analyzer_vis_tester.cc 4.3 KB
Newer Older
T
tensor-tang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include <fstream>
#include <iostream>
T
tensor-tang 已提交
17
#include "paddle/fluid/inference/tests/api/tester_helper.h"
T
tensor-tang 已提交
18 19 20 21

namespace paddle {
namespace inference {
namespace analysis {
22
using contrib::AnalysisConfig;
T
tensor-tang 已提交
23 24 25 26 27 28 29

struct Record {
  std::vector<float> data;
  std::vector<int32_t> shape;
};

Record ProcessALine(const std::string &line) {
30
  VLOG(30) << "process a line";
T
tensor-tang 已提交
31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47
  std::vector<std::string> columns;
  split(line, '\t', &columns);
  CHECK_EQ(columns.size(), 2UL)
      << "data format error, should be <data>\t<shape>";

  Record record;
  std::vector<std::string> data_strs;
  split(columns[0], ' ', &data_strs);
  for (auto &d : data_strs) {
    record.data.push_back(std::stof(d));
  }

  std::vector<std::string> shape_strs;
  split(columns[1], ' ', &shape_strs);
  for (auto &s : shape_strs) {
    record.shape.push_back(std::stoi(s));
  }
48 49
  VLOG(30) << "data size " << record.data.size();
  VLOG(30) << "data shape size " << record.shape.size();
T
tensor-tang 已提交
50 51 52
  return record;
}

T
Tao Luo 已提交
53
void SetConfig(AnalysisConfig *cfg) {
T
Tao Luo 已提交
54 55 56 57 58 59
  cfg->param_file = FLAGS_infer_model + "/__params__";
  cfg->prog_file = FLAGS_infer_model + "/__model__";
  cfg->use_gpu = false;
  cfg->device = 0;
  cfg->enable_ir_optim = true;
  cfg->specify_input_name = true;
T
tensor-tang 已提交
60
  // TODO(TJ): fix fusion gru
61 62 63 64
  cfg->pass_builder()->DeletePass("fc_gru_fuse_pass");
#ifdef PADDLE_WITH_MKLDNN
  cfg->EnableMKLDNN();
#endif
T
Tao Luo 已提交
65
}
T
tensor-tang 已提交
66

T
Tao Luo 已提交
67 68
void SetInput(std::vector<std::vector<PaddleTensor>> *inputs) {
  PADDLE_ENFORCE_EQ(FLAGS_test_all_data, 0, "Only have single batch of data.");
T
tensor-tang 已提交
69 70 71 72 73 74 75 76
  std::string line;
  std::ifstream file(FLAGS_infer_data);
  std::getline(file, line);
  auto record = ProcessALine(line);

  PaddleTensor input;
  input.shape = record.shape;
  input.dtype = PaddleDType::FLOAT32;
T
Tao Luo 已提交
77 78 79 80 81 82 83
  size_t input_size = record.data.size() * sizeof(float);
  input.data.Resize(input_size);
  memcpy(input.data.data(), record.data.data(), input_size);
  std::vector<PaddleTensor> input_slots;
  input_slots.assign({input});
  (*inputs).emplace_back(input_slots);
}
T
tensor-tang 已提交
84

T
Tao Luo 已提交
85 86
// Easy for profiling independently.
//  ocr, mobilenet and se_resnext50
T
Tao Luo 已提交
87
void profile(bool use_mkldnn = false) {
T
Tao Luo 已提交
88 89
  AnalysisConfig cfg;
  SetConfig(&cfg);
90 91 92
  if (use_mkldnn) {
    cfg.EnableMKLDNN();
  }
T
Tao Luo 已提交
93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109
  std::vector<PaddleTensor> outputs;

  std::vector<std::vector<PaddleTensor>> input_slots_all;
  SetInput(&input_slots_all);
  TestPrediction(cfg, input_slots_all, &outputs, FLAGS_num_threads);

  if (FLAGS_num_threads == 1 && !FLAGS_test_all_data) {
    const float ocr_result_data[] = {
        5.273636460856323538e-08, 3.296741795111302054e-07,
        1.873261190610264748e-08, 3.403730275408634043e-08,
        3.383312474625199684e-08};
    PADDLE_ENFORCE_EQ(outputs.size(), 1UL);
    size_t size = GetSize(outputs[0]);
    PADDLE_ENFORCE_GT(size, 0);
    float *result = static_cast<float *>(outputs[0].data.data());
    for (size_t i = 0; i < std::min(5UL, size); i++) {
      EXPECT_NEAR(result[i], ocr_result_data[i], 1e-3);
T
tensor-tang 已提交
110 111 112 113
    }
  }
}

T
Tao Luo 已提交
114 115 116 117 118 119
TEST(Analyzer_vis, profile) { profile(); }

#ifdef PADDLE_WITH_MKLDNN
TEST(Analyzer_vis, profile_mkldnn) { profile(true /* use_mkldnn */); }
#endif

T
Tao Luo 已提交
120 121 122 123 124
// Check the fuse status
TEST(Analyzer_vis, fuse_statis) {
  AnalysisConfig cfg;
  SetConfig(&cfg);
  int num_ops;
125 126
  auto predictor = CreatePaddlePredictor<AnalysisConfig>(cfg);
  GetFuseStatis(predictor.get(), &num_ops);
T
Tao Luo 已提交
127 128 129
}

// Compare result of NativeConfig and AnalysisConfig
T
Tao Luo 已提交
130
void compare(bool use_mkldnn = false) {
T
Tao Luo 已提交
131 132
  AnalysisConfig cfg;
  SetConfig(&cfg);
133 134 135
  if (use_mkldnn) {
    cfg.EnableMKLDNN();
  }
T
Tao Luo 已提交
136 137 138 139

  std::vector<std::vector<PaddleTensor>> input_slots_all;
  SetInput(&input_slots_all);
  CompareNativeAndAnalysis(cfg, input_slots_all);
T
Tao Luo 已提交
140 141
}

T
Tao Luo 已提交
142
TEST(Analyzer_vis, compare) { compare(); }
T
Tao Luo 已提交
143
#ifdef PADDLE_WITH_MKLDNN
T
Tao Luo 已提交
144
TEST(Analyzer_vis, compare_mkldnn) { compare(true /* use_mkldnn */); }
T
Tao Luo 已提交
145
#endif
T
tensor-tang 已提交
146 147 148 149

}  // namespace analysis
}  // namespace inference
}  // namespace paddle