analyzer_vis_tester.cc 4.7 KB
Newer Older
T
tensor-tang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include <fstream>
#include <iostream>
T
tensor-tang 已提交
17
#include "paddle/fluid/inference/tests/api/tester_helper.h"
T
tensor-tang 已提交
18 19 20 21

namespace paddle {
namespace inference {
namespace analysis {
22
using contrib::AnalysisConfig;
T
tensor-tang 已提交
23 24 25 26 27 28 29

struct Record {
  std::vector<float> data;
  std::vector<int32_t> shape;
};

Record ProcessALine(const std::string &line) {
M
minqiyang 已提交
30
  VLOG(3) << "process a line";
T
tensor-tang 已提交
31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47
  std::vector<std::string> columns;
  split(line, '\t', &columns);
  CHECK_EQ(columns.size(), 2UL)
      << "data format error, should be <data>\t<shape>";

  Record record;
  std::vector<std::string> data_strs;
  split(columns[0], ' ', &data_strs);
  for (auto &d : data_strs) {
    record.data.push_back(std::stof(d));
  }

  std::vector<std::string> shape_strs;
  split(columns[1], ' ', &shape_strs);
  for (auto &s : shape_strs) {
    record.shape.push_back(std::stoi(s));
  }
M
minqiyang 已提交
48 49
  VLOG(3) << "data size " << record.data.size();
  VLOG(3) << "data shape size " << record.shape.size();
T
tensor-tang 已提交
50 51 52
  return record;
}

T
Tao Luo 已提交
53
void SetConfig(AnalysisConfig *cfg) {
54 55 56 57 58
  cfg->SetModel(FLAGS_infer_model + "/__model__",
                FLAGS_infer_model + "/__params__");
  cfg->DisableGpu();
  cfg->SwitchIrDebug();
  cfg->SwitchSpecifyInputNames();
T
tensor-tang 已提交
59
  // TODO(TJ): fix fusion gru
60
  cfg->pass_builder()->DeletePass("fc_gru_fuse_pass");
T
Tao Luo 已提交
61
}
T
tensor-tang 已提交
62

T
Tao Luo 已提交
63 64
void SetInput(std::vector<std::vector<PaddleTensor>> *inputs) {
  PADDLE_ENFORCE_EQ(FLAGS_test_all_data, 0, "Only have single batch of data.");
T
tensor-tang 已提交
65 66 67 68 69 70 71 72
  std::string line;
  std::ifstream file(FLAGS_infer_data);
  std::getline(file, line);
  auto record = ProcessALine(line);

  PaddleTensor input;
  input.shape = record.shape;
  input.dtype = PaddleDType::FLOAT32;
T
Tao Luo 已提交
73 74 75 76 77 78 79
  size_t input_size = record.data.size() * sizeof(float);
  input.data.Resize(input_size);
  memcpy(input.data.data(), record.data.data(), input_size);
  std::vector<PaddleTensor> input_slots;
  input_slots.assign({input});
  (*inputs).emplace_back(input_slots);
}
T
tensor-tang 已提交
80

T
Tao Luo 已提交
81 82
// Easy for profiling independently.
//  ocr, mobilenet and se_resnext50
T
Tao Luo 已提交
83
void profile(bool use_mkldnn = false) {
T
Tao Luo 已提交
84 85
  AnalysisConfig cfg;
  SetConfig(&cfg);
86 87 88
  if (use_mkldnn) {
    cfg.EnableMKLDNN();
  }
T
Tao Luo 已提交
89 90 91 92
  std::vector<PaddleTensor> outputs;

  std::vector<std::vector<PaddleTensor>> input_slots_all;
  SetInput(&input_slots_all);
93 94
  TestPrediction(reinterpret_cast<const PaddlePredictor::Config *>(&cfg),
                 input_slots_all, &outputs, FLAGS_num_threads);
T
Tao Luo 已提交
95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110
  if (FLAGS_num_threads == 1 && !FLAGS_test_all_data) {
    std::string line;
    std::ifstream file(FLAGS_refer_result);
    std::getline(file, line);
    auto refer = ProcessALine(line);
    file.close();

    auto &output = outputs.front();
    size_t numel = output.data.length() / PaddleDtypeSize(output.dtype);
    CHECK_EQ(numel, refer.data.size());
    for (size_t i = 0; i < numel; ++i) {
      CHECK_LT(
          fabs(static_cast<float *>(output.data.data())[i] - refer.data[i]),
          1e-5);
    }
  }
T
tensor-tang 已提交
111 112
}

T
Tao Luo 已提交
113 114 115 116 117 118
TEST(Analyzer_vis, profile) { profile(); }

#ifdef PADDLE_WITH_MKLDNN
TEST(Analyzer_vis, profile_mkldnn) { profile(true /* use_mkldnn */); }
#endif

T
Tao Luo 已提交
119 120 121 122 123
// Check the fuse status
TEST(Analyzer_vis, fuse_statis) {
  AnalysisConfig cfg;
  SetConfig(&cfg);
  int num_ops;
124 125
  auto predictor = CreatePaddlePredictor<AnalysisConfig>(cfg);
  GetFuseStatis(predictor.get(), &num_ops);
T
Tao Luo 已提交
126 127 128
}

// Compare result of NativeConfig and AnalysisConfig
T
Tao Luo 已提交
129
void compare(bool use_mkldnn = false) {
T
Tao Luo 已提交
130 131
  AnalysisConfig cfg;
  SetConfig(&cfg);
132 133 134
  if (use_mkldnn) {
    cfg.EnableMKLDNN();
  }
T
Tao Luo 已提交
135 136 137

  std::vector<std::vector<PaddleTensor>> input_slots_all;
  SetInput(&input_slots_all);
138 139
  CompareNativeAndAnalysis(
      reinterpret_cast<const PaddlePredictor::Config *>(&cfg), input_slots_all);
T
Tao Luo 已提交
140 141
}

T
Tao Luo 已提交
142
TEST(Analyzer_vis, compare) { compare(); }
T
Tao Luo 已提交
143
#ifdef PADDLE_WITH_MKLDNN
T
Tao Luo 已提交
144
TEST(Analyzer_vis, compare_mkldnn) { compare(true /* use_mkldnn */); }
T
Tao Luo 已提交
145
#endif
T
tensor-tang 已提交
146

L
luotao1 已提交
147 148 149 150 151 152 153 154 155 156 157
// Compare Deterministic result
TEST(Analyzer_vis, compare_determine) {
  AnalysisConfig cfg;
  SetConfig(&cfg);

  std::vector<std::vector<PaddleTensor>> input_slots_all;
  SetInput(&input_slots_all);
  CompareDeterministic(reinterpret_cast<const PaddlePredictor::Config *>(&cfg),
                       input_slots_all);
}

T
tensor-tang 已提交
158 159 160
}  // namespace analysis
}  // namespace inference
}  // namespace paddle