layer.h 7.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#pragma once

X
Xin Pan 已提交
17 18 19 20 21 22 23
// clang-format off
#include "paddle/fluid/framework/python_headers.h"
// clang-format on

#include <map>     // NOLINT
#include <string>  // NOLINT
#include <vector>  // NOLINT
M
minqiyang 已提交
24

25 26 27 28
#include "paddle/fluid/framework/op_desc.h"
#include "paddle/fluid/framework/operator.h"
#include "paddle/fluid/framework/var_desc.h"
#include "paddle/fluid/platform/enforce.h"
M
minqiyang 已提交
29
#include "paddle/fluid/platform/device_context.h"
30

M
minqiyang 已提交
31 32
#include "paddle/fluid/imperative/type_defs.h"

33 34 35
namespace paddle {
namespace imperative {

M
minqiyang 已提交
36 37
class VarBase;

X
Xin Pan 已提交
38 39
namespace py = ::pybind11;

X
Xin Pan 已提交
40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65
class PreparedOp {
 public:
  PreparedOp(const framework::OperatorBase& op,
             const framework::RuntimeContext& ctx,
             framework::OperatorWithKernel::OpKernelFunc func,
             platform::DeviceContext* dev_ctx)
      : op(op), ctx(ctx), func(func), dev_ctx(dev_ctx) {}

  static PreparedOp Prepare(const framework::RuntimeContext& ctx,
                            const framework::OperatorWithKernel& op,
                            const platform::Place& place) {
    platform::DeviceContextPool& pool = platform::DeviceContextPool::Instance();
    auto* dev_ctx = pool.Get(place);

    // check if op[type] has kernel registered.
    auto& all_op_kernels = op.AllOpKernels();
    auto kernels_iter = all_op_kernels.find(op.Type());
    if (kernels_iter == all_op_kernels.end()) {
      PADDLE_THROW(
          "There are no kernels which are registered in the %s operator.",
          op.Type());
    }

    framework::OperatorWithKernel::OpKernelMap& kernels = kernels_iter->second;

    auto expected_kernel_key = op.GetExpectedKernelType(
X
Xin Pan 已提交
66
        framework::ExecutionContext(op, framework::Scope(), *dev_ctx, ctx));
X
Xin Pan 已提交
67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86
    VLOG(3) << "expected_kernel_key:" << expected_kernel_key;

    auto kernel_iter = kernels.find(expected_kernel_key);
#ifdef PADDLE_WITH_MKLDNN
    // workaround for missing MKLDNN kernel when FLAGS_use_mkldnn env var is set
    if (kernel_iter == kernels.end() &&
        expected_kernel_key.library_type_ == framework::LibraryType::kMKLDNN) {
      VLOG(3) << "missing MKLDNN kernel: fallbacking to PLAIN one";
      expected_kernel_key.library_type_ = framework::LibraryType::kPlain;
      expected_kernel_key.data_layout_ = framework::DataLayout::kAnyLayout;
      kernel_iter = kernels.find(expected_kernel_key);
    }
#endif
    if (kernel_iter == kernels.end()) {
      PADDLE_THROW("op %s does not have kernel for %s", op.Type(),
                   KernelTypeToString(expected_kernel_key));
    }
    return PreparedOp(op, ctx, kernel_iter->second, dev_ctx);
  }

M
minqiyang 已提交
87 88
  inline platform::DeviceContext* GetDeviceContext() const { return dev_ctx; }

X
Xin Pan 已提交
89 90 91 92 93
  const framework::OperatorBase& op;
  const framework::RuntimeContext& ctx;
  framework::OperatorWithKernel::OpKernelFunc func;
  platform::DeviceContext* dev_ctx;
};
X
polish  
Xin Pan 已提交
94

95 96
class OpBase;

M
minqiyang 已提交
97 98 99 100 101
/* The wrapper for Variable which holds a Variable and a VarBase of its
 * gradient. This object should be managed totally by Python intepreter.
 *
 * Nearly all interface should be implemented in C++.
 */
102 103
class VarBase {
 public:
104
  VarBase() : VarBase(new framework::Variable(), new VarBase(true)) {}
X
polish  
Xin Pan 已提交
105 106

  // Owns `var` and `grad`
107
  VarBase(framework::Variable* var, VarBase* grad)
X
Xin Pan 已提交
108
      : var_desc_(nullptr),
X
polish  
Xin Pan 已提交
109 110
        var_(var),
        grads_(grad),
X
Xin Pan 已提交
111 112 113
        stop_gradient_(false),
        pre_op_(nullptr),
        pre_op_out_idx_(-1) {}
M
minqiyang 已提交
114 115

  explicit VarBase(bool stop_gradient)
X
Xin Pan 已提交
116
      : var_desc_(nullptr),
X
Xin Pan 已提交
117
        var_(new framework::Variable()),
M
minqiyang 已提交
118
        grads_(stop_gradient ? nullptr : new VarBase(true)),
X
Xin Pan 已提交
119 120 121
        stop_gradient_(stop_gradient),
        pre_op_(nullptr),
        pre_op_out_idx_(-1) {}
122

M
minqiyang 已提交
123 124 125 126 127 128 129 130 131
  virtual ~VarBase() {
    if (var_) {
      delete var_;
    }

    if (grads_) {
      delete grads_;
    }
  }
132

X
Xin Pan 已提交
133 134 135 136 137 138
  OpBase* PreOp() const { return pre_op_; }
  int PreOpOutIdx() const { return pre_op_out_idx_; }

  void SetStopGradient(bool stop_gradient) { stop_gradient_ = stop_gradient; }
  bool IsStopGradient() const { return stop_gradient_; }

