Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
Crayon鑫
Paddle
提交
f2c4bb67
P
Paddle
项目概览
Crayon鑫
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1
Issue
1
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
f2c4bb67
编写于
1月 21, 2018
作者:
Y
Yibing Liu
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Add lstm with recurrent projection operator
上级
04806ffe
变更
4
隐藏空白更改
内联
并排
Showing
4 changed file
with
1018 addition
and
0 deletion
+1018
-0
paddle/operators/lstmp_op.cc
paddle/operators/lstmp_op.cc
+296
-0
paddle/operators/lstmp_op.cu.cc
paddle/operators/lstmp_op.cu.cc
+24
-0
paddle/operators/lstmp_op.h
paddle/operators/lstmp_op.h
+384
-0
python/paddle/v2/fluid/tests/test_lstmp_op.py
python/paddle/v2/fluid/tests/test_lstmp_op.py
+314
-0
未找到文件。
paddle/operators/lstmp_op.cc
0 → 100644
浏览文件 @
f2c4bb67
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/operators/lstmp_op.h"
namespace
paddle
{
namespace
operators
{
class
LSTMPOp
:
public
framework
::
OperatorWithKernel
{
public:
using
framework
::
OperatorWithKernel
::
OperatorWithKernel
;
void
InferShape
(
framework
::
InferShapeContext
*
ctx
)
const
override
{
PADDLE_ENFORCE
(
ctx
->
HasInput
(
"Input"
),
"Input(Input) of LSTMP should not be null."
);
PADDLE_ENFORCE
(
ctx
->
HasInput
(
"Weight"
),
"Input(Weight) of LSTMP should not be null."
);
PADDLE_ENFORCE
(
ctx
->
HasInput
(
"ProjWeight"
),
"Input(ProjWeight) of LSTMP should not be null."
);
PADDLE_ENFORCE
(
ctx
->
HasInput
(
"Bias"
),
"Input(Bias) of LSTMP should not be null."
);
PADDLE_ENFORCE
(
ctx
->
HasOutput
(
"Projection"
),
"Output(Projection) of LSTMP should not be null."
);
PADDLE_ENFORCE
(
ctx
->
HasOutput
(
"Cell"
),
"Output(Cell) of LSTMP should not be null."
);
PADDLE_ENFORCE
(
ctx
->
HasOutput
(
"BatchGate"
),
"Output(BatchGate) of LSTMP should not be null."
);
PADDLE_ENFORCE
(
ctx
->
HasOutput
(
"BatchCellPreAct"
),
"Output(BatchGate) of LSTMP should not be null."
);
auto
in_dims
=
ctx
->
GetInputDim
(
"Input"
);
PADDLE_ENFORCE_EQ
(
in_dims
.
size
(),
2
,
"Input(X)'s rank must be 2."
);
if
(
ctx
->
HasInput
(
"H0"
))
{
PADDLE_ENFORCE
(
ctx
->
HasInput
(
"C0"
),
"Input(C0) and Input(H0) of LSTMP should not "
"be null at the same time."
);
auto
h_dims
=
ctx
->
GetInputDim
(
"H0"
);
auto
c_dims
=
ctx
->
GetInputDim
(
"C0"
);
PADDLE_ENFORCE
(
h_dims
==
c_dims
,
"The dimension of Input(H0) and Input(C0) "
"should be the same."
);
}
int
frame_size
=
in_dims
[
1
]
/
4
;
auto
w_dims
=
ctx
->
GetInputDim
(
"Weight"
);
auto
proj_dims
=
ctx
->
GetInputDim
(
"ProjWeight"
);
PADDLE_ENFORCE_EQ
(
w_dims
.
size
(),
2
,
"The rank of Input(Weight) should be 2."
);
PADDLE_ENFORCE_EQ
(
w_dims
[
0
],
proj_dims
[
1
],
"The first dimension of Input(Weight) "
"should be %d."
,
proj_dims
[
1
]);
PADDLE_ENFORCE_EQ
(
w_dims
[
1
],
4
*
frame_size
,
"The second dimension of Input(Weight) "
"should be 4 * %d."
,
frame_size
);
PADDLE_ENFORCE_EQ
(
proj_dims
.
size
(),
2
,
"The rank of Input(ProjWeight) should be 2."
);
PADDLE_ENFORCE_EQ
(
proj_dims
[
0
],
frame_size
,
"The first dimension of Input(ProjWeight) "
"should be %d."
,
frame_size
);
auto
b_dims
=
ctx
->
GetInputDim
(
"Bias"
);
PADDLE_ENFORCE_EQ
(
b_dims
.
size
(),
2
,
"The rank of Input(Bias) should be 2."
);
PADDLE_ENFORCE_EQ
(
b_dims
[
0
],
1
,
"The first dimension of Input(Bias) should be 1."
);
if
(
ctx
->
Attrs
().
Get
<
bool
>
(
"use_peepholes"
))
{
PADDLE_ENFORCE_EQ
(
b_dims
[
1
],
7
*
frame_size
,
"The second dimension of Input(Bias) should be "
"7 * %d if enable peepholes connection"
,
frame_size
);
}
else
{
PADDLE_ENFORCE_EQ
(
b_dims
[
1
],
4
*
frame_size
,
"The second dimension of Input(Bias) should be "
"4 * %d if disable peepholes connection"
,
frame_size
);
}
framework
::
DDim
out_dims
({
in_dims
[
0
],
frame_size
});
framework
::
DDim
proj_out_dims
({
in_dims
[
0
],
proj_dims
[
1
]});
ctx
->
SetOutputDim
(
"Projection"
,
proj_out_dims
);
ctx
->
SetOutputDim
(
"Cell"
,
out_dims
);
ctx
->
SetOutputDim
(
"BatchGate"
,
in_dims
);
ctx
->
SetOutputDim
(
"BatchCellPreAct"
,
out_dims
);
ctx
->
ShareLoD
(
"Input"
,
"Projection"
);
ctx
->
ShareLoD
(
"Input"
,
"Cell"
);
}
protected:
framework
::
OpKernelType
GetExpectedKernelType
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
return
framework
::
OpKernelType
(
framework
::
ToDataType
(
ctx
.
Input
<
framework
::
LoDTensor
>
(
"Input"
)
->
type
()),
ctx
.
device_context
());
}
};
class
LSTMPOpMaker
:
public
framework
::
OpProtoAndCheckerMaker
{
public:
LSTMPOpMaker
(
OpProto
*
proto
,
OpAttrChecker
*
op_checker
)
:
OpProtoAndCheckerMaker
(
proto
,
op_checker
)
{
AddInput
(
"Input"
,
"(LoDTensor) the first input is a LodTensor, which support "
"variable-time length input sequence. The underlying tensor in "
"this LoDTensor is a matrix with shape (T X 4D), where T is the "
"total time steps in this mini-batch, D is the hidden size."
