0");
    auto* cell_t0 = ctx.Input<Tensor>("C0");

112 113 114
    auto proj_clip = static_cast<T>(ctx.Attr<float>("proj_clip"));
    auto cell_clip = static_cast<T>(ctx.Attr<float>("cell_clip"));

115 116 117 118 119 120 121 122 123 124
    auto* batch_gate = ctx.Output<LoDTensor>("BatchGate");
    batch_gate->mutable_data<T>(ctx.GetPlace());
    auto* proj_out = ctx.Output<LoDTensor>("Projection");
    proj_out->mutable_data<T>(ctx.GetPlace());
    auto* cell_out = ctx.Output<LoDTensor>("Cell");
    cell_out->mutable_data<T>(ctx.GetPlace());

    bool is_reverse = ctx.Attr<bool>("is_reverse");
    math::LoDTensor2BatchFunctor<DeviceContext, T> to_batch;
    auto& device_ctx = ctx.template device_context<DeviceContext>();
125
    to_batch(device_ctx, *input, batch_gate, true, is_reverse);
126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154

    auto in_dims = input->dims();
    int frame_size = static_cast<int>(in_dims[1] / 4);
    framework::DDim dims({in_dims[0], frame_size});
    framework::DDim proj_dims({in_dims[0], proj_weight->dims()[1]});

    if (bias) {
      Tensor b = *bias;
      b.Resize({bias->numel(), 1});
      Tensor gate_bias = b.Slice(0, 4 * frame_size);
      math::RowwiseAdd<DeviceContext, T> add_bias;
      add_bias(device_ctx, *batch_gate, gate_bias, batch_gate);
    }

    math::LstmMetaValue<T> lstmp_value;
    if (bias && ctx.Attr<bool>("use_peepholes")) {
      T* bias_data = const_cast<T*>(bias->data<T>());
      // the code style in LstmpMetaValue will be updated later.

      lstmp_value.check_ig = bias_data + 4 * frame_size;
      lstmp_value.check_fg = lstmp_value.check_ig + frame_size;
      lstmp_value.check_og = lstmp_value.check_fg + frame_size;
    } else {
      lstmp_value.check_ig = nullptr;
      lstmp_value.check_fg = nullptr;
      lstmp_value.check_og = nullptr;
    }
    lstmp_value.prev_state_value = nullptr;
    Tensor ordered_c0;
155
    Tensor ordered_h0;
D
dzhwinter 已提交
156 157 158

    framework::Vector<size_t> order(batch_gate->lod()[2]);

159 160 161 162 163 164 165 166 167 168
    if (cell_t0) {
      // Since the batch computing for LSTMP reorders the input sequence
      // according to their length. The initialized cell state also needs
      // to reorder.
      ReorderInitState<DeviceContext, T>(device_ctx, *cell_t0, order,
                                         &ordered_c0, true);
      lstmp_value.prev_state_value = ordered_c0.data<T>();
    }

    // Use the local variable as here.
169
    LoDTensor batch_proj, batch_cell;
170
    auto* batch_cell_pre_act = ctx.Output<LoDTensor>("BatchCellPreAct");
171 172 173
    batch_cell_pre_act->mutable_data<T>(dims, ctx.GetPlace());
    auto* batch_hidden = ctx.Output<LoDTensor>("BatchHidden");
    batch_hidden->mutable_data<T>(dims, ctx.GetPlace());    // T x D
174 175 176 177 178 179 180 181 182 183 184
    batch_proj.mutable_data<T>(proj_dims, ctx.GetPlace());  // T x P
    batch_cell.mutable_data<T>(dims, ctx.GetPlace());       // T x D

