layer.h 15.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#pragma once

X
Xin Pan 已提交
17 18 19 20
// clang-format off
#include "paddle/fluid/framework/python_headers.h"
// clang-format on

M
minqiyang 已提交
21 22 23 24 25
#include <map>            // NOLINT
#include <string>         // NOLINT
#include <vector>         // NOLINT
#include <memory>         // NOLINT
#include <unordered_map>  // NOLINT
M
minqiyang 已提交
26

27 28 29
#include "paddle/fluid/framework/op_desc.h"
#include "paddle/fluid/framework/operator.h"
#include "paddle/fluid/framework/var_desc.h"
M
minqiyang 已提交
30
#include "paddle/fluid/framework/var_type_inference.h"
31
#include "paddle/fluid/platform/enforce.h"
M
minqiyang 已提交
32
#include "paddle/fluid/platform/device_context.h"
M
minqiyang 已提交
33
#include "paddle/fluid/operators/math/math_function.h"
34

M
minqiyang 已提交
35 36
#include "paddle/fluid/imperative/type_defs.h"

37 38 39
namespace paddle {
namespace imperative {

M
minqiyang 已提交
40 41
class VarBase;

X
Xin Pan 已提交
42 43
namespace py = ::pybind11;

X
Xin Pan 已提交
44 45 46 47 48
class PreparedOp {
 public:
  PreparedOp(const framework::OperatorBase& op,
             const framework::RuntimeContext& ctx,
             framework::OperatorWithKernel::OpKernelFunc func,
X
polish  
Xin Pan 已提交
49 50 51 52 53 54 55
             platform::DeviceContext* dev_ctx,
             std::vector<framework::KernelConfig>* kernel_configs)
      : op(op),
        ctx(ctx),
        func(func),
        dev_ctx(dev_ctx),
        kernel_configs(kernel_configs) {}
X
Xin Pan 已提交
56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73

  static PreparedOp Prepare(const framework::RuntimeContext& ctx,
                            const framework::OperatorWithKernel& op,
                            const platform::Place& place) {
    platform::DeviceContextPool& pool = platform::DeviceContextPool::Instance();
    auto* dev_ctx = pool.Get(place);

    // check if op[type] has kernel registered.
    auto& all_op_kernels = op.AllOpKernels();
    auto kernels_iter = all_op_kernels.find(op.Type());
    if (kernels_iter == all_op_kernels.end()) {
      PADDLE_THROW(
          "There are no kernels which are registered in the %s operator.",
          op.Type());
    }

    framework::OperatorWithKernel::OpKernelMap& kernels = kernels_iter->second;

74 75 76
    auto expected_kernel_key =
        op.GetExpectedKernelType(framework::ExecutionContext(
            op, framework::Scope(), *dev_ctx, ctx, nullptr));
X
Xin Pan 已提交
77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93
    VLOG(3) << "expected_kernel_key:" << expected_kernel_key;

    auto kernel_iter = kernels.find(expected_kernel_key);
#ifdef PADDLE_WITH_MKLDNN
    // workaround for missing MKLDNN kernel when FLAGS_use_mkldnn env var is set
    if (kernel_iter == kernels.end() &&
        expected_kernel_key.library_type_ == framework::LibraryType::kMKLDNN) {
      VLOG(3) << "missing MKLDNN kernel: fallbacking to PLAIN one";
      expected_kernel_key.library_type_ = framework::LibraryType::kPlain;
      expected_kernel_key.data_layout_ = framework::DataLayout::kAnyLayout;
      kernel_iter = kernels.find(expected_kernel_key);
    }
#endif
    if (kernel_iter == kernels.end()) {
      PADDLE_THROW("op %s does not have kernel for %s", op.Type(),
                   KernelTypeToString(expected_kernel_key));
    }
X
polish  
Xin Pan 已提交
94 95 96
    std::vector<framework::KernelConfig>* kernel_configs =
        op.GetKernelConfig(expected_kernel_key);
    return PreparedOp(op, ctx, kernel_iter->second, dev_ctx, kernel_configs);
X
Xin Pan 已提交
97 98
  }

M
minqiyang 已提交
99 100
  inline platform::DeviceContext* GetDeviceContext() const { return dev_ctx; }