);
AddInput
(
"H0"
,
"(Tensor, optional) the initial hidden state is an optional "
"input. This is a tensor with shape (N x D), where N is the "
"batch size and D is the hidden size."
)
.
AsDispensable
();
AddInput
(
"C0"
,
"(Tensor, optional) the initial cell state is an optional "
"input. This is a tensor with shape (N x D), where N is the "
"batch size. `H0` and `C0` can be NULL but only at the same time"
)
.
AsDispensable
();
AddInput
(
"Weight"
,
"(Tensor) the learnable hidden-hidden weights."
" - The shape is (P x 4D), where P is the recurrent projection "
"layer size and D is the hidden size. "
" - Weight = {W_cr, W_ir, W_fr, W_or}"
);
AddInput
(
"ProjWeight"
,
"(Tensor) the learnable weight `W_rh` of the projection layer."
" - The shape is (D x P), where P is the recurrent projection "
"layer size and D is the hidden size."
);
AddInput
(
"Bias"
,
"(Tensor) the learnable weights, which contains two parts: "
"input-hidden bias weight and peephole connections weight if "
"setting `use_peepholes` True. "
"1. `use_peepholes = False` "
" - The shape is (1 x 4D). "
" - Bias = {b_c, b_i, b_f, b_o}."
"2. `use_peepholes = True` "
" - The shape is (1 x 7D). "
" - Bias = {b_c, b_i, b_f, b_o, W_ic, W_fc, W_oc}."
);
AddOutput
(
"Projection"
,
"(LoDTensor) the projection of the hidden state of LSTMP "
"operator. The shape is (T x P), and lod is the same with the "
"`Input`."
);
AddOutput
(
"Cell"
,
"(LoDTensor) the cell state of LSTMP operator. "
"The shape is (T x D), and lod is the same with the `Input`."
);
AddOutput
(
"BatchGate"
,
"(LoDTensor) This LoDTensor contains input gate, forget gate "
"and output gate after the nonlinear computation. This "
"LoDTensor has the same shape as the reorganized input, which "
"is also be called batch input. The LoD size is 2. The first "
"LoD is the batch offsets and the second LoD contains the "
"indexes, which denote the position of reorganized sequence "
"in the raw input."
)
.
AsIntermediate
();
AddOutput
(
"BatchCellPreAct"
,
"(LoDTensor) This LoDTensor is obtained in the forward and used "
"in the backward."
)
.
AsIntermediate
();
AddAttr
<
bool
>
(
"use_peepholes"
,
"(bool, defalut: True) "
"whether to enable diagonal/peephole connections."
)
.
SetDefault
(
true
);
AddAttr
<
bool
>
(
"is_reverse"
,
"(bool, defalut: False) "
"whether to compute reversed LSTMP."
)
.
SetDefault
(
false
);
AddAttr
<
std
::
string
>
(
"gate_activation"
,
"(string, default: sigmoid)"
"The activation for input gate, forget gate and output "
"gate, `sigmoid` by default."
)
.
SetDefault
(
"sigmoid"
)
.
InEnum
({
"sigmoid"
,
"tanh"
,
"relu"
,
"identity"
});
AddAttr
<
std
::
string
>
(
"cell_activation"
,
"(string, default: tanh)"
"The activation for cell output, `tanh` by defalut."
)
.
SetDefault
(
"tanh"
)
.
InEnum
({
"sigmoid"
,
"tanh"
,
"relu"
,
"identity"
});
AddAttr
<
std
::
string
>
(
"candidate_activation"
,
"(string, default: tanh)"
"The activation for candidate hidden state, "
"`tanh` by default."
)
.
SetDefault
(
"tanh"
)
.
InEnum
({
"sigmoid"
,
"tanh"
,
"relu"
,
"identity"
});
AddComment
(
R"DOC(
Long-Short Term Memory with Recurrent Projection (LSTMP) Operator.
LATMP is stand LSTM appended by a recurrent projection layer to reduce the
number of parameters, espeacially when the output size is relative large.
The formula is as follows:
$$
i_t = \sigma(W_{ix}x_{t} + W_{ih}r_{t-1} + W_{ic}c_{t-1} + b_i) \\
f_t = \sigma(W_{fx}x_{t} + W_{fh}r_{t-1} + W_{fc}c_{t-1} + b_f) \\
c_t = f_t \odot c_{t-1} + i_t \odot act_g(W_{cx}x_t + W_{ch}r_{t-1} + b_c) \\
o_t = \sigma(W_{ox}x_{t} + W_{oh}r_{t-1} + W_{oc}c_t + b_o) \\
h_t = o_t \odot act_h(c_t)
r_t = W_{rh}h_t
$$
where the W terms denote weight matrices (e.g. $W_{xi}$ is the matrix
of weights from the input gate to the input), $W_{ic}, W_{fc}, W_{oc}$
are diagonal weight matrices for peephole connections. In our implementation,
we use vectors to reprenset these diagonal weight matrices. The b terms
denote bias vectors ($b_i$ is the input gate bias vector), $\sigma$
is the non-line activations, such as logistic sigmoid function, and
$i, f, o$ and $c$ are the input gate, forget gate, output gate,
and cell activation vectors, respectively, all of which have the same size as
the cell output activation vector $h$. $r$ denotes the recurrent projection
layer.
The $\odot$ is the element-wise product of the vectors. $act_g$ and $act_h$
are the cell input and cell output activation functions and `tanh` is usually
used for them.
Note that these $W_{xi}x_{t}, W_{xf}x_{t}, W_{xc}x_{t}, W_{xo}x_{t}$
operations on the input $x_{t}$ are NOT included in this operator.
Users can choose to use fully-connect operator before LSTMP operator.
)DOC"
);
}
};
class
LSTMPGradOp
:
public
framework
::
OperatorWithKernel
{
public:
using
framework
::
OperatorWithKernel
::
OperatorWithKernel
;
void
InferShape
(
framework
::
InferShapeContext
*
ctx
)
const
override
{
PADDLE_ENFORCE
(
ctx
->
HasInput
(
"Input"
),
"Input(Input) of LSTMP should not be null."
);
PADDLE_ENFORCE
(
ctx
->
HasInput
(
"Hidden"
),
"Input(Hidden) of LSTMP should not be null."
);
PADDLE_ENFORCE
(
ctx
->
HasInput
(
"Cell"
),
"Input(Cell) of LSTMP should not be null."
