analyzer_vis_tester.cc 5.8 KB
Newer Older
T
tensor-tang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/inference/analysis/analyzer.h"
#include <gflags/gflags.h>
#include <glog/logging.h>
#include <gtest/gtest.h>
#include <fstream>
#include <iostream>
#include "paddle/fluid/framework/ir/fuse_pass_base.h"
#include "paddle/fluid/inference/analysis/ut_helper.h"
#include "paddle/fluid/inference/api/analysis_predictor.h"
#include "paddle/fluid/inference/api/helper.h"
#include "paddle/fluid/inference/api/paddle_inference_pass.h"

DEFINE_string(infer_model, "", "model path for LAC");
DEFINE_string(infer_data, "", "data file for LAC");
DEFINE_int32(batch_size, 1, "batch size.");
DEFINE_int32(repeat, 1, "Running the inference program repeat times.");

namespace paddle {
namespace inference {
namespace analysis {

struct Record {
  std::vector<float> data;
  std::vector<int32_t> shape;
};

Record ProcessALine(const std::string &line) {
  VLOG(3) << "process a line";
  std::vector<std::string> columns;
  split(line, '\t', &columns);
  CHECK_EQ(columns.size(), 2UL)
      << "data format error, should be <data>\t<shape>";

  Record record;
  std::vector<std::string> data_strs;
  split(columns[0], ' ', &data_strs);
  for (auto &d : data_strs) {
    record.data.push_back(std::stof(d));
  }

  std::vector<std::string> shape_strs;
  split(columns[1], ' ', &shape_strs);
  for (auto &s : shape_strs) {
    record.shape.push_back(std::stoi(s));
  }
  VLOG(3) << "data size " << record.data.size();
  VLOG(3) << "data shape size " << record.shape.size();
  return record;
}

/*
 * Use the native and analysis fluid engine to inference the demo.
 * ocr, mobilenet and se_resnext50
 */
T
tensor-tang 已提交
69
void TestVisualPrediction(bool use_mkldnn) {
T
tensor-tang 已提交
70 71 72 73 74
  std::unique_ptr<PaddlePredictor> predictor;
  AnalysisConfig cfg;
  cfg.param_file = FLAGS_infer_model + "/__params__";
  cfg.prog_file = FLAGS_infer_model + "/__model__";
  cfg.use_gpu = false;
T
tensor-tang 已提交
75
  cfg._use_mkldnn = use_mkldnn;
T
tensor-tang 已提交
76 77
  cfg.device = 0;
  cfg.enable_ir_optim = true;
T
tensor-tang 已提交
78
  cfg.ir_passes.push_back("fc_gru_fuse_pass");
T
tensor-tang 已提交
79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166
  predictor =
      CreatePaddlePredictor<AnalysisConfig, PaddleEngineKind::kAnalysis>(cfg);

  // Only have single batch of data.
  std::string line;
  std::ifstream file(FLAGS_infer_data);
  std::getline(file, line);
  auto record = ProcessALine(line);
  file.close();

  // Inference.
  PaddleTensor input;
  input.shape = record.shape;
  input.data =
      PaddleBuf(record.data.data(), record.data.size() * sizeof(float));
  input.dtype = PaddleDType::FLOAT32;

  std::vector<PaddleTensor> outputs_slots;
  Timer timer;
  timer.tic();
  for (int i = 0; i < FLAGS_repeat; i++) {
    predictor->Run({input}, &outputs_slots);
  }
  PrintTime(/*batch size*/ 1, FLAGS_repeat, /*num threads*/ 1, /*thread id*/ 0,
            timer.toc() / FLAGS_repeat);

  VLOG(3) << "output.size " << outputs_slots.size();

  // run native as reference
  NativeConfig config;
  config.param_file = FLAGS_infer_model + "/__params__";
  config.prog_file = FLAGS_infer_model + "/__model__";
  config.use_gpu = false;
  config.device = 0;
  // config.specify_input_name = true;
  auto ref_predictor =
      CreatePaddlePredictor<NativeConfig, PaddleEngineKind::kNative>(config);
  std::vector<PaddleTensor> ref_outputs_slots;
  ref_predictor->Run({input}, &ref_outputs_slots);
  EXPECT_EQ(ref_outputs_slots.size(), outputs_slots.size());
  for (size_t i = 0; i < outputs_slots.size(); ++i) {
    auto &ref_out = ref_outputs_slots[i];
    auto &out = outputs_slots[i];
    size_t ref_size =
        std::accumulate(ref_out.shape.begin(), ref_out.shape.end(), 1,
                        [](int a, int b) { return a * b; });
    size_t size = std::accumulate(out.shape.begin(), out.shape.end(), 1,
                                  [](int a, int b) { return a * b; });
    EXPECT_EQ(size, ref_size);
    EXPECT_EQ(out.dtype, ref_out.dtype);
    switch (out.dtype) {
      case PaddleDType::INT64: {
        int64_t *pdata = static_cast<int64_t *>(out.data.data());
        int64_t *pdata_ref = static_cast<int64_t *>(ref_out.data.data());
        for (size_t j = 0; j < size; ++j) {
          EXPECT_EQ(pdata_ref[j], pdata[j]);
        }
        break;
      }
      case PaddleDType::FLOAT32: {
        float *pdata = static_cast<float *>(out.data.data());
        float *pdata_ref = static_cast<float *>(ref_out.data.data());
        for (size_t j = 0; j < size; ++j) {
          EXPECT_NEAR(pdata_ref[j], pdata[j], 1e-3);
        }
        break;
      }
    }
    // print what are fused
    AnalysisPredictor *analysis_predictor =
        dynamic_cast<AnalysisPredictor *>(predictor.get());
    auto &fuse_statis = analysis_predictor->analysis_argument()
                            .Get<std::unordered_map<std::string, int>>(
                                framework::ir::kFuseStatisAttr);
    for (auto &item : fuse_statis) {
      LOG(INFO) << "fused " << item.first << " " << item.second;
    }
    int num_ops = 0;
    for (auto &node :
         analysis_predictor->analysis_argument().main_dfg->nodes.nodes()) {
      if (node->IsFunction()) {
        ++num_ops;
      }
    }
    LOG(INFO) << "has num ops: " << num_ops;
  }
}

T
tensor-tang 已提交
167 168 169 170
TEST(Analyzer_vis, analysis) { TestVisualPrediction(/*use_mkldnn*/ false); }
TEST(Analyzer_vis, analysis_mkldnn) {
  TestVisualPrediction(/*use_mkldnn*/ true);
}
T
tensor-tang 已提交
171 172 173 174

}  // namespace analysis
}  // namespace inference
}  // namespace paddle