lstmp_op.h 21.1 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

Y
Yibing Liu 已提交
7
    http://www.apache.org/licenses/LICENSE-2.0
8 9 10 11 12 13 14 15

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once
16
#include <string>
17
#include <vector>
Y
Yu Yang 已提交
18 19
#include "paddle/fluid/framework/eigen.h"
#include "paddle/fluid/framework/op_registry.h"
Y
Yi Wang 已提交
20
#include "paddle/fluid/operators/activation_op.h"
Y
Yu Yang 已提交
21
#include "paddle/fluid/operators/math/blas.h"
Y
Yi Wang 已提交
22 23 24
#include "paddle/fluid/operators/math/detail/activation_functions.h"
#include "paddle/fluid/operators/math/lstm_compute.h"
#include "paddle/fluid/operators/math/sequence2batch.h"
25
#include "paddle/fluid/platform/transform.h"
26 27 28 29 30 31

namespace paddle {
namespace operators {

using LoDTensor = framework::LoDTensor;
using Tensor = framework::Tensor;
32
using platform::Transform;
33

34 35 36 37
template <typename T, int MajorType = Eigen::RowMajor,
          typename IndexType = Eigen::DenseIndex>
using EigenMatrix = framework::EigenMatrix<T, MajorType, IndexType>;

38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68
template <typename T>
class _ClipFunctor {
 public:
  explicit _ClipFunctor(const T min, const T max) : min_(min), max_(max) {}
  HOSTDEVICE T operator()(const T& x) const {
    if (x < min_)
      return min_;
    else if (x > max_)
      return max_;
    else
      return x;
  }

 private:
  T min_;
  T max_;
};

template <typename T>
class _ClipGradFunctor {
 public:
  explicit _ClipGradFunctor(const T min, const T max) : min_(min), max_(max) {}
  HOSTDEVICE T operator()(const T& x, const T& y) const {
    return (y > min_ && y < max_) ? x : 0;
  }

 private:
  T min_;
  T max_;
};

69 70
template <typename DeviceContext, typename T>
inline void ReorderInitState(const DeviceContext& ctx,
D
dzhwinter 已提交
71 72
                             const framework::Tensor& src,
                             framework::Vector<size_t> index,
73 74 75
                             framework::Tensor* dst, bool indexed_src) {
  math::CopyMatrixRowsFunctor<DeviceContext, T> row_shuffle;
  dst->mutable_data<T>(src.dims(), ctx.GetPlace());
76
  row_shuffle(ctx, src, index, dst, indexed_src);
77 78 79 80 81
}

template <typename DeviceContext, typename T>
class LSTMPKernel : public framework::OpKernel<T> {
 public:
82 83 84 85 86 87 88 89 90 91 92 93
  template <typename Device, typename X, typename Y>
  void ActCompute(const math::detail::ActivationType act_type, const Device& d,
                  X x, Y y) const {
    if (act_type == math::detail::ActivationType::kIdentity)
      y.device(d) = x;
    else if (act_type == math::detail::ActivationType::kSigmoid)
      SigmoidFunctor<T>()(d, x, y);
    else if (act_type == math::detail::ActivationType::kTanh)
      TanhFunctor<T>()(d, x, y);
    else if (act_type == math::detail::ActivationType::kReLU)
      ReluFunctor<T>()(d, x, y);
    else
94 95
      PADDLE_THROW(
          platform::errors::InvalidArgument("unsupported activation type"));
96 97
  }

98 99 100 101 102 103 104 105 106
  void Compute(const framework::ExecutionContext& ctx) const override {
    auto* input = ctx.Input<LoDTensor>("Input");
    auto* weight = ctx.Input<Tensor>("Weight");
    auto* proj_weight = ctx.Input<Tensor>("ProjWeight");
    auto* bias = ctx.Input<Tensor>("Bias");

    auto* hidden_t0 = ctx.Input<Tensor>("H0");
    auto* cell_t0 = ctx.Input<Tensor>("C0");