);
PADDLE_ENFORCE
(
ctx
->
HasInput
(
"Weight"
),
"Input(Weight) of LSTMP should not be null."
);
PADDLE_ENFORCE
(
ctx
->
HasInput
(
"Bias"
),
"Input(Bias) of LSTMP should not be null."
);
PADDLE_ENFORCE
(
ctx
->
HasInput
(
"BatchGate"
),
"Input(BatchGate) of LSTMP should not be null."
);
PADDLE_ENFORCE
(
ctx
->
HasInput
(
"BatchCellPreAct"
),
"Input(BatchGate) of LSTMP should not be null."
);
auto
SetOutGradDim
=
[
&
ctx
](
const
std
::
string
&
name
)
{
auto
g_name
=
framework
::
GradVarName
(
name
);
if
(
ctx
->
HasOutput
(
g_name
))
ctx
->
SetOutputDim
(
g_name
,
ctx
->
GetInputDim
(
name
));
};
SetOutGradDim
(
"Input"
);
SetOutGradDim
(
"Weight"
);
SetOutGradDim
(
"Bias"
);
SetOutGradDim
(
"H0"
);
SetOutGradDim
(
"C0"
);
}
protected:
framework
::
OpKernelType
GetExpectedKernelType
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
return
framework
::
OpKernelType
(
framework
::
ToDataType
(
ctx
.
Input
<
framework
::
LoDTensor
>
(
"Input"
)
->
type
()),
ctx
.
device_context
());
}
};
}
// namespace operators
}
// namespace paddle
namespace
ops
=
paddle
::
operators
;
REGISTER_OP
(
lstmp
,
ops
::
LSTMPOp
,
ops
::
LSTMPOpMaker
,
lstmp_grad
,
ops
::
LSTMPGradOp
);
REGISTER_OP_CPU_KERNEL
(
lstmp
,
ops
::
LSTMPKernel
<
paddle
::
platform
::
CPUDeviceContext
,
float
>
,
ops
::
LSTMPKernel
<
paddle
::
platform
::
CPUDeviceContext
,
double
>
);
REGISTER_OP_CPU_KERNEL
(
lstmp_grad
,
ops
::
LSTMPGradKernel
<
paddle
::
platform
::
CPUDeviceContext
,
float
>
,
ops
::
LSTMPGradKernel
<
paddle
::
platform
::
CPUDeviceContext
,
double
>
);
paddle/operators/lstmp_op.cu.cc
0 → 100644
浏览文件 @
f2c4bb67
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/operators/lstmp_op.h"
namespace
ops
=
paddle
::
operators
;
REGISTER_OP_CUDA_KERNEL
(
lstmp
,
ops
::
LSTMPKernel
<
paddle
::
platform
::
CUDADeviceContext
,
float
>
,
ops
::
LSTMPKernel
<
paddle
::
platform
::
CUDADeviceContext
,
double
>
);
REGISTER_OP_CUDA_KERNEL
(
lstmp_grad
,
ops
::
LSTMPGradKernel
<
paddle
::
platform
::
CUDADeviceContext
,
float
>
,
ops
::
LSTMPGradKernel
<
paddle
::
platform
::
CUDADeviceContext
,
double
>
);
paddle/operators/lstmp_op.h
0 → 100644
浏览文件 @
f2c4bb67
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include "paddle/framework/op_registry.h"
#include "paddle/operators/math/detail/activation_functions.h"
#include "paddle/operators/math/lstm_compute.h"
#include "paddle/operators/math/math_function.h"
#include "paddle/operators/math/sequence2batch.h"
namespace
paddle
{
namespace
operators
{
using
LoDTensor
=
framework
::
LoDTensor
;
using
Tensor
=
framework
::
Tensor
;
template
<
typename
DeviceContext
,
typename
T
>
inline
void
ReorderInitState
(
const
DeviceContext
&
ctx
,
const
framework
::
Tensor
&
src
,
const
size_t
*
index
,
framework
::
Tensor
*
dst
,
bool
indexed_src
)
{
math
::
CopyMatrixRowsFunctor
<
DeviceContext
,
T
>
row_shuffle
;
dst
->
mutable_data
<
T
>
(
src
.
dims
(),
ctx
.
GetPlace
());
row_shuffle
(
ctx
,
src
,
index
,
*
dst
,
indexed_src
);
}
template
<
typename
DeviceContext
,
typename
T
>
class
LSTMPKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
auto
*
input
=
ctx
.
Input
<
LoDTensor
>
(
"Input"
);
auto
*
weight
=
ctx
.
Input
<
Tensor
>
(
"Weight"
);
auto
*
proj_weight
=
ctx
.
Input
<
Tensor
>
(
"ProjWeight"
);
auto
*
bias
=
ctx
.
Input
<
Tensor
>
(
"Bias"
);
auto
*
hidden_t0
=
ctx
.
Input
<
Tensor
>
(
"H0"
);
auto
*
cell_t0
=
ctx
.
Input
<
Tensor
>
(
"C0"
);
auto
*
batch_gate
=
ctx
.
Output
<
LoDTensor
>
(
"BatchGate"
);
batch_gate
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
auto
*
proj_out
=
ctx
.
Output
<
LoDTensor
>
(
"Projection"
);
proj_out
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
auto
*
cell_out
=
ctx
.
Output
<
LoDTensor
>
(
"Cell"
);
cell_out
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
bool
is_reverse
=
ctx
.
Attr
<
bool
>
(
"is_reverse"
);
math
::
LoDTensor2BatchFunctor
<
DeviceContext
,
T
>
to_batch
;
auto
&
device_ctx
=
ctx
.
template
device_context
<
DeviceContext
>();
to_batch
(
device_ctx
,
*
input
,
*
batch_gate
,
true
,
is_reverse
);
auto
in_dims
=
input
->
dims
();
int
frame_size
=
static_cast
<
int
>
(
in_dims
[
1
]
/
4
);
framework
::
DDim
dims
({
in_dims
[
0
],
frame_size
});
framework
::
DDim
proj_dims
({
in_dims
[
0
],
proj_weight
->
dims
()[
1
]});
if
(
bias
)
{
Tensor
b
=
*
bias
;
b
.
Resize
({
bias
->
numel
(),
1
});
Tensor
gate_bias
=
b
.
Slice
(
0
,
4
*
frame_size
);
math
::
RowwiseAdd
<
DeviceContext
,
T
>
add_bias
;
add_bias
(
device_ctx
,
*
batch_gate
,
gate_bias
,
batch_gate
);
}
math
::
LstmMetaValue
<
T
>
lstmp_value
;
if
(
bias
&&
ctx
.
