test_lookup_table_op.py 15.6 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function

17 18
import unittest
import numpy as np
19
from op_test import OpTest, skip_check_grad_ci, check_out_dtype
C
chengduoZH 已提交
20 21
import paddle.fluid.core as core
from paddle.fluid.op import Operator
M
minqiyang 已提交
22
import paddle.compat as cpt
23 24
import paddle.fluid as fluid
from paddle.fluid import Program, program_guard
25
import paddle.nn.functional as F
26 27


Q
qijun 已提交
28
class TestLookupTableOp(OpTest):
29
    def setUp(self):
Q
qijun 已提交
30
        self.op_type = "lookup_table"
31
        table = np.random.random((17, 31)).astype("float64")
32
        ids = np.random.randint(0, 17, 4).astype("int64")
33 34
        ids_expand = np.expand_dims(ids, axis=1)
        self.inputs = {'W': table, 'Ids': ids_expand}
35 36
        self.outputs = {'Out': table[ids]}

Q
qijun 已提交
37 38
    def test_check_output(self):
        self.check_output()
39

Q
qijun 已提交
40 41
    def test_check_grad(self):
        self.check_grad(['W'], 'Out', no_grad_set=set('Ids'))
42 43


F
fengjiayi 已提交
44 45 46
class TestLookupTableOpWithTensorIds(OpTest):
    def setUp(self):
        self.op_type = "lookup_table"
47
        table = np.random.random((17, 31)).astype("float64")
F
fengjiayi 已提交
48 49 50 51 52 53 54 55 56 57 58 59
        ids = np.random.randint(
            low=0, high=17, size=(2, 4, 5, 1)).astype("int64")
        self.inputs = {'W': table, 'Ids': ids}
        self.outputs = {'Out': table[ids.flatten()].reshape((2, 4, 5, 31))}

    def test_check_output(self):
        self.check_output()

    def test_check_grad(self):
        self.check_grad(['W'], 'Out', no_grad_set=set('Ids'))


60 61 62 63
@skip_check_grad_ci(
    reason="Since paddings are not trainable and fixed in forward,"
    "the gradient of paddings makes no sense and we don't "
    "test the gradient here.")
64 65 66 67 68
class TestLookupTableOpWithPadding(TestLookupTableOp):
    def test_check_output(self):
        ids = np.squeeze(self.inputs['Ids'])
        padding_idx = np.random.choice(ids, 1)[0]
        self.outputs['Out'][ids == padding_idx] = np.zeros(31)
69
        self.attrs = {'padding_idx': int(padding_idx)}
70 71 72
        self.check_output()


73 74 75 76
@skip_check_grad_ci(
    reason="Since paddings are not trainable and fixed in forward,"
    "the gradient of paddings makes no sense and we don't "
    "test the gradient here.")
F
fengjiayi 已提交
77 78 79 80 81 82
class TestLookupTableOpWithTensorIdsAndPadding(TestLookupTableOpWithTensorIds):
    def test_check_output(self):
        ids = self.inputs['Ids']
        flatten_idx = ids.flatten()
        padding_idx = np.random.choice(flatten_idx, 1)[0]
        self.outputs['Out'][np.squeeze(ids == padding_idx)] = np.zeros(31)
M
minqiyang 已提交
83
        self.attrs = {'padding_idx': cpt.long_type(padding_idx)}
F
fengjiayi 已提交
84 85
        self.check_output()

Q
qiaolongfei 已提交
86

87
class TestLookupTableWIsSelectedRows(unittest.TestCase):
F
fengjiayi 已提交
88
    def prepare_ids(self, scope, place):
Q
qiaolongfei 已提交
89 90 91
        ids_tensor = scope.var('Ids').get_tensor()
        ids_array = np.array([[0], [4], [3], [5]]).astype("int64")
        ids_tensor.set(ids_array, place)
F
fengjiayi 已提交
92
        return ids_array
Q
qiaolongfei 已提交
93

F
fengjiayi 已提交
94
    def prepare_w(self, scope, place):
Q
qiaolongfei 已提交
95 96 97 98 99 100 101 102 103
        rows = [0, 1, 2, 3, 4, 5, 6]
        row_numel = 12

        w_selected_rows = scope.var('W').get_selected_rows()
        w_selected_rows.set_height(len(rows))
        w_selected_rows.set_rows(rows)
        w_array = np.ones((len(rows), row_numel)).astype("float32")
        for i in range(len(rows)):
            w_array[i] *= i
Q
qiaolongfei 已提交
104 105
        w_tensor = w_selected_rows.get_tensor()
        w_tensor.set(w_array, place)
Q
qiaolongfei 已提交
106