    auto batch_starts = batch_gate->lod()[0];
    size_t num_batch = batch_starts.size() - 1;
    auto gate_act = math::detail::GetActivationType(
        ctx.Attr<std::string>("gate_activation"));
    auto cell_act = math::detail::GetActivationType(
        ctx.Attr<std::string>("cell_activation"));
    auto cand_act = math::detail::GetActivationType(
        ctx.Attr<std::string>("candidate_activation"));
185 186
    auto proj_act = math::detail::GetActivationType(
        ctx.Attr<std::string>("proj_activation"));
187
    auto& place = *ctx.template device_context<DeviceContext>().eigen_device();
Y
Yu Yang 已提交
188
    auto blas = math::GetBlas<DeviceContext, T>(device_ctx);
189 190 191 192 193
    for (size_t n = 0; n < num_batch; n++) {
      int bstart = static_cast<int>(batch_starts[n]);
      int bend = static_cast<int>(batch_starts[n + 1]);

      Tensor gate_t = batch_gate->Slice(bstart, bend);
194
      Tensor hidden_t = batch_hidden->Slice(bstart, bend);
195 196 197 198 199 200 201 202 203 204
      Tensor proj_t = batch_proj.Slice(bstart, bend);
      Tensor cell_t = batch_cell.Slice(bstart, bend);
      Tensor cell_pre_act_t = batch_cell_pre_act->Slice(bstart, bend);

      int cur_batch_size = bend - bstart;

      if (n > 0) {
        int pre_h_start = static_cast<int>(batch_starts[n - 1]);
        int pre_h_end = pre_h_start + cur_batch_size;
        auto pre_proj_t = batch_proj.Slice(pre_h_start, pre_h_end);
Y
Yu Yang 已提交
205 206
        blas.MatMul(pre_proj_t, false, *weight, false, static_cast<T>(1.0),
                    &gate_t, static_cast<T>(1.0));
207 208 209 210 211 212 213 214 215 216
      } else if (hidden_t0) {
        // If n == 0 and there is no initialized hidden state, that is to say
        // the H0 is zeros, the calculation W_h * H0 will be skiped.
        // If n == 0 and there is initialized hidden state, calculate W_h * H0.

        // Since the batch computing for LSTMP reorders the input sequence
        // according to their length. The initialized hidden state also needs
        // to reorder.
        ReorderInitState<DeviceContext, T>(device_ctx, *hidden_t0, order,
                                           &ordered_h0, true);
217
        blas.MatMul(ordered_h0, false, *weight, false, static_cast<T>(1.0),
Y
Yu Yang 已提交
218
                    &gate_t, static_cast<T>(1.0));
219 220 221 222 223 224 225
      }

      lstmp_value.gate_value = gate_t.data<T>();
      lstmp_value.output_value = hidden_t.data<T>();
      lstmp_value.state_value = cell_t.data<T>();
      lstmp_value.state_active_value = cell_pre_act_t.data<T>();
      math::LstmUnitFunctor<DeviceContext, T>::compute(
226 227
          device_ctx, lstmp_value, frame_size, cur_batch_size, cell_clip,
          gate_act, cell_act, cand_act);
228
      lstmp_value.prev_state_value = lstmp_value.state_value;
Y
Yu Yang 已提交
229 230
      blas.MatMul(hidden_t, false, *proj_weight, false, static_cast<T>(1.0),
                  &proj_t, static_cast<T>(0.0));
231
      if (proj_act != math::detail::ActivationType::kIdentity) {
232
        auto proj_t_dev = EigenMatrix<T>::From(proj_t);
233
        ActCompute(cell_act, place, proj_t_dev, proj_t_dev, ctx.GetPlace());
234
      }
235 236 237 238 239 240 241 242
      if (proj_clip && proj_clip > 0.0) {
        T* x_data = proj_t.data<T>();
        int64_t numel = proj_t.numel();
        Transform<DeviceContext> trans;
        trans(ctx.template device_context<DeviceContext>(), x_data,
              x_data + numel, x_data,
              _ClipFunctor<T>(-1.0 * proj_clip, proj_clip));
      }
243 244 245 246 247
    }

