test_lookup_table_op.py 11.1 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function

17 18
import unittest
import numpy as np
19
from op_test import OpTest
C
chengduoZH 已提交
20 21
import paddle.fluid.core as core
from paddle.fluid.op import Operator
M
minqiyang 已提交
22
import paddle.compat as cpt
23 24
import paddle.fluid as fluid
from paddle.fluid import Program, program_guard
25 26


Q
qijun 已提交
27
class TestLookupTableOp(OpTest):
28
    def setUp(self):
Q
qijun 已提交
29 30
        self.op_type = "lookup_table"
        table = np.random.random((17, 31)).astype("float32")
31
        ids = np.random.randint(0, 17, 4).astype("int64")
32 33
        ids_expand = np.expand_dims(ids, axis=1)
        self.inputs = {'W': table, 'Ids': ids_expand}
34 35
        self.outputs = {'Out': table[ids]}

Q
qijun 已提交
36 37
    def test_check_output(self):
        self.check_output()
38

Q
qijun 已提交
39 40
    def test_check_grad(self):
        self.check_grad(['W'], 'Out', no_grad_set=set('Ids'))
41 42


F
fengjiayi 已提交
43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58
class TestLookupTableOpWithTensorIds(OpTest):
    def setUp(self):
        self.op_type = "lookup_table"
        table = np.random.random((17, 31)).astype("float32")
        ids = np.random.randint(
            low=0, high=17, size=(2, 4, 5, 1)).astype("int64")
        self.inputs = {'W': table, 'Ids': ids}
        self.outputs = {'Out': table[ids.flatten()].reshape((2, 4, 5, 31))}

    def test_check_output(self):
        self.check_output()

    def test_check_grad(self):
        self.check_grad(['W'], 'Out', no_grad_set=set('Ids'))


59 60 61 62 63
class TestLookupTableOpWithPadding(TestLookupTableOp):
    def test_check_output(self):
        ids = np.squeeze(self.inputs['Ids'])
        padding_idx = np.random.choice(ids, 1)[0]
        self.outputs['Out'][ids == padding_idx] = np.zeros(31)
64
        self.attrs = {'padding_idx': int(padding_idx)}
65 66 67
        self.check_output()

    def test_check_grad(self):
F
fengjiayi 已提交
68
        # Since paddings are not trainable and fixed in forward, the gradient of
69 70 71 72
        # paddings makes no sense and we don't test the gradient here.
        pass


F
fengjiayi 已提交
73 74 75 76 77 78
class TestLookupTableOpWithTensorIdsAndPadding(TestLookupTableOpWithTensorIds):
    def test_check_output(self):
        ids = self.inputs['Ids']
        flatten_idx = ids.flatten()
        padding_idx = np.random.choice(flatten_idx, 1)[0]
        self.outputs['Out'][np.squeeze(ids == padding_idx)] = np.zeros(31)
M
minqiyang 已提交
79
        self.attrs = {'padding_idx': cpt.long_type(padding_idx)}
F
fengjiayi 已提交
80 81 82 83 84 85
        self.check_output()

    def test_check_grad(self):
        # Since paddings are not trainable and fixed in forward, the gradient of
        # paddings makes no sense and we don't test the gradient here.
        pass
Q
qiaolongfei 已提交
86 87


F
fengjiayi 已提交
88 89
class TestLookupTableWIsSelectedRows(OpTest):
    def prepare_ids(self, scope, place):
Q
qiaolongfei 已提交
90 91 92
        ids_tensor = scope.var('Ids').get_tensor()
        ids_array = np.array([[0], [4], [3], [5]]).astype("int64")
        ids_tensor.set(ids_array, place)
F
fengjiayi 已提交
93
        return ids_array
Q
qiaolongfei 已提交
94

F
fengjiayi 已提交
95
    def prepare_w(self, scope, place):
Q
qiaolongfei 已提交
96 97 98 99 100 101 102 103 104
        rows = [0, 1, 2, 3, 4, 5, 6]
        row_numel = 12

        w_selected_rows = scope.var('W').get_selected_rows()
        w_selected_rows.set_height(len(rows))
        w_selected_rows.set_rows(rows)
        w_array = np.ones((len(rows), row_numel)).astype("float32")
        for i in range(len(rows)):
            w_array[i] *= i
Q
qiaolongfei 已提交
105 106
        w_tensor = w_selected_rows.get_tensor()
        w_tensor.set(w_array, place)
Q
qiaolongfei 已提交
107