F
fengjiayi 已提交
107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122
    def create_out_tensor(self, scope, place):
        return scope.var('Out').get_tensor()

    def check_result(self, ids_array, result_array):
        # all(): return True if all elements of the iterable are true (or if the iterable is empty)
        for idx, row in enumerate(ids_array):
            assert (row[0] == result_array[idx]).all()

    def check_with_place(self, place):
        scope = core.Scope()

        ids_array = self.prepare_ids(scope, place)

        self.prepare_w(scope, place)

        out_tensor = self.create_out_tensor(scope, place)
Q
qiaolongfei 已提交
123 124 125 126 127 128

        # create and run lookup_table operator
        lookup_table = Operator("lookup_table", W='W', Ids='Ids', Out='Out')
        lookup_table.run(scope, place)

        # get result from Out
Q
qiaolongfei 已提交
129
        result_array = np.array(out_tensor)
F
fengjiayi 已提交
130 131

        self.check_result(ids_array, result_array)
Q
qiaolongfei 已提交
132 133 134 135 136 137 138 139

    def test_w_is_selected_rows(self):
        places = [core.CPUPlace()]
        # currently only support CPU
        for place in places:
            self.check_with_place(place)


F
fengjiayi 已提交
140 141 142 143 144 145 146 147 148 149 150 151 152 153
class TestLookupTableWithTensorIdsWIsSelectedRows(
        TestLookupTableWIsSelectedRows):
    def prepare_ids(self, scope, place):
        ids_tensor = scope.var('Ids').get_tensor()
        ids_array = np.random.randint(
            low=0, high=6, size=(2, 4, 3, 1)).astype("int64")
        ids_tensor.set(ids_array, place)
        return ids_array

    def check_result(self, ids_array, result_array):
        for idx, row in np.ndenumerate(ids_array):
            assert (row == result_array[idx]).all()


154
class TestEmbedOpError(unittest.TestCase):
155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183
    def test_errors(self):
        with program_guard(Program(), Program()):
            input_data = np.random.randint(0, 10, (4, 1)).astype("int64")

            def test_Variable():
                # the input type must be Variable
                fluid.layers.embedding(input=input_data, size=(10, 64))

            self.assertRaises(TypeError, test_Variable)

            def test_input_dtype():
                # the input dtype must be int64
                input = fluid.data(name='x', shape=[4, 1], dtype='float32')
                fluid.layers.embedding(input=input, size=(10, 64))

            self.assertRaises(TypeError, test_input_dtype)

            def test_param_dtype():
                # dtype must be float32 or float64
                input2 = fluid.data(name='x2', shape=[4, 1], dtype='int64')
                fluid.layers.embedding(
                    input=input2, size=(10, 64), dtype='int64')

            self.assertRaises(TypeError, test_param_dtype)

            input3 = fluid.data(name='x3', shape=[4, 1], dtype='int64')
            fluid.layers.embedding(input=input3, size=(10, 64), dtype='float16')


184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251
class TestLookupTableOpInt8(OpTest):
    def setUp(self):
        self.op_type = "lookup_table"
        table = np.random.randint(
            low=-128, high=127, size=(17, 31)).astype("int8")
        ids = np.random.randint(0, 17, 4).astype("int64")
        ids_expand = np.expand_dims(ids, axis=1)
        self.inputs = {'W': table, 'Ids': ids_expand}
        self.outputs = {'Out': table[ids]}

    def test_check_output(self):
        self.check_output()

    def test_check_grad(self):
        # since int8 type only be used in test and inference, there is 
        # no gradient implement, so we don't need to test it
        pass


class TestLookupTableOpWithTensorIdsInt8(OpTest):
    def setUp(self):
        self.op_type = "lookup_table"
        table = np.random.randint(
            low=-128, high=127, size=(17, 31)).astype("int8")
        ids = np.random.randint(
            low=0, high=17, size=(2, 4, 5, 1)).astype("int64")
        self.inputs = {'W': table, 'Ids': ids}
        self.outputs = {'Out': table[ids.flatten()].reshape((2, 4, 5, 31))}