    math::Batch2LoDTensorFunctor<DeviceContext, T> to_seq;
    batch_proj.set_lod(batch_gate->lod());
    // restore the output hidden in LoDTensor from the batch hidden
248
    to_seq(device_ctx, batch_proj, proj_out);
249 250 251

    batch_cell.set_lod(batch_gate->lod());
    // restore the output cell state in LoDTensor from the batch cell
252
    to_seq(device_ctx, batch_cell, cell_out);
253 254 255 256 257 258
  }
};

template <typename DeviceContext, typename T>
class LSTMPGradKernel : public framework::OpKernel<T> {
 public:
259 260 261 262 263 264 265 266 267 268 269 270 271
  template <typename Device, typename X, typename Y, typename DX, typename DY>
  void ActGradCompute(const math::detail::ActivationType act_type,
                      const Device& d, X x, Y y, DX dx, DY dy) const {
    // x is dummy and won't be used even in Relu(use y instead)
    if (act_type == math::detail::ActivationType::kIdentity)
      dx.device(d) = dy;
    else if (act_type == math::detail::ActivationType::kSigmoid)
      SigmoidGradFunctor<T>()(d, x, y, dy, dx);
    else if (act_type == math::detail::ActivationType::kTanh)
      TanhGradFunctor<T>()(d, x, y, dy, dx);
    else if (act_type == math::detail::ActivationType::kReLU)
      ReluGradFunctor<T>()(d, x, y, dy, dx);
    else
272 273
      PADDLE_THROW(
          platform::errors::InvalidArgument("unsupported activation type"));
274 275
  }

276 277
  void Compute(const framework::ExecutionContext& ctx) const override {
    auto* weight = ctx.Input<Tensor>("Weight");
278
    auto* proj_weight = ctx.Input<Tensor>("ProjWeight");
279 280 281 282 283
    auto* bias = ctx.Input<Tensor>("Bias");

    auto* proj_out = ctx.Input<LoDTensor>("Projection");
    auto* cell_out = ctx.Input<LoDTensor>("Cell");

284 285 286
    auto proj_clip = static_cast<T>(ctx.Attr<float>("proj_clip"));
    auto cell_clip = static_cast<T>(ctx.Attr<float>("cell_clip"));

287 288
    auto* batch_gate = ctx.Input<LoDTensor>("BatchGate");
    auto* batch_cell_pre_act = ctx.Input<LoDTensor>("BatchCellPreAct");
289
    auto* batch_hidden = ctx.Input<LoDTensor>("BatchHidden");
290

291 292
    auto* projection_g =
        ctx.Input<LoDTensor>(framework::GradVarName("Projection"));
293 294 295

    auto* in_g = ctx.Output<LoDTensor>(framework::GradVarName("Input"));
    auto* weight_g = ctx.Output<Tensor>(framework::GradVarName("Weight"));
296 297
    auto* proj_weight_g =
        ctx.Output<Tensor>(framework::GradVarName("ProjWeight"));
298 299 300 301 302 303 304 305 306 307 308 309 310 311
    auto* bias_g = ctx.Output<Tensor>(framework::GradVarName("Bias"));

    auto* h0 = ctx.Input<Tensor>("H0");
    auto* c0 = ctx.Input<Tensor>("C0");

    auto* h0_g = ctx.Output<Tensor>(framework::GradVarName("H0"));
    auto* c0_g = ctx.Output<Tensor>(framework::GradVarName("C0"));

    auto& device_ctx = ctx.template device_context<DeviceContext>();
    math::SetConstant<DeviceContext, T> zero;
    if (weight_g) {
      weight_g->mutable_data<T>(ctx.GetPlace());
      zero(device_ctx, weight_g, static_cast<T>(0.0));
    }
312 313 314 315
    if (proj_weight_g) {
      proj_weight_g->mutable_data<T>(ctx.GetPlace());
      zero(device_ctx, proj_weight_g, static_cast<T>(0.0));
    }
316 317 318 319 320