Attr
<
bool
>
(
"use_peepholes"
))
{
T
*
bias_data
=
const_cast
<
T
*>
(
bias
->
data
<
T
>
());
// the code style in LstmpMetaValue will be updated later.
lstmp_value
.
check_ig
=
bias_data
+
4
*
frame_size
;
lstmp_value
.
check_fg
=
lstmp_value
.
check_ig
+
frame_size
;
lstmp_value
.
check_og
=
lstmp_value
.
check_fg
+
frame_size
;
}
else
{
lstmp_value
.
check_ig
=
nullptr
;
lstmp_value
.
check_fg
=
nullptr
;
lstmp_value
.
check_og
=
nullptr
;
}
lstmp_value
.
prev_state_value
=
nullptr
;
Tensor
ordered_c0
;
const
size_t
*
order
=
batch_gate
->
lod
()[
2
].
data
();
if
(
cell_t0
)
{
// Since the batch computing for LSTMP reorders the input sequence
// according to their length. The initialized cell state also needs
// to reorder.
ReorderInitState
<
DeviceContext
,
T
>
(
device_ctx
,
*
cell_t0
,
order
,
&
ordered_c0
,
true
);
lstmp_value
.
prev_state_value
=
ordered_c0
.
data
<
T
>
();
}
// Use the local variable as here.
LoDTensor
batch_hidden
,
batch_proj
,
batch_cell
;
auto
*
batch_cell_pre_act
=
ctx
.
Output
<
LoDTensor
>
(
"BatchCellPreAct"
);
batch_hidden
.
mutable_data
<
T
>
(
dims
,
ctx
.
GetPlace
());
// T x D
batch_proj
.
mutable_data
<
T
>
(
proj_dims
,
ctx
.
GetPlace
());
// T x P
batch_cell
.
mutable_data
<
T
>
(
dims
,
ctx
.
GetPlace
());
// T x D
batch_cell_pre_act
->
mutable_data
<
T
>
(
dims
,
ctx
.
GetPlace
());
auto
batch_starts
=
batch_gate
->
lod
()[
0
];
size_t
num_batch
=
batch_starts
.
size
()
-
1
;
auto
gate_act
=
math
::
detail
::
GetActivationType
(
ctx
.
Attr
<
std
::
string
>
(
"gate_activation"
));
auto
cell_act
=
math
::
detail
::
GetActivationType
(
ctx
.
Attr
<
std
::
string
>
(
"cell_activation"
));
auto
cand_act
=
math
::
detail
::
GetActivationType
(
ctx
.
Attr
<
std
::
string
>
(
"candidate_activation"
));
for
(
size_t
n
=
0
;
n
<
num_batch
;
n
++
)
{
int
bstart
=
static_cast
<
int
>
(
batch_starts
[
n
]);
int
bend
=
static_cast
<
int
>
(
batch_starts
[
n
+
1
]);
Tensor
gate_t
=
batch_gate
->
Slice
(
bstart
,
bend
);
Tensor
hidden_t
=
batch_hidden
.
Slice
(
bstart
,
bend
);
Tensor
proj_t
=
batch_proj
.
Slice
(
bstart
,
bend
);
Tensor
cell_t
=
batch_cell
.
Slice
(
bstart
,
bend
);
Tensor
cell_pre_act_t
=
batch_cell_pre_act
->
Slice
(
bstart
,
bend
);
int
cur_batch_size
=
bend
-
bstart
;
if
(
n
>
0
)
{
int
pre_h_start
=
static_cast
<
int
>
(
batch_starts
[
n
-
1
]);
int
pre_h_end
=
pre_h_start
+
cur_batch_size
;
auto
pre_proj_t
=
batch_proj
.
Slice
(
pre_h_start
,
pre_h_end
);
math
::
matmul
<
DeviceContext
,
T
>
(
device_ctx
,
pre_proj_t
,
false
,
*
weight
,
false
,
static_cast
<
T
>
(
1.0
),
&
gate_t
,
static_cast
<
T
>
(
1.0
));
}
else
if
(
hidden_t0
)
{
// If n == 0 and there is no initialized hidden state, that is to say
// the H0 is zeros, the calculation W_h * H0 will be skiped.
// If n == 0 and there is initialized hidden state, calculate W_h * H0.
// Since the batch computing for LSTMP reorders the input sequence
// according to their length. The initialized hidden state also needs
// to reorder.
Tensor
ordered_h0
,
ordered_proj0
;
ordered_proj0
.
Resize
({
1
,
proj_weight
->
dims
()[
1
]});
ordered_proj0
.
mutable_data
<
T
>
(
ctx
.
GetPlace
());
ReorderInitState
<
DeviceContext
,
T
>
(
device_ctx
,
*
hidden_t0
,
order
,
&
ordered_h0
,
true
);
math
::
matmul
<
DeviceContext
,
T
>
(
device_ctx
,
ordered_h0
,
false
,
*
proj_weight
,
false
,
static_cast
<
T
>
(
1.0
),
&
ordered_proj0
,
static_cast
<
T
>
(
0.0
));
math
::
matmul
<
DeviceContext
,
T
>
(
device_ctx
,
ordered_proj0
,
false
,
*
weight
,
false
,
static_cast
<
T
>
(
1.0
),
&
gate_t
,
static_cast
<
T
>
(
1.0
));
}
lstmp_value
.
gate_value
=
gate_t
.
data
<
T
>
();
lstmp_value
.
output_value
=
hidden_t
.
data
<
T
>
();
lstmp_value
.
state_value
=
cell_t
.
data
<
T
>
();
lstmp_value
.
state_active_value
=
cell_pre_act_t
.
data
<
T
>
();
math
::
LstmUnitFunctor
<
DeviceContext
,
T
>::
compute
(
device_ctx
,
lstmp_value
,
frame_size
,
cur_batch_size
,
gate_act
,
cell_act
,
cand_act
);
lstmp_value
.
prev_state_value
=
lstmp_value
.
state_value
;
math
::
matmul
<
DeviceContext
,
T
>
(
device_ctx
,
hidden_t
,
false
,
*
proj_weight
,
false
,
static_cast
<
T
>
(
1.0
),
&
proj_t
,
static_cast
<
T
>
(
0.0
));
}
math
::
Batch2LoDTensorFunctor
<
DeviceContext
,
T
>
to_seq
;
batch_proj
.
set_lod
(
batch_gate
->
lod
());
// restore the output hidden in LoDTensor from the batch hidden
to_seq
(
device_ctx
,
batch_proj
,
*
proj_out
);
batch_cell
.
set_lod
(
batch_gate
->
lod
());
// restore the output cell state in LoDTensor from the batch cell
to_seq
(
device_ctx
,
batch_cell
,
*
cell_out
);
}
};
template
<
typename
DeviceContext
,
typename
T
>
class
LSTMPGradKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
auto
*
input
=
ctx
.