107 108 109
    auto proj_clip = static_cast<T>(ctx.Attr<float>("proj_clip"));
    auto cell_clip = static_cast<T>(ctx.Attr<float>("cell_clip"));

110 111 112 113 114 115 116 117 118 119
    auto* batch_gate = ctx.Output<LoDTensor>("BatchGate");
    batch_gate->mutable_data<T>(ctx.GetPlace());
    auto* proj_out = ctx.Output<LoDTensor>("Projection");
    proj_out->mutable_data<T>(ctx.GetPlace());
    auto* cell_out = ctx.Output<LoDTensor>("Cell");
    cell_out->mutable_data<T>(ctx.GetPlace());

    bool is_reverse = ctx.Attr<bool>("is_reverse");
    math::LoDTensor2BatchFunctor<DeviceContext, T> to_batch;
    auto& device_ctx = ctx.template device_context<DeviceContext>();
120
    to_batch(device_ctx, *input, batch_gate, true, is_reverse);
121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149

    auto in_dims = input->dims();
    int frame_size = static_cast<int>(in_dims[1] / 4);
    framework::DDim dims({in_dims[0], frame_size});
    framework::DDim proj_dims({in_dims[0], proj_weight->dims()[1]});

    if (bias) {
      Tensor b = *bias;
      b.Resize({bias->numel(), 1});
      Tensor gate_bias = b.Slice(0, 4 * frame_size);
      math::RowwiseAdd<DeviceContext, T> add_bias;
      add_bias(device_ctx, *batch_gate, gate_bias, batch_gate);
    }

    math::LstmMetaValue<T> lstmp_value;
    if (bias && ctx.Attr<bool>("use_peepholes")) {
      T* bias_data = const_cast<T*>(bias->data<T>());
      // the code style in LstmpMetaValue will be updated later.

      lstmp_value.check_ig = bias_data + 4 * frame_size;
      lstmp_value.check_fg = lstmp_value.check_ig + frame_size;
      lstmp_value.check_og = lstmp_value.check_fg + frame_size;
    } else {
      lstmp_value.check_ig = nullptr;
      lstmp_value.check_fg = nullptr;
      lstmp_value.check_og = nullptr;
    }
    lstmp_value.prev_state_value = nullptr;
    Tensor ordered_c0;
150
    Tensor ordered_h0;
D
dzhwinter 已提交
151 152 153

    framework::Vector<size_t> order(batch_gate->lod()[2]);

154 155 156 157 158 159 160 161 162 163
    if (cell_t0) {
      // Since the batch computing for LSTMP reorders the input sequence
      // according to their length. The initialized cell state also needs
      // to reorder.
      ReorderInitState<DeviceContext, T>(device_ctx, *cell_t0, order,
                                         &ordered_c0, true);
      lstmp_value.prev_state_value = ordered_c0.data<T>();
    }

    // Use the local variable as here.
164
    LoDTensor batch_proj, batch_cell;
165
    auto* batch_cell_pre_act = ctx.Output<LoDTensor>("BatchCellPreAct");
166 167 168
    batch_cell_pre_act->mutable_data<T>(dims, ctx.GetPlace());
    auto* batch_hidden = ctx.Output<LoDTensor>("BatchHidden");
    batch_hidden->mutable_data<T>(dims, ctx.GetPlace());    // T x D
169 170 171 172 173 174 175 176 177 178 179
    batch_proj.mutable_data<T>(proj_dims, ctx.GetPlace());  // T x P
    batch_cell.mutable_data<T>(dims, ctx.GetPlace());       // T x D

