Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
Crayon鑫
Paddle
提交
4d9feb35
P
Paddle
项目概览
Crayon鑫
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1
Issue
1
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
4d9feb35
编写于
1月 24, 2019
作者:
X
Xin Pan
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
support multi grad ops
test=develop
上级
22db82c0
变更
4
隐藏空白更改
内联
并排
Showing
4 changed file
with
116 addition
and
85 deletion
+116
-85
paddle/fluid/imperative/layer.cc
paddle/fluid/imperative/layer.cc
+46
-37
paddle/fluid/imperative/layer.h
paddle/fluid/imperative/layer.h
+7
-6
paddle/fluid/imperative/tracer.cc
paddle/fluid/imperative/tracer.cc
+48
-42
python/paddle/fluid/tests/unittests/test_imperative.py
python/paddle/fluid/tests/unittests/test_imperative.py
+15
-0
未找到文件。
paddle/fluid/imperative/layer.cc
浏览文件 @
4d9feb35
...
...
@@ -204,59 +204,68 @@ framework::LoDTensor& VarBase::GradValue() {
}
std
::
map
<
std
::
string
,
std
::
vector
<
VarBase
*>>
OpBase
::
ApplyGrad
()
{
if
(
!
grad_op_desc_
&&
backward_id_
<=
0
)
{
if
(
grad_op_descs_
.
empty
()
&&
backward_id_
<=
0
)
{
LOG
(
WARNING
)
<<
"op with no grad: "
<<
op_desc_
->
Type
();
return
{};
}
std
::
map
<
std
::
string
,
std
::
vector
<
framework
::
Variable
*>
>
grad_outputs
;
std
::
vector
<
framework
::
VariableValueMap
>
grad_outputs
;
if
(
backward_id_
>
0
)
{
grad_outputs
.
resize
(
1
);
VLOG
(
3
)
<<
"py_layer_grad"
;
grad_outputs
[
framework
::
GradVarName
(
PyLayer
::
kFwdOut
)]
=
PyLayer
::
ApplyGrad
(
backward_id_
,
grad_input_vars_
[
framework
::
GradVarName
(
PyLayer
::
kFwdInp
)]);
grad_outputs
[
0
][
framework
::
GradVarName
(
PyLayer
::
kFwdOut
)]
=
PyLayer
::
ApplyGrad
(
backward_id_
,
grad_input_vars_
[
0
][
framework
::
GradVarName
(
PyLayer
::
kFwdInp
)]);
}
else
{
VLOG
(
3
)
<<
"op grad "
<<
grad_op_desc_
->
Type
();
for
(
auto
it
:
grad_output_vars_
)
{
auto
&
outputs
=
grad_outputs
[
it
.
first
];
for
(
size_t
i
=
0
;
i
<
it
.
second
.
size
();
++
i
)
{
// Allocate a new variable
Variable
*
tmp_var
=
new
framework
::
Variable
();
tmp_var
->
GetMutable
<
framework
::
LoDTensor
>
();
outputs
.
push_back
(
tmp_var
);
grad_outputs
.
resize
(
grad_op_descs_
.
size
());
for
(
size_t
k
=
0
;
k
<
grad_op_descs_
.
size
();
++
k
)
{
framework
::
OpDesc
*
grad_op_desc
=
grad_op_descs_
[
k
];
VLOG
(
3
)
<<
"op grad "
<<
grad_op_desc
->
Type
();
for
(
auto
it
:
grad_output_vars_
[
k
])
{
auto
&
outputs
=
grad_outputs
[
k
][
it
.
first
];
for
(
size_t
i
=
0
;
i
<
it
.
second
.
size
();
++
i
)
{
// Allocate a new variable
Variable
*
tmp_var
=
new
framework
::
Variable
();
tmp_var
->
GetMutable
<
framework
::
LoDTensor
>
();
outputs
.
push_back
(
tmp_var
);
}
}
}
framework
::
RuntimeContext
ctx
(
grad_input_vars_
,
grad_outputs
);
framework
::
RuntimeContext
ctx
(
grad_input_vars_
[
k
],
grad_outputs
[
k
]
);
// No need to do compile time infer shape here.
// grad_op_desc_->InferShape(*block_);
grad_op_desc_
->
InferVarType
(
block_
);
// No need to do compile time infer shape here.