X
Xin Pan 已提交
101 102 103 104
  const framework::OperatorBase& op;
  const framework::RuntimeContext& ctx;
  framework::OperatorWithKernel::OpKernelFunc func;
  platform::DeviceContext* dev_ctx;
X
polish  
Xin Pan 已提交
105
  std::vector<framework::KernelConfig>* kernel_configs;
X
Xin Pan 已提交
106
};
X
polish  
Xin Pan 已提交
107

108 109
class OpBase;

M
minqiyang 已提交
110 111 112 113 114
/* The wrapper for Variable which holds a Variable and a VarBase of its
 * gradient. This object should be managed totally by Python intepreter.
 *
 * Nearly all interface should be implemented in C++.
 */
115 116
class VarBase {
 public:
117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137
  // Internal interface, create VarBase from exist variable
  VarBase(const std::string& name, framework::Variable* var, VarBase* grad,
          bool stop_gradient)
      : VarBase(name, var->Get<framework::LoDTensor>().type(),
                var->Get<framework::LoDTensor>().dims(),
                var->Get<framework::LoDTensor>().place(), var, grad,
                stop_gradient, false) {}

  // Python interface
  VarBase(const std::string& name, const framework::proto::VarType::Type dtype,
          const std::vector<int64_t>& shape, const platform::Place& place,
          bool stop_gradient, bool persistable)
      : VarBase(name, dtype, framework::make_ddim(shape), place, stop_gradient,
                persistable) {}

  // Internal interface, create VarBase from with ddim
  VarBase(const std::string& name, const framework::proto::VarType::Type dtype,
          const framework::DDim& shape, const platform::Place& place,
          bool stop_gradient, bool persistable)
      : VarBase(name, dtype, shape, place, nullptr, nullptr, stop_gradient,
                persistable) {}
M
minqiyang 已提交
138 139

 private:
140 141 142 143 144 145 146
  VarBase(const std::string& name, framework::proto::VarType::Type dtype,
          const framework::DDim& shape, const platform::Place& place,
          framework::Variable* var, VarBase* grad, bool stop_gradient,
          bool persistable)
      : name_(name),
        dtype_(dtype),
        place_(place),
X
polish  
Xin Pan 已提交
147 148
        var_(var),
        grads_(grad),
X
Xin Pan 已提交
149
        stop_gradient_(stop_gradient),
150
        persistable_(persistable),
X
Xin Pan 已提交
151
        pre_op_(nullptr),
152
        pre_op_out_name_(),
153 154 155 156 157 158 159 160
        pre_op_out_idx_(-1) {
    if (!var_) {
      var_ = new framework::Variable();
      auto tensor = var_->GetMutable<framework::LoDTensor>();
      tensor->Resize(shape);
      tensor->mutable_data(place_, dtype_);
    }
  }
161

M
minqiyang 已提交
162
 public:
M
minqiyang 已提交
163 164 165
  virtual ~VarBase() {
    if (var_) {
      delete var_;
166
      var_ = nullptr;
M
minqiyang 已提交
167 168 169 170
    }

    if (grads_) {
      delete grads_;
171
      grads_ = nullptr;
M
minqiyang 已提交
172
    }
173 174 175

    pre_op_ = nullptr;
    pre_op_out_idx_ = -1;
M
minqiyang 已提交
176
  }
177

178 179 180 181 182 183 184 185 186 187 188
  inline void SetName(const std::string& name) { name_ = name; }
  inline std::string Name() const { return name_; }

  inline std::vector<int64_t> Shape() const {
    if (var_->IsInitialized()) {
      return framework::vectorize(var_->Get<framework::LoDTensor>().dims());
    } else {
      return {};
    }
  }

M
minqiyang 已提交
189 190 191 192
  inline void SetDType(framework::proto::VarType::Type type) {
    auto tensor = var_->GetMutable<framework::LoDTensor>();
    tensor->mutable_data(place_, dtype_);
  }
193
  inline framework::proto::VarType::Type DType() const { return dtype_; }
X
Xin Pan 已提交
194