    auto batch_starts = batch_gate->lod()[0];
    size_t num_batch = batch_starts.size() - 1;
    auto gate_act = math::detail::GetActivationType(
        ctx.Attr<std::string>("gate_activation"));
    auto cell_act = math::detail::GetActivationType(
        ctx.Attr<std::string>("cell_activation"));
    auto cand_act = math::detail::GetActivationType(
        ctx.Attr<std::string>("candidate_activation"));
180 181
    auto proj_act = math::detail::GetActivationType(
        ctx.Attr<std::string>("proj_activation"));
182
    auto& place = *ctx.template device_context<DeviceContext>().eigen_device();
Y
Yu Yang 已提交
183
    auto blas = math::GetBlas<DeviceContext, T>(device_ctx);
184 185 186 187 188
    for (size_t n = 0; n < num_batch; n++) {
      int bstart = static_cast<int>(batch_starts[n]);
      int bend = static_cast<int>(batch_starts[n + 1]);

      Tensor gate_t = batch_gate->Slice(bstart, bend);
189
      Tensor hidden_t = batch_hidden->Slice(bstart, bend);
190 191 192 193 194 195 196 197 198 199
      Tensor proj_t = batch_proj.Slice(bstart, bend);
      Tensor cell_t = batch_cell.Slice(bstart, bend);
      Tensor cell_pre_act_t = batch_cell_pre_act->Slice(bstart, bend);

      int cur_batch_size = bend - bstart;

      if (n > 0) {
        int pre_h_start = static_cast<int>(batch_starts[n - 1]);
        int pre_h_end = pre_h_start + cur_batch_size;
        auto pre_proj_t = batch_proj.Slice(pre_h_start, pre_h_end);
Y
Yu Yang 已提交
200 201
        blas.MatMul(pre_proj_t, false, *weight, false, static_cast<T>(1.0),
                    &gate_t, static_cast<T>(1.0));
202 203 204 205 206 207 208 209 210 211
      } else if (hidden_t0) {
        // If n == 0 and there is no initialized hidden state, that is to say
        // the H0 is zeros, the calculation W_h * H0 will be skiped.
        // If n == 0 and there is initialized hidden state, calculate W_h * H0.

        // Since the batch computing for LSTMP reorders the input sequence
        // according to their length. The initialized hidden state also needs
        // to reorder.
        ReorderInitState<DeviceContext, T>(device_ctx, *hidden_t0, order,
                                           &ordered_h0, true);
212
        blas.MatMul(ordered_h0, false, *weight, false, static_cast<T>(1.0),
Y
Yu Yang 已提交
213
                    &gate_t, static_cast<T>(1.0));
214 215 216 217 218 219 220
      }

      lstmp_value.gate_value = gate_t.data<T>();
      lstmp_value.output_value = hidden_t.data<T>();
      lstmp_value.state_value = cell_t.data<T>();
      lstmp_value.state_active_value = cell_pre_act_t.data<T>();
      math::LstmUnitFunctor<DeviceContext, T>::compute(
221 222
          device_ctx, lstmp_value, frame_size, cur_batch_size, cell_clip,
          gate_act, cell_act, cand_act);
223
      lstmp_value.prev_state_value = lstmp_value.state_value;
Y
Yu Yang 已提交
224 225
      blas.MatMul(hidden_t, false, *proj_weight, false, static_cast<T>(1.0),
                  &proj_t, static_cast<T>(0.0));
226
      if (proj_act != math::detail::ActivationType::kIdentity) {
227 228 229
        auto proj_t_dev = EigenMatrix<T>::From(proj_t);
        ActCompute(cell_act, place, proj_t_dev, proj_t_dev);
      }
230 231 232 233 234 235 236 237
      if (proj_clip && proj_clip > 0.0) {
        T* x_data = proj_t.data<T>();
        int64_t numel = proj_t.numel();
        Transform<DeviceContext> trans;
        trans(ctx.template device_context<DeviceContext>(), x_data,
              x_data + numel, x_data,
              _ClipFunctor<T>(-1.0 * proj_clip, proj_clip));
      }
238 239 240 241 242
    }