// grad_op_desc_->InferShape(*block_);
grad_op_desc
->
InferVarType
(
block_
);
std
::
unique_ptr
<
framework
::
OperatorBase
>
opbase
=
framework
::
OpRegistry
::
CreateOp
(
*
grad_op_desc_
);
framework
::
OperatorWithKernel
*
op_kernel
=
dynamic_cast
<
framework
::
OperatorWithKernel
*>
(
opbase
.
get
());
PADDLE_ENFORCE_NOT_NULL
(
op_kernel
,
"only support op with kernel"
);
std
::
unique_ptr
<
framework
::
OperatorBase
>
opbase
=
framework
::
OpRegistry
::
CreateOp
(
*
grad_op_desc
);
framework
::
OperatorWithKernel
*
op_kernel
=
dynamic_cast
<
framework
::
OperatorWithKernel
*>
(
opbase
.
get
());
PADDLE_ENFORCE_NOT_NULL
(
op_kernel
,
"only support op with kernel"
);
framework
::
Scope
scope
;
PreparedOp
p
=
PreparedOp
::
Prepare
(
ctx
,
*
op_kernel
,
place_
);
p
.
op
.
RuntimeInferShape
(
scope
,
place_
,
ctx
);
p
.
func
(
framework
::
ExecutionContext
(
p
.
op
,
scope
,
*
p
.
dev_ctx
,
p
.
ctx
));
framework
::
Scope
scope
;
PreparedOp
p
=
PreparedOp
::
Prepare
(
ctx
,
*
op_kernel
,
place_
);
p
.
op
.
RuntimeInferShape
(
scope
,
place_
,
ctx
);
p
.
func
(
framework
::
ExecutionContext
(
p
.
op
,
scope
,
*
p
.
dev_ctx
,
p
.
ctx
));
}
}
for
(
auto
it
:
grad_output_vars_
)
{
auto
&
outputs
=
grad_outputs
[
it
.
first
];
auto
&
origin_outputs
=
it
.
second
;
PADDLE_ENFORCE_EQ
(
outputs
.
size
(),
origin_outputs
.
size
());
for
(
size_t
i
=
0
;
i
<
outputs
.
size
();
++
i
)
{
framework
::
Variable
*
grad
=
outputs
[
i
];
framework
::
Variable
*
orig_grad
=
origin_outputs
[
i
];
AddTo
(
grad
,
orig_grad
,
place_
);
delete
grad
;
for
(
size_t
k
=
0
;
k
<
grad_output_vars_
.
size
();
++
k
)
{
for
(
auto
it
:
grad_output_vars_
[
k
])
{
auto
&
outputs
=
grad_outputs
[
k
][
it
.
first
];
auto
&
origin_outputs
=
it
.
second
;
PADDLE_ENFORCE_EQ
(
outputs
.
size
(),
origin_outputs
.
size
());
for
(
size_t
i
=
0
;
i
<
outputs
.
size
();
++
i
)
{
framework
::
Variable
*
grad
=
outputs
[
i
];
framework
::
Variable
*
orig_grad
=
origin_outputs
[
i
];
AddTo
(
grad
,
orig_grad
,
place_
);
delete
grad
;
}
}
}
return
input_vars_
;
}
...
...
paddle/fluid/imperative/layer.h
浏览文件 @
4d9feb35
...
...
@@ -184,12 +184,13 @@ class OpBase {
OpBase
()
:
op_desc_
(
nullptr
),
forward_id_
(
-
1
),
grad_op_desc_
(
nullptr
),
backward_id_
(
-
1
),
place_
(
platform
::
CPUPlace
())
{}
virtual
~
OpBase
()
{
if
(
grad_op_desc_
)
delete
grad_op_desc_
;
for
(
framework
::
OpDesc
*
desc
:
grad_op_descs_
)
{
delete
desc
;
}
}
std
::
map
<
std
::
string
,
std
::
vector
<
VarBase
*>>
ApplyGrad
();
...
...
@@ -198,9 +199,9 @@ class OpBase {
// For pure python PyLayer, use `forward_id_`, otherwise, use op_desc_.
framework
::
OpDesc
*
op_desc_
;
int
forward_id_
;
// When has backward, one of `grad_op_desc_` or `backward_id_` is set,
// When has backward, one of `grad_op_desc
s
_` or `backward_id_` is set,
// not both.
framework
::
OpDesc
*
grad_op_desc
_
;
std
::
vector
<
framework
::
OpDesc
*>
grad_op_descs
_
;
int
backward_id_
;
platform
::
Place
place_
;
...
...
@@ -210,8 +211,8 @@ class OpBase {
OpBasePtrMap
pre_ops_
;
std
::
map
<
std
::
string
,
std
::
vector
<
int
>>
pre_ops_out_idx_
;
framework
::
VariableValueMap
grad_input_vars_
;
framework
::
VariableValueMap
grad_output_vars_
;
std
::
vector
<
framework
::
VariableValueMap
>
grad_input_vars_
;
std
::
vector
<
framework
::
VariableValueMap
>
grad_output_vars_
;
framework
::
BlockDesc
*
block_
;
};
...