M
minqiyang 已提交
195 196 197 198
  inline void SetStopGradient(bool stop_gradient) {
    stop_gradient_ = stop_gradient;
  }
  inline bool IsStopGradient() const { return stop_gradient_; }
X
Xin Pan 已提交
199

200 201 202 203 204 205
  inline void SetPersistable(bool persistable) { persistable_ = persistable; }
  inline bool IsPersistable() const { return persistable_; }

  inline OpBase* PreOp() const { return pre_op_; }
  inline int PreOpOutIdx() const { return pre_op_out_idx_; }

X
Xin Pan 已提交
206
  void RunBackward();
207

208 209 210 211 212 213 214 215
  inline void ResetPreOp(OpBase* op) {
    if (op == pre_op_) {
      // clear pre_op info when op equals to var's pre_op
      pre_op_ = nullptr;
      pre_op_out_idx_ = -1;
    }
  }

X
Xin Pan 已提交
216
  void TrackPreOp(OpBase* pre_op, const std::string& pre_op_out_name,
M
minqiyang 已提交
217
                  int pre_op_out_idx, bool pre_op_stop_gradient) {
X
Xin Pan 已提交
218 219 220
    pre_op_ = pre_op;
    pre_op_out_name_ = pre_op_out_name;
    pre_op_out_idx_ = pre_op_out_idx;
M
minqiyang 已提交
221 222 223
    if (pre_op_stop_gradient) {
      stop_gradient_ = pre_op_stop_gradient;
    }
X
Xin Pan 已提交
224 225 226
  }

  void ClearGradient() {
227
    VLOG(1) << "clear gradient of " << Name();
M
minqiyang 已提交
228 229 230 231 232 233 234
    if (grads_ && grads_->var_ && grads_->var_->IsInitialized()) {
      auto grads_t = grads_->var_->GetMutable<framework::LoDTensor>();
      operators::math::set_constant(
          *(platform::DeviceContextPool::Instance().Get(
              grads_->var_->Get<framework::LoDTensor>().place())),
          grads_t, 0.0);
    }
X
Xin Pan 已提交
235 236
  }

M
minqiyang 已提交
237
  framework::LoDTensor& GradValue();
238

M
minqiyang 已提交
239 240
  std::unique_ptr<VarBase> NewVarBase(const platform::Place& dst_place,
                                      const bool blocking) const;
M
minqiyang 已提交
241

M
minqiyang 已提交
242
  inline std::string GradName() const {
243
    return string::Sprintf("%s@IGrad", Name());
M
minqiyang 已提交
244 245
  }

246
  std::string name_;
247 248
  framework::proto::VarType::Type dtype_;
  platform::Place place_;
M
minqiyang 已提交
249

M
minqiyang 已提交
250 251
  framework::Variable* var_;
  VarBase* grads_;
252

X
Xin Pan 已提交
253
 private:
254
  bool stop_gradient_;
255 256
  bool persistable_;

X
Xin Pan 已提交
257 258 259
  OpBase* pre_op_;
  std::string pre_op_out_name_;
  int pre_op_out_idx_;
260 261
};

M
minqiyang 已提交
262 263 264
/* The wrapper for OpDesc which holds a OpDesc and a OpDesc of its
 * gradient. This object should be managed totally by Python intepreter.
 */
265
class PYBIND11_HIDDEN OpBase {
266
 public:
267 268 269
  OpBase(const std::string& type)
      : type_(type),
        trace_id_(-1),
X
Xin Pan 已提交
270
        forward_id_(-1),
M
minqiyang 已提交
271
        backward_id_(-1),
272 273
        place_(platform::CPUPlace()),
        backward_hooks_() {}
274 275

  virtual ~OpBase() {
M
minqiyang 已提交
276 277
    // TODO(minqiyang): remove op_desc from block_desc in tracer
    //
278 279 280 281 282
    // reset all output vars' pre op
    for (auto iter : output_vars_) {
      for (VarBase* var : iter.second) {
        var->ResetPreOp(this);
      }
X
Xin Pan 已提交
283
    }
284

285
    // release resource
X
Xin Pan 已提交
286 287 288
    for (framework::OpDesc* desc : grad_op_descs_) {
      delete desc;
    }
289 290
  }