    // ordered_h0/c0 is the reordered hidden/cell initialization.
    // ordered_h0_g/c0_g is the reordered gradient of hidden/cell
    // initialization.
    Tensor ordered_h0, ordered_c0, ordered_h0_g, ordered_c0_g;
D
dzhwinter 已提交
321 322 323

    framework::Vector<size_t> order(batch_gate->lod()[2]);

324 325 326 327 328 329 330 331
    if (c0) {
      ReorderInitState<DeviceContext, T>(device_ctx, *c0, order, &ordered_c0,
                                         true);
    }
    if (c0 && c0_g) {
      ordered_c0_g.mutable_data<T>(c0_g->dims(), ctx.GetPlace());
    }

332 333
    // batch_gate dims equal to input dims
    auto in_dims = batch_gate->dims();
334 335
    auto out_dims = cell_out->dims();
    framework::DDim proj_dims({in_dims[0], proj_weight->dims()[1]});
336
    int frame_size = static_cast<int>(in_dims[1] / 4);
337 338 339 340 341
    PADDLE_ENFORCE_EQ(frame_size, out_dims[1],
                      platform::errors::InvalidArgument(
                          "The second dimension of Input(Cell) should be %d, "
                          "but received %d in LSTMP@Grad operator.",
                          frame_size, out_dims[1]));
342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378

    math::LstmMetaValue<T> lstmp_value;
    if (bias && ctx.Attr<bool>("use_peepholes")) {
      T* bias_data = const_cast<T*>(bias->data<T>());
      lstmp_value.check_ig = bias_data + 4 * frame_size;
      lstmp_value.check_fg = lstmp_value.check_ig + frame_size;
      lstmp_value.check_og = lstmp_value.check_fg + frame_size;
    } else {
      lstmp_value.check_ig = nullptr;
      lstmp_value.check_fg = nullptr;
      lstmp_value.check_og = nullptr;
    }

    math::LstmMetaGrad<T> lstmp_grad;

    if (bias && bias_g) {
      bias_g->mutable_data<T>(ctx.GetPlace());
      zero(device_ctx, bias_g, static_cast<T>(0.0));
    }
    if (bias && bias_g && ctx.Attr<bool>("use_peepholes")) {
      T* bias_g_data = bias_g->data<T>();
      lstmp_grad.check_ig_grad = bias_g_data + 4 * frame_size;
      lstmp_grad.check_fg_grad = lstmp_grad.check_ig_grad + frame_size;
      lstmp_grad.check_og_grad = lstmp_grad.check_fg_grad + frame_size;
    } else {
      lstmp_grad.check_ig_grad = nullptr;
      lstmp_grad.check_fg_grad = nullptr;
      lstmp_grad.check_og_grad = nullptr;
    }

    math::LoDTensor2BatchFunctor<DeviceContext, T> to_batch;

    auto ToBatch = [&batch_gate, &to_batch](
        const DeviceContext& ctx, const framework::LoDTensor& src,
        const framework::DDim& dims, framework::LoDTensor& dst) {
      dst.mutable_data<T>(dims, ctx.GetPlace());
      dst.set_lod(batch_gate->lod());
379
      to_batch(ctx, src, &dst, false);
380 381
    };

382 383 384 385 386
    LoDTensor batch_hidden_g, batch_proj, batch_proj_g, batch_cell;
    batch_hidden_g.mutable_data<T>(out_dims, ctx.GetPlace());
    ToBatch(device_ctx, *proj_out, proj_dims, batch_proj);        // T x P
    ToBatch(device_ctx, *projection_g, proj_dims, batch_proj_g);  // T x P
    ToBatch(device_ctx, *cell_out, out_dims, batch_cell);         // T x D
387 388 389 390 391 392 393 394 395 396 397 398 399 400 401