...
paddle/fluid/imperative/tracer.cc
浏览文件 @
4d9feb35
...
...
@@ -24,15 +24,16 @@ namespace imperative {
void
CreateGradOp
(
const
framework
::
OpDesc
&
op_desc
,
const
std
::
unordered_set
<
std
::
string
>&
no_grad_set
,
const
std
::
vector
<
framework
::
BlockDesc
*>&
grad_sub_block
,
framework
::
OpDesc
**
grad_op_desc
,
std
::
vector
<
framework
::
OpDesc
*>*
grad_op_descs
,
std
::
unordered_map
<
std
::
string
,
std
::
string
>*
grad_to_var
)
{
std
::
vector
<
std
::
unique_ptr
<
framework
::
OpDesc
>>
grad_op_descs
=
PADDLE_ENFORCE
(
grad_op_descs
->
empty
());
std
::
vector
<
std
::
unique_ptr
<
framework
::
OpDesc
>>
descs
=
framework
::
OpInfoMap
::
Instance
()
.
Get
(
op_desc
.
Type
())
.
GradOpMaker
()(
op_desc
,
no_grad_set
,
grad_to_var
,
grad_sub_block
);
PADDLE_ENFORCE
(
grad_op_descs
.
size
()
==
1
,
"Only support 1 grad op now."
);
// TODO(panyx0718): Leak?
*
grad_op_desc
=
grad_op_descs
[
0
].
release
();
for
(
auto
&
desc
:
descs
)
{
grad_op_descs
->
emplace_back
(
desc
.
release
());
}
}
void
InitVar
(
framework
::
Variable
*
var
,
framework
::
Variable
*
grad_var
,
...
...
@@ -138,49 +139,52 @@ void Tracer::Trace(OpBase* op, const VarBasePtrMap& inputs,
prepared_op
.
op
,
scope
,
*
prepared_op
.
dev_ctx
,
prepared_op
.
ctx
));
if
(
!
stop_gradient
)
{
framework
::
OpDesc
*
grad_op_desc
;
// TODO(panyx): Is this leaked?
std
::
unique_ptr
<
std
::
unordered_map
<
std
::
string
,
std
::
string
>>
grad_to_var
(
new
std
::
unordered_map
<
std
::
string
,
std
::
string
>
());
CreateGradOp
(
*
op_desc
,
{},
{
block
},
&
grad_op_desc
,
grad_to_var
.
get
());
op
->
grad_op_desc_
=
grad_op_desc
;
for
(
auto
it
:
grad_op_desc
->
Inputs
())
{
auto
&
grad_in_vars
=
op
->
grad_input_vars_
[
it
.
first
];
for
(
const
std
::
string
&
grad_invar
:
it
.
second
)
{
block
->
FindRecursiveOrCreateVar
(
grad_invar
);
auto
var_it
=
grad_to_var
->
find
(
grad_invar
);
if
(
var_it
==
grad_to_var
->
end
())
{
auto
fwd_var_it
=
vars
.
find
(
grad_invar
);
PADDLE_ENFORCE
(
fwd_var_it
!=
vars
.
end
());
// Forward inputs or outputs.
grad_in_vars
.
push_back
(
fwd_var_it
->
second
->
var_
);
}
else
{
CreateGradOp
(
*
op_desc
,
{},
{
block
},
&
op
->
grad_op_descs_
,
grad_to_var
.
get
());
op
->
grad_input_vars_
.
resize
(
op
->
grad_op_descs_
.
size
());
op
->
grad_output_vars_
.
resize
(
op
->
grad_op_descs_
.
size
());
for
(
size_t
i
=
0
;
i
<
op
->
grad_op_descs_
.
size
();
++
i
)
{
framework
::
OpDesc
*
grad_op_desc
=
op
->
grad_op_descs_
[
i
];
for
(
auto
it
:
grad_op_desc
->
Inputs
())
{
auto
&
grad_in_vars
=
op
->
grad_input_vars_
[
i
][
it
.
first
];
for
(
const
std
::
string
&
grad_invar
:
it
.
second
)
{
block
->
FindRecursiveOrCreateVar
(
grad_invar
);
auto
var_it
=
grad_to_var
->
find
(
grad_invar
);
if
(
var_it
==
grad_to_var
->
end
())
{
auto
fwd_var_it
=
vars
.
find
(
grad_invar
);
PADDLE_ENFORCE
(
fwd_var_it
!=
vars
.
end
());
// Forward inputs or outputs.
grad_in_vars
.
push_back
(
fwd_var_it
->
second
->
var_
);
}
else
{
VarBase
*
var
=
vars
[
var_it
->
second
];
if
(
!
var
->
grads_
->
var_
->
IsInitialized
())
{
InitVar
(
var
->
var_
,
var
->
grads_
->
var_
,
prepared_op
.