X
Xin Pan 已提交
291
  std::map<std::string, std::vector<VarBase*>> ApplyGrad();
292

293 294 295 296 297 298
  inline std::string Type() const { return type_; }
  inline std::string GradOpType(size_t index) const {
    PADDLE_ENFORCE_NOT_NULL(grad_op_descs_[index]);
    return grad_op_descs_[index]->Type();
  }

299 300 301 302
  void RegisterBackwardHooks(const py::object& callable);

  void InvokeBackwardHooks();

303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320
  void TrackPreOp(const VarBase* inp_var, const std::string& inp_name) {
    if (inp_var->PreOp() && !inp_var->IsStopGradient()) {
      VLOG(3) << "add pre op " << inp_var->PreOp()->Type() << " in slot "
              << inp_name;
      pre_ops_[inp_name].push_back(inp_var->PreOp());
      pre_ops_out_idx_[inp_name].push_back(inp_var->PreOpOutIdx());
    } else {
      VLOG(3) << "no pre op in slot " << inp_name
              << " input var stop_gradient: " << inp_var->IsStopGradient();
      pre_ops_[inp_name].push_back(nullptr);
      // pre_ops_out_idx_[inp_name].push_back(-1);
    }
  }

  std::string type_;
  // One of `trace_id_` or `forward_id_` is set, not both.
  // For pure python PyLayer, use `forward_id_`, otherwise, use trace_id_.
  int trace_id_;
X
Xin Pan 已提交
321
  int forward_id_;
X
polish  
Xin Pan 已提交
322

X
Xin Pan 已提交
323
  // When has backward, one of `grad_op_descs_` or `backward_id_` is set,
X
polish  
Xin Pan 已提交
324
  // not both.
X
polish  
Xin Pan 已提交
325
  // Note: each fwd op corresponds to a vector of bwd ops.
X
Xin Pan 已提交
326
  std::vector<framework::OpDesc*> grad_op_descs_;
X
Xin Pan 已提交
327
  int backward_id_;
X
Xin Pan 已提交
328

P
Paddle CI 已提交
329
  platform::Place place_;
M
minqiyang 已提交
330

M
minqiyang 已提交
331 332 333
  VarBasePtrMap input_vars_;
  VarBasePtrMap output_vars_;
  OpBasePtrMap pre_ops_;
X
Xin Pan 已提交
334
  std::map<std::string, std::vector<int>> pre_ops_out_idx_;
335

X
polish  
Xin Pan 已提交
336
  // Inputs to a vector of bwd ops.
M
minqiyang 已提交
337
  std::vector<VarBasePtrMap> grad_input_vars_;
X
polish  
Xin Pan 已提交
338
  // Outputs to a vector of bwd ops.
M
minqiyang 已提交
339
  std::vector<VarBasePtrMap> grad_output_vars_;
X
polish  
Xin Pan 已提交
340

341
  std::vector<py::object> backward_hooks_;
342 343 344 345 346 347 348 349 350 351
};

class Layer {
 public:
  virtual ~Layer() {}

  virtual std::vector<VarBase> Forward(const std::vector<VarBase>& inputs) {
    std::vector<VarBase> vars;
    return vars;
  }
X
Xin Pan 已提交
352
};
353

X
Xin Pan 已提交
354 355 356 357
class PyLayer {
 public:
  virtual ~PyLayer() {}

X
polish  
Xin Pan 已提交
358 359
  static const char* kFwdInp;
  static const char* kFwdOut;
X
Xin Pan 已提交
360

X
Xin Pan 已提交
361
  static void RegisterFunc(int func_id, const py::object& py_func);
X
Xin Pan 已提交
362

X
polish  
Xin Pan 已提交
363 364
  static int NumFuncs();

365 366
  static std::vector<framework::Variable*> Apply(
      int func_id, const std::vector<VarBase*>& inputs);
X
Xin Pan 已提交
367

M
minqiyang 已提交
368 369
  static std::vector<VarBase*> ApplyGrad(int func_id,
                                         const std::vector<VarBase*>& inputs);
370