    LoDTensor batch_cell_g, batch_gate_g;
    batch_cell_g.mutable_data<T>(out_dims, ctx.GetPlace());
    // TODO(qingqing) support the case output cell has gradient.
    // to_batch(device_ctx, *cell_g, batch_cell_g, false);
    zero(device_ctx, &batch_cell_g, static_cast<T>(0.0));
    batch_gate_g.mutable_data<T>(batch_gate->dims(), ctx.GetPlace());
    batch_gate_g.set_lod(batch_gate->lod());

    auto gate_act = math::detail::GetActivationType(
        ctx.Attr<std::string>("gate_activation"));
    auto cell_act = math::detail::GetActivationType(
        ctx.Attr<std::string>("cell_activation"));
    auto cand_act = math::detail::GetActivationType(
        ctx.Attr<std::string>("candidate_activation"));
402 403
    auto proj_act = math::detail::GetActivationType(
        ctx.Attr<std::string>("proj_activation"));
404
    auto& place = *ctx.template device_context<DeviceContext>().eigen_device();
405 406 407

    auto batch_starts = batch_gate->lod()[0];
    size_t num_batch = batch_starts.size() - 1;
Y
Yu Yang 已提交
408
    auto blas = math::GetBlas<DeviceContext, T>(device_ctx);
409 410 411 412
    for (int n = static_cast<int>(num_batch) - 1; n >= 0; n--) {
      int bstart = static_cast<int>(batch_starts[n]);
      int bend = static_cast<int>(batch_starts[n + 1]);

413 414
      Tensor cur_proj = batch_proj.Slice(bstart, bend);
      Tensor proj_g = batch_proj_g.Slice(bstart, bend);
415 416 417 418 419 420 421 422 423 424 425

      if (proj_clip && proj_clip > 0.0) {
        T* dx_data = proj_g.data<T>();
        T* x_data = cur_proj.data<T>();
        int64_t numel = proj_g.numel();
        Transform<DeviceContext> trans;
        trans(ctx.template device_context<DeviceContext>(), dx_data,
              dx_data + numel, x_data, dx_data,
              _ClipGradFunctor<T>(-1.0 * proj_clip, proj_clip));
      }

426
      if (proj_act != math::detail::ActivationType::kIdentity) {
427 428 429 430 431
        auto cur_proj_dev = EigenMatrix<T>::From(cur_proj);
        auto proj_g_dev = EigenMatrix<T>::From(proj_g);
        ActGradCompute(cell_act, place, cur_proj_dev, cur_proj_dev, proj_g_dev,
                       proj_g_dev);
      }
432
      /* hidden state backwarad */
433
      Tensor out_g = batch_hidden_g.Slice(bstart, bend);
Y
Yu Yang 已提交
434 435
      blas.MatMul(proj_g, false, *proj_weight, true, static_cast<T>(1.0),
                  &out_g, static_cast<T>(0.0));
436 437 438
      /* projection weight backward*/
      if (proj_weight_g) {
        Tensor hidden_t = batch_hidden->Slice(bstart, bend);
Y
Yu Yang 已提交
439 440
        blas.MatMul(hidden_t, true, proj_g, false, static_cast<T>(1.0),
                    proj_weight_g, static_cast<T>(1.0));
441
      }
442

443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467
      Tensor gate = batch_gate->Slice(bstart, bend);
      Tensor cell = batch_cell.Slice(bstart, bend);
      Tensor cell_pre_act = batch_cell_pre_act->Slice(bstart, bend);
      lstmp_value.gate_value = gate.data<T>();
      lstmp_value.state_value = cell.data<T>();
      lstmp_value.state_active_value = cell_pre_act.data<T>();