X
Xin Pan 已提交
139
  void RunBackward();
140

X
Xin Pan 已提交
141 142 143 144 145 146 147 148 149
  void TrackPreOp(OpBase* pre_op, const std::string& pre_op_out_name,
                  int pre_op_out_idx, bool stop_gradient) {
    pre_op_ = pre_op;
    pre_op_out_name_ = pre_op_out_name;
    pre_op_out_idx_ = pre_op_out_idx;
    stop_gradient_ = stop_gradient;
  }

  void ClearGradient() {
X
Xin Pan 已提交
150 151 152 153
    delete grads_;
    grads_ = new VarBase(true);
  }

M
minqiyang 已提交
154
  framework::LoDTensor& GradValue();
155

P
Paddle CI 已提交
156 157
  VarBase* NewVarBase(const platform::Place& dst_place,
                      const bool blocking) const;
M
minqiyang 已提交
158

M
minqiyang 已提交
159 160 161 162 163 164 165
  inline std::string GradName() const {
    PADDLE_ENFORCE(
        var_desc_,
        "Couldn't get gradient variable's name, please call backward() first");
    return string::Sprintf("%s@IGrad", var_desc_->Name());
  }

166
  framework::VarDesc* var_desc_;
M
minqiyang 已提交
167

M
minqiyang 已提交
168 169
  framework::Variable* var_;
  VarBase* grads_;
170

X
Xin Pan 已提交
171
 private:
172
  bool stop_gradient_;
X
Xin Pan 已提交
173 174 175
  OpBase* pre_op_;
  std::string pre_op_out_name_;
  int pre_op_out_idx_;
176 177
};

M
minqiyang 已提交
178 179 180
/* The wrapper for OpDesc which holds a OpDesc and a OpDesc of its
 * gradient. This object should be managed totally by Python intepreter.
 */
181 182
class OpBase {
 public:
X
Xin Pan 已提交
183 184 185
  OpBase()
      : op_desc_(nullptr),
        forward_id_(-1),
X
polish  
Xin Pan 已提交
186
        grad_op_desc_(nullptr),
M
minqiyang 已提交
187
        backward_id_(-1),
P
Paddle CI 已提交
188
        place_(platform::CPUPlace()) {}
189 190 191 192 193

  virtual ~OpBase() {
    if (grad_op_desc_) delete grad_op_desc_;
  }

X
Xin Pan 已提交
194
  std::map<std::string, std::vector<VarBase*>> ApplyGrad();
195

X
polish  
Xin Pan 已提交
196 197
  // One of `op_desc_` or `forward_id_` is set, not both.
  // For pure python PyLayer, use `forward_id_`, otherwise, use op_desc_.
198
  framework::OpDesc* op_desc_;
X
Xin Pan 已提交
199
  int forward_id_;
X
polish  
Xin Pan 已提交
200 201
  // When has backward, one of `grad_op_desc_` or `backward_id_` is set,
  // not both.
202
  framework::OpDesc* grad_op_desc_;
X
Xin Pan 已提交
203
  int backward_id_;
X
Xin Pan 已提交
204

P
Paddle CI 已提交
205
  platform::Place place_;
M
minqiyang 已提交
206

M
minqiyang 已提交
207 208 209
  VarBasePtrMap input_vars_;
  VarBasePtrMap output_vars_;
  OpBasePtrMap pre_ops_;
X
Xin Pan 已提交
210
  std::map<std::string, std::vector<int>> pre_ops_out_idx_;
211

M
minqiyang 已提交
212 213
  framework::VariableValueMap grad_input_vars_;
  framework::VariableValueMap grad_output_vars_;
214 215 216 217 218 219 220 221 222 223 224
  framework::BlockDesc* block_;
};

class Layer {
 public:
  virtual ~Layer() {}

  virtual std::vector<VarBase> Forward(const std::vector<VarBase>& inputs) {
    std::vector<VarBase> vars;
    return vars;
  }
X
Xin Pan 已提交
225
};
226

X
Xin Pan 已提交
227 228 229 230
class PyLayer {
 public:
  virtual ~PyLayer() {}

X
polish  
Xin Pan 已提交
231 232
  static const char* kFwdInp;
  static const char* kFwdOut;
X
Xin Pan 已提交
233

X
Xin Pan 已提交
234
  static void RegisterFunc(int func_id, const py::object& py_func);
X
Xin Pan 已提交
235

X
polish  
Xin Pan 已提交
236 237
  static int NumFuncs();

X
Xin Pan 已提交
238
  static std::vector<VarBase*> Apply(int func_id,
X
Xin Pan 已提交
239 240
                                     const std::vector<VarBase*>& inputs);

X
polish  
Xin Pan 已提交
241 242
  static std::vector<framework::Variable*> ApplyGrad(
      int func_id, const std::vector<framework::Variable*>& inputs);
243

X
polish  
Xin Pan 已提交
244 245 246
 private:
  static std::vector<framework::Variable*> CallPythonFunc(
      const py::object& callable, const std::vector<framework::Variable*>& ins);
247 248 249 250
};

}  // namespace imperative
}  // namespace paddle