    def test_check_output(self):
        self.check_output()

    def test_check_grad(self):
        # since int8 type only be used in test and inference, there is 
        # no gradient implement, so we don't need to test it
        pass


class TestLookupTableOpWithPaddingInt8(TestLookupTableOpInt8):
    def test_check_output(self):
        ids = np.squeeze(self.inputs['Ids'])
        padding_idx = np.random.choice(ids, 1)[0]
        self.outputs['Out'][ids == padding_idx] = np.zeros(31)
        self.attrs = {'padding_idx': int(padding_idx)}
        self.check_output()

    def test_check_grad(self):
        # Since paddings are not trainable and fixed in forward, the gradient of
        # paddings makes no sense and we don't test the gradient here.
        pass


class TestLookupTableOpWithTensorIdsAndPaddingInt8(
        TestLookupTableOpWithTensorIdsInt8):
    def test_check_output(self):
        ids = self.inputs['Ids']
        flatten_idx = ids.flatten()
        padding_idx = np.random.choice(flatten_idx, 1)[0]
        self.outputs['Out'][np.squeeze(ids == padding_idx)] = np.zeros(31)
        self.attrs = {'padding_idx': cpt.long_type(padding_idx)}
        self.check_output()

    def test_check_grad(self):
        # Since paddings are not trainable and fixed in forward, the gradient of
        # paddings makes no sense and we don't test the gradient here.
        pass


252
class TestLookupTableWIsSelectedRowsInt8(unittest.TestCase):
253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318
    def prepare_ids(self, scope, place):
        ids_tensor = scope.var('Ids').get_tensor()
        ids_array = np.array([[0], [4], [3], [5]]).astype("int64")
        ids_tensor.set(ids_array, place)
        return ids_array

    def prepare_w(self, scope, place):
        rows = [0, 1, 2, 3, 4, 5, 6]
        row_numel = 12

        w_selected_rows = scope.var('W').get_selected_rows()
        w_selected_rows.set_height(len(rows))
        w_selected_rows.set_rows(rows)
        w_array = np.ones((len(rows), row_numel)).astype("int8")
        for i in range(len(rows)):
            w_array[i] *= i
        w_tensor = w_selected_rows.get_tensor()
        w_tensor.set(w_array, place)

    def create_out_tensor(self, scope, place):
        return scope.var('Out').get_tensor()

    def check_result(self, ids_array, result_array):
        # all(): return True if all elements of the iterable are true (or if the iterable is empty)
        for idx, row in enumerate(ids_array):
            assert (row[0] == result_array[idx]).all()

    def check_with_place(self, place):
        scope = core.Scope()

        ids_array = self.prepare_ids(scope, place)

        self.prepare_w(scope, place)

        out_tensor = self.create_out_tensor(scope, place)

        # create and run lookup_table operator
        lookup_table = Operator("lookup_table", W='W', Ids='Ids', Out='Out')
        lookup_table.run(scope, place)

        # get result from Out
        result_array = np.array(out_tensor)

        self.check_result(ids_array, result_array)

    def test_w_is_selected_rows(self):
        places = [core.CPUPlace()]
        # currently only support CPU
        for place in places:
            self.check_with_place(place)


class TestLookupTableWithTensorIdsWIsSelectedRowsInt8(
        TestLookupTableWIsSelectedRowsInt8):
    def prepare_ids(self, scope, place):
        ids_tensor = scope.var('Ids').get_tensor()
        ids_array = np.random.randint(
            low=0, high=6, size=(2, 4, 3, 1)).astype("int64")
        ids_tensor.set(ids_array, place)
        return ids_array

    def check_result(self, ids_array, result_array):
        for idx, row in np.ndenumerate(ids_array):
            assert (row == result_array[idx]).all()


319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436
@skip_check_grad_ci(reason="Int16 type only be used in test and inference.")
class TestLookupTableOpInt16(OpTest):
    def setUp(self):
        self.op_type = "lookup_table"
        table = np.random.randint(
            low=-128, high=127, size=(17, 31)).astype("int16")
        ids = np.random.randint(0, 17, 4).astype("int64")
        ids_expand = np.expand_dims(ids, axis=1)
        self.inputs = {'W': table, 'Ids': ids_expand}
        self.outputs = {'Out': table[ids]}

    def test_check_output(self):
        self.check_output()