X
polish  
Xin Pan 已提交
371 372
 private:
  static std::vector<framework::Variable*> CallPythonFunc(
M
minqiyang 已提交
373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491
      const py::object& callable, const std::vector<VarBase*>& ins);
};

// infer var type context for imperative mode
class PYBIND11_HIDDEN RuntimeInferVarTypeContext
    : public framework::InferVarTypeContext {
 public:
  RuntimeInferVarTypeContext(imperative::OpBase* op,
                             const imperative::VarBasePtrMap* inputs,
                             imperative::VarBasePtrMap* outputs,
                             const framework::AttributeMap* attrs_map)
      : InferVarTypeContext(nullptr, nullptr),
        op_(op),
        inputs_(inputs),
        outputs_(outputs),
        attrs_(attrs_map),
        input_names_(),
        output_names_(),
        var_set_() {
    input_names_.reserve(inputs_->size());
    for (auto& it : *inputs_) {
      for (imperative::VarBase* var : it.second) {
        input_names_[it.first].emplace_back(var->Name());
        var_set_[var->Name()] = var;
      }
    }

    output_names_.reserve(outputs_->size());
    for (auto& it : *outputs_) {
      for (imperative::VarBase* var : it.second) {
        output_names_[it.first].emplace_back(var->Name());
        var_set_[var->Name()] = var;
      }
    }
  }

  framework::Attribute GetAttr(const std::string& name) const {
    PADDLE_ENFORCE_NOT_NULL(attrs_);
    return attrs_->at(name);
  }

  inline bool HasVar(const std::string& name) const {
    return var_set_.count(name) > 0;
  }

  inline bool HasInput(const std::string& name) const {
    PADDLE_ENFORCE_NOT_NULL(inputs_);
    return inputs_->count(name) > 0;
  }

  inline bool HasOutput(const std::string& name) const {
    PADDLE_ENFORCE_NOT_NULL(outputs_);
    return outputs_->count(name) > 0;
  }

  inline const std::vector<std::string>& Input(const std::string& name) const {
    return input_names_.at(name);
  }

  inline const std::vector<std::string>& Output(const std::string& name) const {
    return output_names_.at(name);
  }

  inline framework::proto::VarType::Type GetType(
      const std::string& name) const {
    return var_set_.at(name)->DType();
  }

  inline void SetType(const std::string& name,
                      framework::proto::VarType::Type type) {
    var_set_[name]->SetDType(type);
  }

  inline framework::proto::VarType::Type GetDataType(
      const std::string& name) const {
    return var_set_.at(name)->DType();
  }

  inline void SetDataType(const std::string& name,
                          framework::proto::VarType::Type type) {
    var_set_[name]->SetDType(type);
  }

  inline std::vector<framework::proto::VarType::Type> GetDataTypes(
      const std::string& name) const {
    PADDLE_THROW("GetDataTypes is not supported in runtime InferVarType");
  }

  inline void SetDataTypes(
      const std::string& name,
      const std::vector<framework::proto::VarType::Type>& multiple_data_type) {
    PADDLE_THROW("SetDataTypes is not supported in runtime InferVarType");
  }

  inline std::vector<int64_t> GetShape(const std::string& name) const {
    PADDLE_THROW("Do not handle Shape in runtime InferVarType");
  }

  inline void SetShape(const std::string& name,
                       const std::vector<int64_t>& dims) {
    PADDLE_THROW("Do not handle Shape in runtime InferVarType");
  }

  inline int32_t GetLoDLevel(const std::string& name) const {
    PADDLE_THROW("Do not handle LoDLevel in runtime InferVarType");
  }

  inline void SetLoDLevel(const std::string& name, int32_t lod_level) {
    PADDLE_THROW("Do not handle LoDLevel in runtime InferVarType");
  }

 private:
  imperative::OpBase* op_;
  const imperative::VarBasePtrMap* inputs_;
  imperative::VarBasePtrMap* outputs_;
  const framework::AttributeMap* attrs_;
  std::unordered_map<std::string, std::vector<std::string>> input_names_;
  std::unordered_map<std::string, std::vector<std::string>> output_names_;
  std::unordered_map<std::string, imperative::VarBase*> var_set_;
492 493 494 495
};

}  // namespace imperative
}  // namespace paddle