F
fengjiayi 已提交
108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123
    def create_out_tensor(self, scope, place):
        return scope.var('Out').get_tensor()

    def check_result(self, ids_array, result_array):
        # all(): return True if all elements of the iterable are true (or if the iterable is empty)
        for idx, row in enumerate(ids_array):
            assert (row[0] == result_array[idx]).all()

    def check_with_place(self, place):
        scope = core.Scope()

        ids_array = self.prepare_ids(scope, place)

        self.prepare_w(scope, place)

        out_tensor = self.create_out_tensor(scope, place)
Q
qiaolongfei 已提交
124 125 126 127 128 129

        # create and run lookup_table operator
        lookup_table = Operator("lookup_table", W='W', Ids='Ids', Out='Out')
        lookup_table.run(scope, place)

        # get result from Out
Q
qiaolongfei 已提交
130
        result_array = np.array(out_tensor)
F
fengjiayi 已提交
131 132

        self.check_result(ids_array, result_array)
Q
qiaolongfei 已提交
133 134 135 136 137 138 139 140

    def test_w_is_selected_rows(self):
        places = [core.CPUPlace()]
        # currently only support CPU
        for place in places:
            self.check_with_place(place)


F
fengjiayi 已提交
141 142 143 144 145 146 147 148 149 150 151 152 153 154
class TestLookupTableWithTensorIdsWIsSelectedRows(
        TestLookupTableWIsSelectedRows):
    def prepare_ids(self, scope, place):
        ids_tensor = scope.var('Ids').get_tensor()
        ids_array = np.random.randint(
            low=0, high=6, size=(2, 4, 3, 1)).astype("int64")
        ids_tensor.set(ids_array, place)
        return ids_array

    def check_result(self, ids_array, result_array):
        for idx, row in np.ndenumerate(ids_array):
            assert (row == result_array[idx]).all()


155
class TestEmbedOpError(unittest.TestCase):
156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184
    def test_errors(self):
        with program_guard(Program(), Program()):
            input_data = np.random.randint(0, 10, (4, 1)).astype("int64")

            def test_Variable():
                # the input type must be Variable
                fluid.layers.embedding(input=input_data, size=(10, 64))

            self.assertRaises(TypeError, test_Variable)

            def test_input_dtype():
                # the input dtype must be int64
                input = fluid.data(name='x', shape=[4, 1], dtype='float32')
                fluid.layers.embedding(input=input, size=(10, 64))

            self.assertRaises(TypeError, test_input_dtype)

            def test_param_dtype():
                # dtype must be float32 or float64
                input2 = fluid.data(name='x2', shape=[4, 1], dtype='int64')
                fluid.layers.embedding(
                    input=input2, size=(10, 64), dtype='int64')

            self.assertRaises(TypeError, test_param_dtype)

            input3 = fluid.data(name='x3', shape=[4, 1], dtype='int64')
            fluid.layers.embedding(input=input3, size=(10, 64), dtype='float16')


185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319
class TestLookupTableOpInt8(OpTest):
    def setUp(self):
        self.op_type = "lookup_table"
        table = np.random.randint(
            low=-128, high=127, size=(17, 31)).astype("int8")
        ids = np.random.randint(0, 17, 4).astype("int64")
        ids_expand = np.expand_dims(ids, axis=1)
        self.inputs = {'W': table, 'Ids': ids_expand}
        self.outputs = {'Out': table[ids]}

    def test_check_output(self):
        self.check_output()

    def test_check_grad(self):
        # since int8 type only be used in test and inference, there is 
        # no gradient implement, so we don't need to test it
        pass