GetDeviceContext
());
}
// Douts.
grad_in_vars
.
push_back
(
var
->
grads_
->
var_
);
}
}
}
for
(
auto
it
:
grad_op_desc
->
Outputs
())
{
auto
&
grad_out_vars
=
op
->
grad_output_vars_
[
i
][
it
.
first
];
for
(
const
std
::
string
&
grad_outvar
:
it
.
second
)
{
block
->
FindRecursiveOrCreateVar
(
grad_outvar
);
auto
var_it
=
grad_to_var
->
find
(
grad_outvar
);
PADDLE_ENFORCE
(
var_it
!=
grad_to_var
->
end
(),
"Could not found the grad op output var, should this "
"operator %s's stop gradient be True"
,
op_desc
->
Type
());
VarBase
*
var
=
vars
[
var_it
->
second
];
if
(
!
var
->
grads_
->
var_
->
IsInitialized
())
{
InitVar
(
var
->
var_
,
var
->
grads_
->
var_
,
prepared_op
.
GetDeviceContext
());
}
// Douts.
grad_in_vars
.
push_back
(
var
->
grads_
->
var_
);
}
}
}
for
(
auto
it
:
grad_op_desc
->
Outputs
())
{
auto
&
grad_out_vars
=
op
->
grad_output_vars_
[
it
.
first
];
for
(
const
std
::
string
&
grad_outvar
:
it
.
second
)
{
block
->
FindRecursiveOrCreateVar
(
grad_outvar
);
auto
var_it
=
grad_to_var
->
find
(
grad_outvar
);
PADDLE_ENFORCE
(
var_it
!=
grad_to_var
->
end
(),
"Could not found the grad op output var, should this "
"operator %s's stop gradient be True"
,
op_desc
->
Type
());
VarBase
*
var
=
vars
[
var_it
->
second
];
if
(
!
var
->
grads_
->
var_
->
IsInitialized
())
{
InitVar
(
var
->
var_
,
var
->
grads_
->
var_
,
prepared_op
.
GetDeviceContext
());
grad_out_vars
.
push_back
(
var
->
grads_
->
var_
);
}
grad_out_vars
.
push_back
(
var
->
grads_
->
var_
);
}
}
}
...
...
@@ -209,10 +213,12 @@ std::vector<VarBase*> Tracer::PyTrace(OpBase* op,
out
->
TrackPreOp
(
op
,
PyLayer
::
kFwdOut
,
i
,
stop_gradient
);
}
if
(
!
stop_gradient
)
{
op
->
grad_input_vars_
.
resize
(
1
);
op
->
grad_output_vars_
.
resize
(
1
);
auto
&
grad_input_vars
=
op
->
grad_input_vars_
[
framework
::
GradVarName
(
PyLayer
::
kFwdInp
)];
op
->
grad_input_vars_
[
0
][
framework
::
GradVarName
(
PyLayer
::
kFwdInp
)];
auto
&
grad_output_vars
=
op
->
grad_output_vars_
[
framework
::
GradVarName
(
PyLayer
::
kFwdOut
)];
op
->
grad_output_vars_
[
0
][
framework
::
GradVarName
(
PyLayer
::
kFwdOut
)];
for
(
const
VarBase
*
inp
:
inputs
)
{
grad_input_vars
.
push_back
(
inp
->
var_
);
...
...
python/paddle/fluid/tests/unittests/test_imperative.py
浏览文件 @
4d9feb35
...
...
@@ -67,6 +67,21 @@ class MLP(fluid.imperative.Layer):
class
TestImperative
(
unittest
.
TestCase
):
def
test_sum_op
(
self
):
with
fluid
.
imperative
.
guard
():
inputs
=
[]
for
_
in
range
(
10
):
inputs
.
append
(
fluid
.
imperative
.
base
.
to_variable
(
np
.
ones
([
2
,
2
],
np
.
float32
)))
sys
.
stderr
.
write
(
'%s
\n
'
%
inputs
[
0
].
dtype
)
ret
=
fluid
.
layers
.
sums
(
inputs
)
sys
.
stderr
.
write
(
'%s
\n
'
%
ret
.
dtype
)
loss
=
fluid
.
layers
.
reduce_sum
(
ret
)
sys
.
stderr
.
write
(
'%s
\n
'
%
loss
.
dtype
)
loss
.
_backward
()
sys
.
stderr
.
write
(
'%s %s
\n
'
%
(
ret
.
_numpy
(),
inputs
[
0
].
_gradient
()))
def
test_layer
(
self
):
with
fluid
.
imperative
.
guard
():
cl
=
core
.
Layer
()
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录