    math::Batch2LoDTensorFunctor<DeviceContext, T> to_seq;
    batch_proj.set_lod(batch_gate->lod());
    // restore the output hidden in LoDTensor from the batch hidden
243
    to_seq(device_ctx, batch_proj, proj_out);
244 245 246

    batch_cell.set_lod(batch_gate->lod());
    // restore the output cell state in LoDTensor from the batch cell
247
    to_seq(device_ctx, batch_cell, cell_out);
248 249 250 251 252 253
  }
};

template <typename DeviceContext, typename T>
class LSTMPGradKernel : public framework::OpKernel<T> {
 public:
254 255 256 257 258 259 260 261 262 263 264 265 266
  template <typename Device, typename X, typename Y, typename DX, typename DY>
  void ActGradCompute(const math::detail::ActivationType act_type,
                      const Device& d, X x, Y y, DX dx, DY dy) const {
    // x is dummy and won't be used even in Relu(use y instead)
    if (act_type == math::detail::ActivationType::kIdentity)
      dx.device(d) = dy;
    else if (act_type == math::detail::ActivationType::kSigmoid)
      SigmoidGradFunctor<T>()(d, x, y, dy, dx);
    else if (act_type == math::detail::ActivationType::kTanh)
      TanhGradFunctor<T>()(d, x, y, dy, dx);
    else if (act_type == math::detail::ActivationType::kReLU)
      ReluGradFunctor<T>()(d, x, y, dy, dx);
    else
267 268
      PADDLE_THROW(
          platform::errors::InvalidArgument("unsupported activation type"));
269 270
  }

271 272
  void Compute(const framework::ExecutionContext& ctx) const override {
    auto* weight = ctx.Input<Tensor>("Weight");
273
    auto* proj_weight = ctx.Input<Tensor>("ProjWeight");
274 275 276 277 278
    auto* bias = ctx.Input<Tensor>("Bias");

    auto* proj_out = ctx.Input<LoDTensor>("Projection");
    auto* cell_out = ctx.Input<LoDTensor>("Cell");

279 280 281
    auto proj_clip = static_cast<T>(ctx.Attr<float>("proj_clip"));
    auto cell_clip = static_cast<T>(ctx.Attr<float>("cell_clip"));

282 283
    auto* batch_gate = ctx.Input<LoDTensor>("BatchGate");
    auto* batch_cell_pre_act = ctx.Input<LoDTensor>("BatchCellPreAct");
284
    auto* batch_hidden = ctx.Input<LoDTensor>("BatchHidden");
285

286 287
    auto* projection_g =
        ctx.Input<LoDTensor>(framework::GradVarName("Projection"));
288 289 290

    auto* in_g = ctx.Output<LoDTensor>(framework::GradVarName("Input"));
    auto* weight_g = ctx.Output<Tensor>(framework::GradVarName("Weight"));
291 292
    auto* proj_weight_g =
        ctx.Output<Tensor>(framework::GradVarName("ProjWeight"));
293 294 295 296 297 298 299 300 301 302 303 304 305 306
    auto* bias_g = ctx.Output<Tensor>(framework::GradVarName("Bias"));

    auto* h0 = ctx.Input<Tensor>("H0");
    auto* c0 = ctx.Input<Tensor>("C0");

    auto* h0_g = ctx.Output<Tensor>(framework::GradVarName("H0"));
    auto* c0_g = ctx.Output<Tensor>(framework::GradVarName("C0"));

    auto& device_ctx = ctx.template device_context<DeviceContext>();
    math::SetConstant<DeviceContext, T> zero;
    if (weight_g) {
      weight_g->mutable_data<T>(ctx.GetPlace());
      zero(device_ctx, weight_g, static_cast<T>(0.0));
    }
307 308 309 310
    if (proj_weight_g) {
      proj_weight_g->mutable_data<T>(ctx.GetPlace());
      zero(device_ctx, proj_weight_g, static_cast<T>(0.0));
    }
311 312 313 314 315