class TestLookupTableOpWithTensorIdsInt8(OpTest):
    def setUp(self):
        self.op_type = "lookup_table"
        table = np.random.randint(
            low=-128, high=127, size=(17, 31)).astype("int8")
        ids = np.random.randint(
            low=0, high=17, size=(2, 4, 5, 1)).astype("int64")
        self.inputs = {'W': table, 'Ids': ids}
        self.outputs = {'Out': table[ids.flatten()].reshape((2, 4, 5, 31))}

    def test_check_output(self):
        self.check_output()

    def test_check_grad(self):
        # since int8 type only be used in test and inference, there is 
        # no gradient implement, so we don't need to test it
        pass


class TestLookupTableOpWithPaddingInt8(TestLookupTableOpInt8):
    def test_check_output(self):
        ids = np.squeeze(self.inputs['Ids'])
        padding_idx = np.random.choice(ids, 1)[0]
        self.outputs['Out'][ids == padding_idx] = np.zeros(31)
        self.attrs = {'padding_idx': int(padding_idx)}
        self.check_output()

    def test_check_grad(self):
        # Since paddings are not trainable and fixed in forward, the gradient of
        # paddings makes no sense and we don't test the gradient here.
        pass


class TestLookupTableOpWithTensorIdsAndPaddingInt8(
        TestLookupTableOpWithTensorIdsInt8):
    def test_check_output(self):
        ids = self.inputs['Ids']
        flatten_idx = ids.flatten()
        padding_idx = np.random.choice(flatten_idx, 1)[0]
        self.outputs['Out'][np.squeeze(ids == padding_idx)] = np.zeros(31)
        self.attrs = {'padding_idx': cpt.long_type(padding_idx)}
        self.check_output()

    def test_check_grad(self):
        # Since paddings are not trainable and fixed in forward, the gradient of
        # paddings makes no sense and we don't test the gradient here.
        pass


class TestLookupTableWIsSelectedRowsInt8(OpTest):
    def prepare_ids(self, scope, place):
        ids_tensor = scope.var('Ids').get_tensor()
        ids_array = np.array([[0], [4], [3], [5]]).astype("int64")
        ids_tensor.set(ids_array, place)
        return ids_array

    def prepare_w(self, scope, place):
        rows = [0, 1, 2, 3, 4, 5, 6]
        row_numel = 12

        w_selected_rows = scope.var('W').get_selected_rows()
        w_selected_rows.set_height(len(rows))
        w_selected_rows.set_rows(rows)
        w_array = np.ones((len(rows), row_numel)).astype("int8")
        for i in range(len(rows)):
            w_array[i] *= i
        w_tensor = w_selected_rows.get_tensor()
        w_tensor.set(w_array, place)

    def create_out_tensor(self, scope, place):
        return scope.var('Out').get_tensor()

    def check_result(self, ids_array, result_array):
        # all(): return True if all elements of the iterable are true (or if the iterable is empty)
        for idx, row in enumerate(ids_array):
            assert (row[0] == result_array[idx]).all()

    def check_with_place(self, place):
        scope = core.Scope()

        ids_array = self.prepare_ids(scope, place)

        self.prepare_w(scope, place)

        out_tensor = self.create_out_tensor(scope, place)

        # create and run lookup_table operator
        lookup_table = Operator("lookup_table", W='W', Ids='Ids', Out='Out')
        lookup_table.run(scope, place)

        # get result from Out
        result_array = np.array(out_tensor)

        self.check_result(ids_array, result_array)

    def test_w_is_selected_rows(self):
        places = [core.CPUPlace()]
        # currently only support CPU
        for place in places:
            self.check_with_place(place)


class TestLookupTableWithTensorIdsWIsSelectedRowsInt8(
        TestLookupTableWIsSelectedRowsInt8):
    def prepare_ids(self, scope, place):
        ids_tensor = scope.var('Ids').get_tensor()
        ids_array = np.random.randint(
            low=0, high=6, size=(2, 4, 3, 1)).astype("int64")
        ids_tensor.set(ids_array, place)
        return ids_array

    def check_result(self, ids_array, result_array):
        for idx, row in np.ndenumerate(ids_array):
            assert (row == result_array[idx]).all()


Q
qijun 已提交
320
if __name__ == "__main__":
321
    unittest.main()