Input
<
LoDTensor
>
(
"Input"
);
auto
*
weight
=
ctx
.
Input
<
Tensor
>
(
"Weight"
);
auto
*
bias
=
ctx
.
Input
<
Tensor
>
(
"Bias"
);
auto
*
proj_out
=
ctx
.
Input
<
LoDTensor
>
(
"Projection"
);
auto
*
cell_out
=
ctx
.
Input
<
LoDTensor
>
(
"Cell"
);
auto
*
batch_gate
=
ctx
.
Input
<
LoDTensor
>
(
"BatchGate"
);
auto
*
batch_cell_pre_act
=
ctx
.
Input
<
LoDTensor
>
(
"BatchCellPreAct"
);
auto
*
hidden_g
=
ctx
.
Input
<
LoDTensor
>
(
framework
::
GradVarName
(
"Projection"
));
auto
*
in_g
=
ctx
.
Output
<
LoDTensor
>
(
framework
::
GradVarName
(
"Input"
));
auto
*
weight_g
=
ctx
.
Output
<
Tensor
>
(
framework
::
GradVarName
(
"Weight"
));
auto
*
bias_g
=
ctx
.
Output
<
Tensor
>
(
framework
::
GradVarName
(
"Bias"
));
auto
*
h0
=
ctx
.
Input
<
Tensor
>
(
"H0"
);
auto
*
c0
=
ctx
.
Input
<
Tensor
>
(
"C0"
);
auto
*
h0_g
=
ctx
.
Output
<
Tensor
>
(
framework
::
GradVarName
(
"H0"
));
auto
*
c0_g
=
ctx
.
Output
<
Tensor
>
(
framework
::
GradVarName
(
"C0"
));
auto
&
device_ctx
=
ctx
.
template
device_context
<
DeviceContext
>();
math
::
SetConstant
<
DeviceContext
,
T
>
zero
;
if
(
weight_g
)
{
weight_g
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
zero
(
device_ctx
,
weight_g
,
static_cast
<
T
>
(
0.0
));
}
// ordered_h0/c0 is the reordered hidden/cell initialization.
// ordered_h0_g/c0_g is the reordered gradient of hidden/cell
// initialization.
Tensor
ordered_h0
,
ordered_c0
,
ordered_h0_g
,
ordered_c0_g
;
const
size_t
*
order
=
batch_gate
->
lod
()[
2
].
data
();
if
(
c0
)
{
ReorderInitState
<
DeviceContext
,
T
>
(
device_ctx
,
*
c0
,
order
,
&
ordered_c0
,
true
);
}
if
(
c0
&&
c0_g
)
{
ordered_c0_g
.
mutable_data
<
T
>
(
c0_g
->
dims
(),
ctx
.
GetPlace
());
}
auto
in_dims
=
input
->
dims
();
auto
out_dims
=
hidden_g
->
dims
();
int
frame_size
=
static_cast
<
int
>
(
in_dims
[
1
]
/
4
);
PADDLE_ENFORCE_EQ
(
frame_size
,
out_dims
[
1
]);
math
::
LstmMetaValue
<
T
>
lstmp_value
;
if
(
bias
&&
ctx
.
Attr
<
bool
>
(
"use_peepholes"
))
{
T
*
bias_data
=
const_cast
<
T
*>
(
bias
->
data
<
T
>
());
lstmp_value
.
check_ig
=
bias_data
+
4
*
frame_size
;
lstmp_value
.
check_fg
=
lstmp_value
.
check_ig
+
frame_size
;
lstmp_value
.
check_og
=
lstmp_value
.
check_fg
+
frame_size
;
}
else
{
lstmp_value
.
check_ig
=
nullptr
;
lstmp_value
.
check_fg
=
nullptr
;
lstmp_value
.
check_og
=
nullptr
;
}
math
::
LstmMetaGrad
<
T
>
lstmp_grad
;
if
(
bias
&&
bias_g
)
{
bias_g
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
zero
(
device_ctx
,
bias_g
,
static_cast
<
T
>
(
0.0
));
}
if
(
bias
&&
bias_g
&&
ctx
.
Attr
<
bool
>
(
"use_peepholes"
))
{
T
*
bias_g_data
=
bias_g
->
data
<
T
>
();
lstmp_grad
.
check_ig_grad
=
bias_g_data
+
4
*
frame_size
;
lstmp_grad
.
check_fg_grad
=
lstmp_grad
.
check_ig_grad
+
frame_size
;
lstmp_grad
.
check_og_grad
=
lstmp_grad
.
check_fg_grad
+
frame_size
;
}
else
{
lstmp_grad
.
check_ig_grad
=
nullptr
;
lstmp_grad
.
check_fg_grad
=
nullptr
;
lstmp_grad
.
check_og_grad
=
nullptr
;
}
math
::
LoDTensor2BatchFunctor
<
DeviceContext
,
T
>
to_batch
;
auto
ToBatch
=
[
&
batch_gate
,
&
to_batch
](
const
DeviceContext
&
ctx
,
const
framework
::
LoDTensor
&
src
,
const
framework
::
DDim
&
dims
,
framework
::
LoDTensor
&
dst
)
{
dst
.
mutable_data
<
T
>
(
dims
,
ctx
.
GetPlace
());
dst
.
set_lod
(
batch_gate
->
lod
());
to_batch
(
ctx
,
src
,
dst
,
false
);
};
LoDTensor
batch_proj
,
batch_proj_g
,
batch_cell
;
ToBatch
(
device_ctx
,
*
proj_out
,
out_dims
,
batch_proj
);
ToBatch
(
device_ctx
,
*
hidden_g
,
out_dims
,
batch_proj_g
);
ToBatch
(
device_ctx
,
*
cell_out
,
out_dims
,
batch_cell
);
LoDTensor
batch_cell_g
,
batch_gate_g
;
batch_cell_g
.
mutable_data
<
T
>
(
out_dims
,
ctx
.
GetPlace
());
// TODO(qingqing) support the case output cell has gradient.
// to_batch(device_ctx, *cell_g, batch_cell_g, false);
zero
(
device_ctx
,
&
batch_cell_g
,
static_cast
<
T
>
(
0.0
));
batch_gate_g
.
mutable_data
<
T
>
(
batch_gate
->
dims
(),
ctx
.