    // ordered_h0/c0 is the reordered hidden/cell initialization.
    // ordered_h0_g/c0_g is the reordered gradient of hidden/cell
    // initialization.
    Tensor ordered_h0, ordered_c0, ordered_h0_g, ordered_c0_g;
D
dzhwinter 已提交
316 317 318

    framework::Vector<size_t> order(batch_gate->lod()[2]);

319 320 321 322 323 324 325 326
    if (c0) {
      ReorderInitState<DeviceContext, T>(device_ctx, *c0, order, &ordered_c0,
                                         true);
    }
    if (c0 && c0_g) {
      ordered_c0_g.mutable_data<T>(c0_g->dims(), ctx.GetPlace());
    }

327 328
    // batch_gate dims equal to input dims
    auto in_dims = batch_gate->dims();
329 330
    auto out_dims = cell_out->dims();
    framework::DDim proj_dims({in_dims[0], proj_weight->dims()[1]});
331
    int frame_size = static_cast<int>(in_dims[1] / 4);
332 333 334 335 336
    PADDLE_ENFORCE_EQ(frame_size, out_dims[1],
                      platform::errors::InvalidArgument(
                          "The second dimension of Input(Cell) should be %d, "
                          "but received %d in LSTMP@Grad operator.",
                          frame_size, out_dims[1]));
337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373

    math::LstmMetaValue<T> lstmp_value;
    if (bias && ctx.Attr<bool>("use_peepholes")) {
      T* bias_data = const_cast<T*>(bias->data<T>());
      lstmp_value.check_ig = bias_data + 4 * frame_size;
      lstmp_value.check_fg = lstmp_value.check_ig + frame_size;
      lstmp_value.check_og = lstmp_value.check_fg + frame_size;
    } else {
      lstmp_value.check_ig = nullptr;
      lstmp_value.check_fg = nullptr;
      lstmp_value.check_og = nullptr;
    }

    math::LstmMetaGrad<T> lstmp_grad;

    if (bias && bias_g) {
      bias_g->mutable_data<T>(ctx.GetPlace());
      zero(device_ctx, bias_g, static_cast<T>(0.0));
    }
    if (bias && bias_g && ctx.Attr<bool>("use_peepholes")) {
      T* bias_g_data = bias_g->data<T>();
      lstmp_grad.check_ig_grad = bias_g_data + 4 * frame_size;
      lstmp_grad.check_fg_grad = lstmp_grad.check_ig_grad + frame_size;
      lstmp_grad.check_og_grad = lstmp_grad.check_fg_grad + frame_size;
    } else {
      lstmp_grad.check_ig_grad = nullptr;
      lstmp_grad.check_fg_grad = nullptr;
      lstmp_grad.check_og_grad = nullptr;
    }

    math::LoDTensor2BatchFunctor<DeviceContext, T> to_batch;

    auto ToBatch = [&batch_gate, &to_batch](
        const DeviceContext& ctx, const framework::LoDTensor& src,
        const framework::DDim& dims, framework::LoDTensor& dst) {
      dst.mutable_data<T>(dims, ctx.GetPlace());
      dst.set_lod(batch_gate->lod());
374
      to_batch(ctx, src, &dst, false);
375 376
    };

377 378 379 380 381
    LoDTensor batch_hidden_g, batch_proj, batch_proj_g, batch_cell;
    batch_hidden_g.mutable_data<T>(out_dims, ctx.GetPlace());
    ToBatch(device_ctx, *proj_out, proj_dims, batch_proj);        // T x P
    ToBatch(device_ctx, *projection_g, proj_dims, batch_proj_g);  // T x P
    ToBatch(device_ctx, *cell_out, out_dims, batch_cell);         // T x D
382 383 384 385 386 387 388 389 390 391 392 393 394 395 396

