test_lookup_table_op.py 5.2 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function

17 18
import unittest
import numpy as np
19
from op_test import OpTest
C
chengduoZH 已提交
20 21
import paddle.fluid.core as core
from paddle.fluid.op import Operator
M
minqiyang 已提交
22
import paddle.compat as cpt
23 24


Q
qijun 已提交
25
class TestLookupTableOp(OpTest):
26
    def setUp(self):
Q
qijun 已提交
27 28
        self.op_type = "lookup_table"
        table = np.random.random((17, 31)).astype("float32")
29
        ids = np.random.randint(0, 17, 4).astype("int64")
30 31
        ids_expand = np.expand_dims(ids, axis=1)
        self.inputs = {'W': table, 'Ids': ids_expand}
32 33
        self.outputs = {'Out': table[ids]}

Q
qijun 已提交
34 35
    def test_check_output(self):
        self.check_output()
36

Q
qijun 已提交
37 38
    def test_check_grad(self):
        self.check_grad(['W'], 'Out', no_grad_set=set('Ids'))
39 40


F
fengjiayi 已提交
41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56
class TestLookupTableOpWithTensorIds(OpTest):
    def setUp(self):
        self.op_type = "lookup_table"
        table = np.random.random((17, 31)).astype("float32")
        ids = np.random.randint(
            low=0, high=17, size=(2, 4, 5, 1)).astype("int64")
        self.inputs = {'W': table, 'Ids': ids}
        self.outputs = {'Out': table[ids.flatten()].reshape((2, 4, 5, 31))}

    def test_check_output(self):
        self.check_output()

    def test_check_grad(self):
        self.check_grad(['W'], 'Out', no_grad_set=set('Ids'))


57 58 59 60 61
class TestLookupTableOpWithPadding(TestLookupTableOp):
    def test_check_output(self):
        ids = np.squeeze(self.inputs['Ids'])
        padding_idx = np.random.choice(ids, 1)[0]
        self.outputs['Out'][ids == padding_idx] = np.zeros(31)
62
        self.attrs = {'padding_idx': int(padding_idx)}
63 64 65
        self.check_output()

    def test_check_grad(self):
F
fengjiayi 已提交
66
        # Since paddings are not trainable and fixed in forward, the gradient of
67 68 69 70
        # paddings makes no sense and we don't test the gradient here.
        pass


F
fengjiayi 已提交
71 72 73 74 75 76
class TestLookupTableOpWithTensorIdsAndPadding(TestLookupTableOpWithTensorIds):
    def test_check_output(self):
        ids = self.inputs['Ids']
        flatten_idx = ids.flatten()
        padding_idx = np.random.choice(flatten_idx, 1)[0]
        self.outputs['Out'][np.squeeze(ids == padding_idx)] = np.zeros(31)
M
minqiyang 已提交
77
        self.attrs = {'padding_idx': cpt.long_type(padding_idx)}
F
fengjiayi 已提交
78 79 80 81 82 83
        self.check_output()

    def test_check_grad(self):
        # Since paddings are not trainable and fixed in forward, the gradient of
        # paddings makes no sense and we don't test the gradient here.
        pass
Q
qiaolongfei 已提交
84 85


F
fengjiayi 已提交
86 87
class TestLookupTableWIsSelectedRows(OpTest):
    def prepare_ids(self, scope, place):
Q
qiaolongfei 已提交
88 89 90
        ids_tensor = scope.var('Ids').get_tensor()
        ids_array = np.array([[0], [4], [3], [5]]).astype("int64")
        ids_tensor.set(ids_array, place)
F
fengjiayi 已提交
91
        return ids_array
Q
qiaolongfei 已提交
92

F
fengjiayi 已提交
93
    def prepare_w(self, scope, place):
Q
qiaolongfei 已提交
94 95 96 97 98 99 100 101 102
        rows = [0, 1, 2, 3, 4, 5, 6]
        row_numel = 12

        w_selected_rows = scope.var('W').get_selected_rows()
        w_selected_rows.set_height(len(rows))
        w_selected_rows.set_rows(rows)
        w_array = np.ones((len(rows), row_numel)).astype("float32")
        for i in range(len(rows)):
            w_array[i] *= i
Q
qiaolongfei 已提交
103 104
        w_tensor = w_selected_rows.get_tensor()
        w_tensor.set(w_array, place)
Q
qiaolongfei 已提交
105

F
fengjiayi 已提交
106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121
    def create_out_tensor(self, scope, place):
        return scope.var('Out').get_tensor()

    def check_result(self, ids_array, result_array):
        # all(): return True if all elements of the iterable are true (or if the iterable is empty)
        for idx, row in enumerate(ids_array):
            assert (row[0] == result_array[idx]).all()

    def check_with_place(self, place):
        scope = core.Scope()

        ids_array = self.prepare_ids(scope, place)

        self.prepare_w(scope, place)

        out_tensor = self.create_out_tensor(scope, place)
Q
qiaolongfei 已提交
122 123 124 125 126 127

        # create and run lookup_table operator
        lookup_table = Operator("lookup_table", W='W', Ids='Ids', Out='Out')
        lookup_table.run(scope, place)

        # get result from Out
Q
qiaolongfei 已提交
128
        result_array = np.array(out_tensor)
F
fengjiayi 已提交
129 130

        self.check_result(ids_array, result_array)
Q
qiaolongfei 已提交
131 132 133 134 135 136 137 138

    def test_w_is_selected_rows(self):
        places = [core.CPUPlace()]
        # currently only support CPU
        for place in places:
            self.check_with_place(place)


F
fengjiayi 已提交
139 140 141 142 143 144 145 146 147 148 149 150 151 152
class TestLookupTableWithTensorIdsWIsSelectedRows(
        TestLookupTableWIsSelectedRows):
    def prepare_ids(self, scope, place):
        ids_tensor = scope.var('Ids').get_tensor()
        ids_array = np.random.randint(
            low=0, high=6, size=(2, 4, 3, 1)).astype("int64")
        ids_tensor.set(ids_array, place)
        return ids_array

    def check_result(self, ids_array, result_array):
        for idx, row in np.ndenumerate(ids_array):
            assert (row == result_array[idx]).all()


Q
qijun 已提交
153
if __name__ == "__main__":
154
    unittest.main()