GetPlace
());
batch_gate_g
.
set_lod
(
batch_gate
->
lod
());
auto
gate_act
=
math
::
detail
::
GetActivationType
(
ctx
.
Attr
<
std
::
string
>
(
"gate_activation"
));
auto
cell_act
=
math
::
detail
::
GetActivationType
(
ctx
.
Attr
<
std
::
string
>
(
"cell_activation"
));
auto
cand_act
=
math
::
detail
::
GetActivationType
(
ctx
.
Attr
<
std
::
string
>
(
"candidate_activation"
));
auto
batch_starts
=
batch_gate
->
lod
()[
0
];
size_t
num_batch
=
batch_starts
.
size
()
-
1
;
for
(
int
n
=
static_cast
<
int
>
(
num_batch
)
-
1
;
n
>=
0
;
n
--
)
{
int
bstart
=
static_cast
<
int
>
(
batch_starts
[
n
]);
int
bend
=
static_cast
<
int
>
(
batch_starts
[
n
+
1
]);
Tensor
gate
=
batch_gate
->
Slice
(
bstart
,
bend
);
Tensor
cell
=
batch_cell
.
Slice
(
bstart
,
bend
);
Tensor
cell_pre_act
=
batch_cell_pre_act
->
Slice
(
bstart
,
bend
);
lstmp_value
.
gate_value
=
gate
.
data
<
T
>
();
lstmp_value
.
state_value
=
cell
.
data
<
T
>
();
lstmp_value
.
state_active_value
=
cell_pre_act
.
data
<
T
>
();
Tensor
out_g
=
batch_proj_g
.
Slice
(
bstart
,
bend
);
Tensor
gate_g
=
batch_gate_g
.
Slice
(
bstart
,
bend
);
Tensor
cell_g
=
batch_cell_g
.
Slice
(
bstart
,
bend
);
lstmp_grad
.
state_grad
=
cell_g
.
data
<
T
>
();
lstmp_grad
.
gate_grad
=
gate_g
.
data
<
T
>
();
lstmp_grad
.
output_grad
=
out_g
.
data
<
T
>
();
if
(
n
>
0
)
{
int
bstart_pre
=
static_cast
<
int
>
(
batch_starts
[
n
-
1
]);
Tensor
cell_pre
=
batch_cell
.
Slice
(
bstart_pre
,
bstart
);
Tensor
cell_pre_g
=
batch_cell_g
.
Slice
(
bstart_pre
,
bstart
);
lstmp_value
.
prev_state_value
=
cell_pre
.
data
<
T
>
();
lstmp_grad
.
prev_state_grad
=
cell_pre_g
.
data
<
T
>
();
}
else
{
lstmp_value
.
prev_state_value
=
c0
?
ordered_c0
.
data
<
T
>
()
:
nullptr
;
lstmp_grad
.
prev_state_grad
=
c0_g
?
ordered_c0_g
.
data
<
T
>
()
:
nullptr
;
}
int
cur_batch_size
=
bend
-
bstart
;
math
::
LstmUnitGradFunctor
<
DeviceContext
,
T
>::
compute
(
device_ctx
,
lstmp_value
,
lstmp_grad
,
frame_size
,
cur_batch_size
,
gate_act
,
cell_act
,
cand_act
);
if
(
n
>
0
)
{
int
pre_h_start
=
static_cast
<
int
>
(
batch_starts
[
n
-
1
]);
int
pre_h_end
=
pre_h_start
+
cur_batch_size
;
auto
pre_proj_g
=
batch_proj_g
.
Slice
(
pre_h_start
,
pre_h_end
);
math
::
matmul
<
DeviceContext
,
T
>
(
device_ctx
,
gate_g
,
false
,
*
weight
,
true
,
static_cast
<
T
>
(
1.0
),
&
pre_proj_g
,
static_cast
<
T
>
(
1.0
));
if
(
weight_g
)
{
/* backward weight */
auto
pre_proj
=
batch_proj
.
Slice
(
pre_h_start
,
pre_h_end
);
math
::
matmul
<
DeviceContext
,
T
>
(
device_ctx
,
pre_proj
,
true
,
gate_g
,
false
,
static_cast
<
T
>
(
1.0
),
weight_g
,
static_cast
<
T
>
(
1.0
));
}
}
else
{
if
(
h0
&&
weight_g
)
{
ReorderInitState
<
DeviceContext
,
T
>
(
device_ctx
,
*
h0
,
order
,
&
ordered_h0
,
true
);
math
::
matmul
<
DeviceContext
,
T
>
(
device_ctx
,
ordered_h0
,
true
,
gate_g
,
false
,
static_cast
<
T
>
(
1.0
),
weight_g
,
static_cast
<
T
>
(
1.0
));
}
if
(
h0
&&
h0_g
)
{
ordered_h0_g
.
mutable_data
<
T
>
(
h0_g
->
dims
(),
ctx
.
GetPlace
());
math
::
matmul
<
DeviceContext
,
T
>
(
device_ctx
,
gate_g
,
false
,
*
weight
,
true
,
static_cast
<
T
>
(
1.0
),
&
ordered_h0_g
,
static_cast
<
T
>
(
0.0
));
}
}
}
math
::
Batch2LoDTensorFunctor
<
DeviceContext
,
T
>
to_seq
;
if
(
in_g
)
{
/* backward data */
in_g
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
to_seq
(
device_ctx
,
batch_gate_g
,
*
in_g
);
}
if
(
bias
&&
bias_g
)
{
/* backward bias */
Tensor
b_g
=
*
bias_g
;
b_g
.
Resize
({
bias_g
->
numel
(),
1
});
Tensor
gate_bias_g
=
b_g
.
Slice
(
0
,
4
*
frame_size
);
math
::
ColwiseSum
<
DeviceContext
,
T
>
col_sum
;
col_sum
(
device_ctx
,
batch_gate_g
,
&
gate_bias_g
);
}
if
(
h0
&&
h0_g
)
{
ReorderInitState
<
DeviceContext
,
T
>
(
device_ctx
,
ordered_h0_g
,
order
,
h0_g
,
false
);
}
if
(
c0
&&
c0_g
)
{
ReorderInitState
<
DeviceContext
,
T
>
(
device_ctx
,
ordered_c0_g
,
order
,
c0_g
,
false
);
}
}
};
}
// namespace operators
}
// namespace paddle
python/paddle/v2/fluid/tests/test_lstmp_op.py
0 → 100644
浏览文件 @
f2c4bb67
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve.
#
#Licensed under the Apache License, Version 2.0 (the "License");
#you may not use this file except in compliance with the License.