@skip_check_grad_ci(reason="Int16 type only be used in test and inference.")
class TestLookupTableOpWithTensorIdsInt16(OpTest):
    def setUp(self):
        self.op_type = "lookup_table"
        table = np.random.randint(
            low=-128, high=127, size=(17, 31)).astype("int16")
        ids = np.random.randint(
            low=0, high=17, size=(2, 4, 5, 1)).astype("int64")
        self.inputs = {'W': table, 'Ids': ids}
        self.outputs = {'Out': table[ids.flatten()].reshape((2, 4, 5, 31))}

    def test_check_output(self):
        self.check_output()


@skip_check_grad_ci(reason="Int16 type only be used in test and inference.")
class TestLookupTableOpWithPaddingInt16(TestLookupTableOpInt16):
    def test_check_output(self):
        ids = np.squeeze(self.inputs['Ids'])
        padding_idx = np.random.choice(ids, 1)[0]
        self.outputs['Out'][ids == padding_idx] = np.zeros(31)
        self.attrs = {'padding_idx': int(padding_idx)}
        self.check_output()


@skip_check_grad_ci(reason="Int16 type only be used in test and inference.")
class TestLookupTableOpWithTensorIdsAndPaddingInt16(
        TestLookupTableOpWithTensorIdsInt16):
    def test_check_output(self):
        ids = self.inputs['Ids']
        flatten_idx = ids.flatten()
        padding_idx = np.random.choice(flatten_idx, 1)[0]
        self.outputs['Out'][np.squeeze(ids == padding_idx)] = np.zeros(31)
        self.attrs = {'padding_idx': cpt.long_type(padding_idx)}
        self.check_output()


class TestLookupTableWIsSelectedRowsInt16(unittest.TestCase):
    def prepare_ids(self, scope, place):
        ids_tensor = scope.var('Ids').get_tensor()
        ids_array = np.array([[0], [4], [3], [5]]).astype("int64")
        ids_tensor.set(ids_array, place)
        return ids_array

    def prepare_w(self, scope, place):
        rows = [0, 1, 2, 3, 4, 5, 6]
        row_numel = 12

        w_selected_rows = scope.var('W').get_selected_rows()
        w_selected_rows.set_height(len(rows))
        w_selected_rows.set_rows(rows)
        w_array = np.ones((len(rows), row_numel)).astype("int16")
        for i in range(len(rows)):
            w_array[i] *= i
        w_tensor = w_selected_rows.get_tensor()
        w_tensor.set(w_array, place)

    def create_out_tensor(self, scope, place):
        return scope.var('Out').get_tensor()

    def check_result(self, ids_array, result_array):
        for idx, row in enumerate(ids_array):
            assert (row[0] == result_array[idx]).all()

    def check_with_place(self, place):
        scope = core.Scope()

        ids_array = self.prepare_ids(scope, place)

        self.prepare_w(scope, place)

        out_tensor = self.create_out_tensor(scope, place)

        # create and run lookup_table operator
        lookup_table = Operator("lookup_table", W='W', Ids='Ids', Out='Out')
        lookup_table.run(scope, place)

        # get result from Out
        result_array = np.array(out_tensor)

        self.check_result(ids_array, result_array)

    def test_w_is_selected_rows(self):
        places = [core.CPUPlace()]
        # currently only support CPU
        for place in places:
            self.check_with_place(place)


class TestLookupTableWithTensorIdsWIsSelectedRowsInt16(
        TestLookupTableWIsSelectedRowsInt16):
    def prepare_ids(self, scope, place):
        ids_tensor = scope.var('Ids').get_tensor()
        ids_array = np.random.randint(
            low=0, high=6, size=(2, 4, 3, 1)).astype("int64")
        ids_tensor.set(ids_array, place)
        return ids_array

    def check_result(self, ids_array, result_array):
        for idx, row in np.ndenumerate(ids_array):
            assert (row == result_array[idx]).all()


437 438 439 440 441 442 443 444 445 446
class TestOutDtype(unittest.TestCase):
    def test_dtype(self):
        api_fn = F.embedding
        check_out_dtype(
            api_fn,
            in_specs=[([10, 16], 'int64'), ([100, 64], )],
            expect_dtypes=['float32', 'float64'],
            target_index=1)


Q
qijun 已提交
447
if __name__ == "__main__":
448
    unittest.main()