    LoDTensor batch_cell_g, batch_gate_g;
    batch_cell_g.mutable_data<T>(out_dims, ctx.GetPlace());
    // TODO(qingqing) support the case output cell has gradient.
    // to_batch(device_ctx, *cell_g, batch_cell_g, false);
    zero(device_ctx, &batch_cell_g, static_cast<T>(0.0));
    batch_gate_g.mutable_data<T>(batch_gate->dims(), ctx.GetPlace());
    batch_gate_g.set_lod(batch_gate->lod());

    auto gate_act = math::detail::GetActivationType(
        ctx.Attr<std::string>("gate_activation"));
    auto cell_act = math::detail::GetActivationType(
        ctx.Attr<std::string>("cell_activation"));
    auto cand_act = math::detail::GetActivationType(
        ctx.Attr<std::string>("candidate_activation"));
397 398
    auto proj_act = math::detail::GetActivationType(
        ctx.Attr<std::string>("proj_activation"));
399
    auto& place = *ctx.template device_context<DeviceContext>().eigen_device();
400 401 402

    auto batch_starts = batch_gate->lod()[0];
    size_t num_batch = batch_starts.size() - 1;
Y
Yu Yang 已提交
403
    auto blas = math::GetBlas<DeviceContext, T>(device_ctx);
404 405 406 407
    for (int n = static_cast<int>(num_batch) - 1; n >= 0; n--) {
      int bstart = static_cast<int>(batch_starts[n]);
      int bend = static_cast<int>(batch_starts[n + 1]);

408 409
      Tensor cur_proj = batch_proj.Slice(bstart, bend);
      Tensor proj_g = batch_proj_g.Slice(bstart, bend);
410 411 412 413 414 415 416 417 418 419 420

      if (proj_clip && proj_clip > 0.0) {
        T* dx_data = proj_g.data<T>();
        T* x_data = cur_proj.data<T>();
        int64_t numel = proj_g.numel();
        Transform<DeviceContext> trans;
        trans(ctx.template device_context<DeviceContext>(), dx_data,
              dx_data + numel, x_data, dx_data,
              _ClipGradFunctor<T>(-1.0 * proj_clip, proj_clip));
      }

421
      if (proj_act != math::detail::ActivationType::kIdentity) {
422 423 424 425 426
        auto cur_proj_dev = EigenMatrix<T>::From(cur_proj);
        auto proj_g_dev = EigenMatrix<T>::From(proj_g);
        ActGradCompute(cell_act, place, cur_proj_dev, cur_proj_dev, proj_g_dev,
                       proj_g_dev);
      }
427
      /* hidden state backwarad */
428
      Tensor out_g = batch_hidden_g.Slice(bstart, bend);
Y
Yu Yang 已提交
429 430
      blas.MatMul(proj_g, false, *proj_weight, true, static_cast<T>(1.0),
                  &out_g, static_cast<T>(0.0));
431 432 433
      /* projection weight backward*/
      if (proj_weight_g) {
        Tensor hidden_t = batch_hidden->Slice(bstart, bend);
Y
Yu Yang 已提交
434 435
        blas.MatMul(hidden_t, true, proj_g, false, static_cast<T>(1.0),
                    proj_weight_g, static_cast<T>(1.0));
436
      }
437

438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462
      Tensor gate = batch_gate->Slice(bstart, bend);
      Tensor cell = batch_cell.Slice(bstart, bend);
      Tensor cell_pre_act = batch_cell_pre_act->Slice(bstart, bend);
      lstmp_value.gate_value = gate.data<T>();
      lstmp_value.state_value = cell.data<T>();
      lstmp_value.state_active_value = cell_pre_act.data<T>();