#You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
#Unless required by applicable law or agreed to in writing, software
#distributed under the License is distributed on an "AS IS" BASIS,
#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#See the License for the specific language governing permissions and
#limitations under the License.
import
unittest
import
numpy
as
np
from
op_test
import
OpTest
SIGMOID_THRESHOLD_MIN
=
-
40.0
SIGMOID_THRESHOLD_MAX
=
13.0
EXP_MAX_INPUT
=
40.0
def
identity
(
x
):
return
x
def
sigmoid
(
x
):
y
=
np
.
copy
(
x
)
y
[
x
<
SIGMOID_THRESHOLD_MIN
]
=
SIGMOID_THRESHOLD_MIN
y
[
x
>
SIGMOID_THRESHOLD_MAX
]
=
SIGMOID_THRESHOLD_MAX
return
1.
/
(
1.
+
np
.
exp
(
-
y
))
def
tanh
(
x
):
y
=
-
2.
*
x
y
[
y
>
EXP_MAX_INPUT
]
=
EXP_MAX_INPUT
return
(
2.
/
(
1.
+
np
.
exp
(
y
)))
-
1.
def
relu
(
x
):
return
np
.
maximum
(
x
,
0
)
ACTVATION
=
{
'identity'
:
identity
,
'sigmoid'
:
sigmoid
,
'tanh'
:
tanh
,
'relu'
:
relu
}
# LSTM with recurrent projection Layer
def
lstmp
(
input
,
# T x 4D
lod
,
# 1 x N
h0
=
None
,
# N x D
c0
=
None
,
# N x D
w_r
=
None
,
# P x 5D
w_rh
=
None
,
# D x P
w_b
=
None
,
# 1 x 4D
w_c
=
None
,
# 1 x 3D
is_reverse
=
False
,
act_gate
=
None
,
act_cell
=
None
,
act_cand
=
None
):
def
_step
(
x
,
w_r
,
w_rh
,
w_c
,
r_pre
,
c_pre
,
act_gate
,
act_cell
,
act_cand
):
g
=
np
.
dot
(
r_pre
,
w_r
)
# 1 x 4D
g
=
g
+
x
g
=
np
.
reshape
(
g
,
(
1
,
g
.
size
))
c
,
g_i
,
g_f
,
g_o
=
np
.
split
(
g
,
4
,
axis
=
1
)
if
w_c
is
None
:
g_i
=
act_gate
(
g_i
)
# 1 x D
g_f
=
act_gate
(
g_f
)
# 1 x D
else
:
w_ic
,
w_fc
,
_
=
np
.
split
(
w_c
,
3
,
axis
=
1
)
g_i
=
act_gate
(
g_i
+
w_ic
*
c_pre
)
# 1 x D
g_f
=
act_gate
(
g_f
+
w_fc
*
c_pre
)
# 1 x D
c
=
g_f
*
c_pre
+
g_i
*
act_cand
(
c
)
# 1 x D
if
w_c
is
None
:
g_o
=
act_gate
(
g_o
)
# 1 x D
else
:
_
,
_
,
w_oc
=
np
.
split
(
w_c
,
3
,
axis
=
1
)
g_o
=
act_gate
(
g_o
+
w_oc
*
c
)
# 1 x D
h
=
g_o
*
act_cell
(
c
)
# projection
r
=
np
.
dot
(
h
,
w_rh
)
return
r
,
c
def
_reverse
(
x
,
lod
):
y
=
np
.
zeros_like
(
x
)
for
i
in
range
(
len
(
lod
)
-
1
):
b
,
e
=
lod
[
i
],
lod
[
i
+
1
]
y
[
b
:
e
,
:]
=
np
.
flip
(
x
[
b
:
e
,
:],
0
)
return
y
offset
=
lod
[
0
]
batch_size
=
len
(
offset
)
-
1
# recurrent projection state
projection
=
[]
cell
=
[]
input
=
_reverse
(
input
,
offset
)
if
is_reverse
else
input
if
w_b
is
not
None
:
input
=
input
+
np
.
tile
(
w_b
,
(
offset
[
-
1
],
1
))
for
i
in
range
(
batch_size
):
# compute one sequence
seq_len
=
offset
[
i
+
1
]
-
offset
[
i
]
x
=
input
[
offset
[
i
]:
offset
[
i
+
1
],
:]
r_pre
=
np
.
dot
(
h0
[
i
],
w_rh
)
# 1 x P
c_pre
=
c0
[
i
]
# 1 x D
for
j
in
range
(
seq_len
):
# compute one step
r_pre
,
c_pre
=
_step
(
x
[
j
],
w_r
,
w_rh
,
w_c
,
r_pre
,
c_pre
,
act_gate
,
act_cell
,
act_cand
)
projection
.
append
(
r_pre
.
flatten
())
cell
.
append
(
c_pre
.
flatten
())
projection
=
np
.
array
(
projection
).
astype
(
'float64'
)
cell
=
np
.
array
(
cell
).
astype
(
'float64'
)
projection
=
_reverse
(
projection
,
offset
)
if
is_reverse
else
projection
cell
=
_reverse
(
cell
,
offset
)
if
is_reverse
else
cell
assert
projection
.
shape
==
(
input
.
shape
[
0
],
w_r
.
shape
[
0
])
# T x P
assert
cell
.
shape
==
(
input
.
shape
[
0
],
input
.
shape
[
1
]
/
4
)
# T x D
return
projection
,
cell
class
TestLstmOp
(
OpTest
):
def
set_argument
(
self
):
self
.
lod
=
[[
0
,
2
,
5
,
7
]]
# hidden size
self
.
D
=
16
# projection size
self
.
P
=
10
self
.
act_gate
=
'sigmoid'
self
.
act_cell
=
'tanh'
self
.
act_cand
=
'tanh'
self
.
has_initial_state
=
False
self
.
is_reverse
=
False
self
.
use_peepholes
=
True
def
setUp
(
self
):
self
.
set_argument
()
self
.
op_type
=
'lstmp'
T
=
self
.
lod
[
0
][
-
1
]
N
=
len
(
self
.
lod
[
0
])
-
1
x
=
np
.
random
.
normal
(
size
=
(
T
,
4
*
self
.
D
)).
astype
(
'float64'
)
if
self
.
has_initial_state
:
h0
=
np
.
random
.
normal
(
size
=
(
N
,
self
.
D
)).
astype
(
'float64'
)
c0
=
np
.
random
.
normal
(
size
=
(
N
,
self
.
D
)).
astype
(
'float64'
)
else
:
h0
=
np
.
zeros
((
N
,
self
.