      Tensor gate_g = batch_gate_g.Slice(bstart, bend);
      Tensor cell_g = batch_cell_g.Slice(bstart, bend);
      lstmp_grad.state_grad = cell_g.data<T>();
      lstmp_grad.gate_grad = gate_g.data<T>();
      lstmp_grad.output_grad = out_g.data<T>();

      if (n > 0) {
        int bstart_pre = static_cast<int>(batch_starts[n - 1]);
        Tensor cell_pre = batch_cell.Slice(bstart_pre, bstart);
        Tensor cell_pre_g = batch_cell_g.Slice(bstart_pre, bstart);
        lstmp_value.prev_state_value = cell_pre.data<T>();
        lstmp_grad.prev_state_grad = cell_pre_g.data<T>();
      } else {
        lstmp_value.prev_state_value = c0 ? ordered_c0.data<T>() : nullptr;
        lstmp_grad.prev_state_grad = c0_g ? ordered_c0_g.data<T>() : nullptr;
      }

      int cur_batch_size = bend - bstart;
L
liuhongyu 已提交
468 469 470 471
      // lstmp_value.output_value not used in bp, set to null
      // lstmp_grad.state_active_grad not used in bp, set to null
      lstmp_value.output_value = nullptr;
      lstmp_grad.state_active_grad = nullptr;
L
liuhongyu 已提交
472

473 474
      math::LstmUnitGradFunctor<DeviceContext, T>::compute(
          device_ctx, lstmp_value, lstmp_grad, frame_size, cur_batch_size,
475
          cell_clip, gate_act, cell_act, cand_act);
476 477 478 479 480

      if (n > 0) {
        int pre_h_start = static_cast<int>(batch_starts[n - 1]);
        int pre_h_end = pre_h_start + cur_batch_size;
        auto pre_proj_g = batch_proj_g.Slice(pre_h_start, pre_h_end);
Y
Yu Yang 已提交
481 482
        blas.MatMul(gate_g, false, *weight, true, static_cast<T>(1.0),
                    &pre_proj_g, static_cast<T>(1.0));
483
        if (weight_g) {
484
          /* weight backward*/
485
          auto pre_proj = batch_proj.Slice(pre_h_start, pre_h_end);
Y
Yu Yang 已提交
486 487
          blas.MatMul(pre_proj, true, gate_g, false, static_cast<T>(1.0),
                      weight_g, static_cast<T>(1.0));
488 489 490 491 492
        }
      } else {
        if (h0 && weight_g) {
          ReorderInitState<DeviceContext, T>(device_ctx, *h0, order,
                                             &ordered_h0, true);
493
          if (weight_g) {
494 495
            blas.MatMul(ordered_h0, true, gate_g, false, static_cast<T>(1.0),
                        weight_g, static_cast<T>(1.0));
496
          }
497
        }
498
        if (h0 && (h0_g || proj_weight_g)) {
499
          ordered_h0_g.mutable_data<T>(h0_g->dims(), ctx.GetPlace());
Y
Yu Yang 已提交
500
          blas.MatMul(gate_g, false, *weight, true, static_cast<T>(1.0),
501
                      &ordered_h0_g, static_cast<T>(0.0));
502 503 504 505 506 507 508 509
        }
      }
    }

    math::Batch2LoDTensorFunctor<DeviceContext, T> to_seq;
    if (in_g) {
      /* backward data */
      in_g->mutable_data<T>(ctx.GetPlace());
510
      to_seq(device_ctx, batch_gate_g, in_g);
511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533
    }
    if (bias && bias_g) {
      /* backward bias */
      Tensor b_g = *bias_g;
      b_g.Resize({bias_g->numel(), 1});
      Tensor gate_bias_g = b_g.Slice(0, 4 * frame_size);
      math::ColwiseSum<DeviceContext, T> col_sum;
      col_sum(device_ctx, batch_gate_g, &gate_bias_g);
    }

    if (h0 && h0_g) {
      ReorderInitState<DeviceContext, T>(device_ctx, ordered_h0_g, order, h0_g,
                                         false);
    }
    if (c0 && c0_g) {
      ReorderInitState<DeviceContext, T>(device_ctx, ordered_c0_g, order, c0_g,
                                         false);
    }
  }
};

}  // namespace operators
}  // namespace paddle