      Tensor gate_g = batch_gate_g.Slice(bstart, bend);
      Tensor cell_g = batch_cell_g.Slice(bstart, bend);
      lstmp_grad.state_grad = cell_g.data<T>();
      lstmp_grad.gate_grad = gate_g.data<T>();
      lstmp_grad.output_grad = out_g.data<T>();

      if (n > 0) {
        int bstart_pre = static_cast<int>(batch_starts[n - 1]);
        Tensor cell_pre = batch_cell.Slice(bstart_pre, bstart);
        Tensor cell_pre_g = batch_cell_g.Slice(bstart_pre, bstart);
        lstmp_value.prev_state_value = cell_pre.data<T>();
        lstmp_grad.prev_state_grad = cell_pre_g.data<T>();
      } else {
        lstmp_value.prev_state_value = c0 ? ordered_c0.data<T>() : nullptr;
        lstmp_grad.prev_state_grad = c0_g ? ordered_c0_g.data<T>() : nullptr;
      }

      int cur_batch_size = bend - bstart;
L
liuhongyu 已提交
463 464 465 466
      // lstmp_value.output_value not used in bp, set to null
      // lstmp_grad.state_active_grad not used in bp, set to null
      lstmp_value.output_value = nullptr;
      lstmp_grad.state_active_grad = nullptr;
L
liuhongyu 已提交
467

468 469
      math::LstmUnitGradFunctor<DeviceContext, T>::compute(
          device_ctx, lstmp_value, lstmp_grad, frame_size, cur_batch_size,
470
          cell_clip, gate_act, cell_act, cand_act);
471 472 473 474 475

      if (n > 0) {
        int pre_h_start = static_cast<int>(batch_starts[n - 1]);
        int pre_h_end = pre_h_start + cur_batch_size;
        auto pre_proj_g = batch_proj_g.Slice(pre_h_start, pre_h_end);
Y
Yu Yang 已提交
476 477
        blas.MatMul(gate_g, false, *weight, true, static_cast<T>(1.0),
                    &pre_proj_g, static_cast<T>(1.0));
478
        if (weight_g) {
479
          /* weight backward*/
480
          auto pre_proj = batch_proj.Slice(pre_h_start, pre_h_end);
Y
Yu Yang 已提交
481 482
          blas.MatMul(pre_proj, true, gate_g, false, static_cast<T>(1.0),
                      weight_g, static_cast<T>(1.0));
483 484 485 486 487
        }
      } else {
        if (h0 && weight_g) {
          ReorderInitState<DeviceContext, T>(device_ctx, *h0, order,
                                             &ordered_h0, true);
488
          if (weight_g) {
489 490
            blas.MatMul(ordered_h0, true, gate_g, false, static_cast<T>(1.0),
                        weight_g, static_cast<T>(1.0));
491
          }
492
        }
493
        if (h0 && (h0_g || proj_weight_g)) {
494
          ordered_h0_g.mutable_data<T>(h0_g->dims(), ctx.GetPlace());
Y
Yu Yang 已提交
495
          blas.MatMul(gate_g, false, *weight, true, static_cast<T>(1.0),
496
                      &ordered_h0_g, static_cast<T>(0.0));
497 498 499 500 501 502 503 504
        }
      }
    }

    math::Batch2LoDTensorFunctor<DeviceContext, T> to_seq;
    if (in_g) {
      /* backward data */
      in_g->mutable_data<T>(ctx.GetPlace());
505
      to_seq(device_ctx, batch_gate_g, in_g);
506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528
    }
    if (bias && bias_g) {
      /* backward bias */
      Tensor b_g = *bias_g;
      b_g.Resize({bias_g->numel(), 1});
      Tensor gate_bias_g = b_g.Slice(0, 4 * frame_size);
      math::ColwiseSum<DeviceContext, T> col_sum;
      col_sum(device_ctx, batch_gate_g, &gate_bias_g);
    }

    if (h0 && h0_g) {
      ReorderInitState<DeviceContext, T>(device_ctx, ordered_h0_g, order, h0_g,
                                         false);
    }
    if (c0 && c0_g) {
      ReorderInitState<DeviceContext, T>(device_ctx, ordered_c0_g, order, c0_g,
                                         false);
    }
  }
};

}  // namespace operators
}  // namespace paddle