D
)).
astype
(
'float64'
)
c0
=
np
.
zeros
((
N
,
self
.
D
)).
astype
(
'float64'
)
w
=
np
.
random
.
normal
(
size
=
(
self
.
P
,
4
*
self
.
D
)).
astype
(
'float64'
)
if
self
.
use_peepholes
:
b
=
np
.
random
.
normal
(
size
=
(
1
,
7
*
self
.
D
)).
astype
(
'float64'
)
else
:
b
=
np
.
random
.
normal
(
size
=
(
1
,
4
*
self
.
D
)).
astype
(
'float64'
)
w_b
=
b
[:,
0
:
4
*
self
.
D
]
w_c
=
b
[:,
4
*
self
.
D
:]
if
self
.
use_peepholes
else
None
w_rh
=
np
.
random
.
normal
(
size
=
(
self
.
D
,
self
.
P
)).
astype
(
'float64'
)
r
,
c
=
lstmp
(
x
,
self
.
lod
,
h0
,
c0
,
w
,
w_rh
,
w_b
,
w_c
,
self
.
is_reverse
,
ACTVATION
[
self
.
act_gate
],
ACTVATION
[
self
.
act_cell
],
ACTVATION
[
self
.
act_cand
])
self
.
inputs
=
{
'Input'
:
(
x
,
self
.
lod
),
'Weight'
:
w
,
'ProjWeight'
:
w_rh
}
self
.
inputs
[
'Bias'
]
=
b
if
self
.
has_initial_state
:
self
.
inputs
[
'H0'
]
=
h0
self
.
inputs
[
'C0'
]
=
c0
self
.
outputs
=
{
'Projection'
:
(
r
,
self
.
lod
),
'Cell'
:
(
c
,
self
.
lod
),
}
self
.
attrs
=
{
'use_peepholes'
:
self
.
use_peepholes
,
'is_reverse'
:
self
.
is_reverse
,
'gate_activation'
:
self
.
act_gate
,
'cell_activation'
:
self
.
act_cell
,
'candidate_activation'
:
self
.
act_cand
}
def
test_check_output
(
self
):
self
.
check_output
(
atol
=
1e-8
)
"""
def test_check_grad(self):
# TODO(qingqing) remove folowing lines after the check_grad is refined.
N = len(self.lod[0]) - 1
self.outputs['BatchGate'] = np.zeros((N, 4 * self.D)).astype('float64')
self.outputs['BatchCellPreAct'] = np.zeros(
(N, self.D)).astype('float64')
self.check_grad(
['Input', 'Weight', 'Bias'], ['Hidden'], max_relative_error=5e-4)
"""
"""
class TestLstmOpHasInitial(TestLstmOp):
def set_argument(self):
self.lod = [[0, 2, 5, 7]]
self.D = 16
self.act_gate = 'sigmoid'
self.act_cell = 'tanh'
self.act_cand = 'tanh'
self.has_initial_state = True
self.is_reverse = True
self.use_peepholes = True
def test_check_grad(self):
# TODO(qingqing) remove folowing lines after the check_grad is refined.
N = len(self.lod[0]) - 1
self.outputs['BatchGate'] = np.zeros((N, 4 * self.D)).astype('float64')
self.outputs['BatchCellPreAct'] = np.zeros(
(N, self.D)).astype('float64')
self.check_grad(
['Input', 'Weight', 'Bias', 'H0', 'C0'], ['Hidden'],
max_relative_error=5e-4)
def test_check_grad_ingore_bias(self):
N = len(self.lod[0]) - 1
self.outputs['BatchGate'] = np.zeros((N, 4 * self.D)).astype('float64')
self.outputs['BatchCellPreAct'] = np.zeros(
(N, self.D)).astype('float64')
self.check_grad(
['Input', 'Weight'], ['Hidden'],
max_relative_error=5e-4,
no_grad_set=set('Bias'))
def test_check_grad_ingore_weight(self):
N = len(self.lod[0]) - 1
self.outputs['BatchGate'] = np.zeros((N, 4 * self.D)).astype('float64')
self.outputs['BatchCellPreAct'] = np.zeros(
(N, self.D)).astype('float64')
self.check_grad(
['Input', 'Bias'], ['Hidden'],
max_relative_error=5e-4,
no_grad_set=set('Weight'))
def test_check_grad_ingore_input(self):
N = len(self.lod[0]) - 1
self.outputs['BatchGate'] = np.zeros((N, 4 * self.D)).astype('float64')
self.outputs['BatchCellPreAct'] = np.zeros(
(N, self.D)).astype('float64')
self.check_grad(
['Weight', 'Bias'], ['Hidden'],
max_relative_error=5e-4,
no_grad_set=set('Input'))
def test_check_grad_ingore_h0(self):
N = len(self.lod[0]) - 1
self.outputs['BatchGate'] = np.zeros((N, 4 * self.D)).astype('float64')
self.outputs['BatchCellPreAct'] = np.zeros(
(N, self.D)).astype('float64')
self.check_grad(
['Input', 'Weight', 'Bias', 'C0'], ['Hidden'],
max_relative_error=5e-4,
no_grad_set=set('H0'))
def test_check_grad_ingore_c0(self):
N = len(self.lod[0]) - 1
self.outputs['BatchGate'] = np.zeros((N, 4 * self.D)).astype('float64')
self.outputs['BatchCellPreAct'] = np.zeros(
(N, self.D)).astype('float64')
self.check_grad(
['Input', 'Weight', 'Bias', 'H0'], ['Hidden'],
max_relative_error=5e-4,
no_grad_set=set('C0'))
"""
class
TestLstmOpRerverse
(
TestLstmOp
):
def
set_argument
(
self
):
self
.
lod
=
[[
0
,
2
,
5
,
7
]]
self
.
D
=
16
self
.
P
=
10
self
.
act_gate
=
'sigmoid'
self
.
act_cell
=
'tanh'
self
.
act_cand
=
'tanh'
self
.
has_initial_state
=
False
self
.
is_reverse
=
True
self
.
use_peepholes
=
True
class
TestLstmOpNotUsePeepholes
(
TestLstmOp
):
def
set_argument
(
self
):
self
.
lod
=
[[
0
,
2
,
5
,
7
]]
self
.
D
=
16
self
.
P
=
10
self
.
act_gate
=
'sigmoid'
self
.
act_cell
=
'tanh'
self
.
act_cand
=
'tanh'
self
.
has_initial_state
=
False
self
.
is_reverse
=
True
self
.
use_peepholes
=
False
if
__name__
==
'__main__'
:
unittest
.
main
()
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录