activation_op_mlu.cc 12.1 KB
Newer Older
F
fwenguang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the Licnse. */

#include <memory>
#include <string>

#include "paddle/fluid/operators/activation_op.h"
#include "paddle/fluid/operators/mlu/mlu_baseop.h"

namespace paddle {
namespace operators {

using Tensor = framework::Tensor;

26
template <cnnlActivationMode_t act_mode, typename T>
F
fwenguang 已提交
27 28 29 30 31
class ActivationMLUKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    auto* input = ctx.Input<Tensor>("X");
    auto* output = ctx.Output<Tensor>("Out");
32
    float alpha = ctx.HasAttr("alpha") ? ctx.Attr<float>("alpha") : 1.0f;
F
fwenguang 已提交
33 34 35

    output->mutable_data<T>(ctx.GetPlace());

36
    MLUCnnlActivationDesc act_desc(act_mode, alpha);
37 38 39
    MLUCnnlTensorDesc input_desc(*input);
    MLUCnnlTensorDesc output_desc(*output);

40 41 42 43 44 45
    MLUCnnl::Active(ctx,
                    act_desc.get(),
                    input_desc.get(),
                    GetBasePtr(input),
                    output_desc.get(),
                    GetBasePtr(output));
F
fwenguang 已提交
46 47 48
  }
};

49
// For gelu, leaky_relu
50
template <cnnlActivationMode_t act_mode, typename T>
51 52 53 54 55 56 57 58 59 60 61 62 63 64
class ActivationGradMLUKernelV1 : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    auto* x = ctx.Input<Tensor>("X");
    auto* dout = ctx.Input<Tensor>(framework::GradVarName("Out"));
    auto* dx = ctx.Output<Tensor>(framework::GradVarName("X"));
    float alpha = ctx.HasAttr("alpha") ? ctx.Attr<float>("alpha") : 1.0f;

    dx->mutable_data<T>(ctx.GetPlace());

    MLUCnnlTensorDesc x_desc(*x);
    MLUCnnlTensorDesc dout_desc(*dout);
    MLUCnnlTensorDesc dx_desc(*dx);
    MLUCnnlActivationDesc act_desc(act_mode, alpha);
65 66 67 68 69 70 71 72 73 74 75 76
    MLUCnnl::ActiveGrad(ctx,
                        act_desc.get(),
                        nullptr,
                        nullptr,
                        nullptr,
                        nullptr,
                        dout_desc.get(),
                        GetBasePtr(dout),
                        x_desc.get(),
                        GetBasePtr(x),
                        dx_desc.get(),
                        GetBasePtr(dx));
77 78 79 80 81 82
  }
};

// For tanh, sigmoid
template <cnnlActivationMode_t act_mode, typename T>
class ActivationGradMLUKernelV2 : public framework::OpKernel<T> {
F
fwenguang 已提交
83 84 85 86 87
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    auto* out = ctx.Input<Tensor>("Out");
    auto* dout = ctx.Input<Tensor>(framework::GradVarName("Out"));
    auto* dx = ctx.Output<Tensor>(framework::GradVarName("X"));
88
    float alpha = ctx.HasAttr("alpha") ? ctx.Attr<float>("alpha") : 1.0f;
F
fwenguang 已提交
89 90 91

    dx->mutable_data<T>(ctx.GetPlace());

92 93 94
    MLUCnnlTensorDesc out_desc(*out);
    MLUCnnlTensorDesc dout_desc(*dout);
    MLUCnnlTensorDesc dx_desc(*dx);
95
    MLUCnnlActivationDesc act_desc(act_mode, alpha);
96 97 98 99 100 101 102 103 104 105 106 107
    MLUCnnl::ActiveGrad(ctx,
                        act_desc.get(),
                        nullptr,
                        nullptr,
                        out_desc.get(),
                        GetBasePtr(out),
                        dout_desc.get(),
                        GetBasePtr(dout),
                        nullptr,
                        nullptr,
                        dx_desc.get(),
                        GetBasePtr(dx));
108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126
  }
};

// For relu, relu6
template <cnnlActivationMode_t act_mode, typename T>
class ActivationGradMLUKernelV3 : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    auto* out = ctx.Input<Tensor>("Out");
    auto* dout = ctx.Input<Tensor>(framework::GradVarName("Out"));
    auto* dx = ctx.Output<Tensor>(framework::GradVarName("X"));
    float alpha = ctx.HasAttr("alpha") ? ctx.Attr<float>("alpha") : 1.0f;

    dx->mutable_data<T>(ctx.GetPlace());

    MLUCnnlTensorDesc out_desc(*out);
    MLUCnnlTensorDesc dout_desc(*dout);
    MLUCnnlTensorDesc dx_desc(*dx);
    MLUCnnlActivationDesc act_desc(act_mode, alpha);
127 128 129 130 131 132 133 134 135 136 137 138
    MLUCnnl::ActiveGrad(ctx,
                        act_desc.get(),
                        nullptr,
                        nullptr,
                        nullptr,
                        nullptr,
                        dout_desc.get(),
                        GetBasePtr(dout),
                        out_desc.get(),
                        GetBasePtr(out),
                        dx_desc.get(),
                        GetBasePtr(dx));
F
fwenguang 已提交
139 140 141
  }
};

142 143 144 145 146 147 148 149 150 151 152 153 154 155 156
// For sqrt
template <typename T>
class SqrtMLUKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    auto* x = ctx.Input<Tensor>("X");
    auto* out = ctx.Output<Tensor>("Out");
    auto place = ctx.GetPlace();

    out->mutable_data<T>(place);

    MLUCnnlTensorDesc input_desc(*x);
    MLUCnnlTensorDesc output_desc(*out);

    cnnlComputationPreference_t prefer = CNNL_COMPUTATION_FAST;
157 158 159 160 161 162
    MLUCnnl::Sqrt(ctx,
                  prefer,
                  input_desc.get(),
                  GetBasePtr(x),
                  output_desc.get(),
                  GetBasePtr(out));
163 164 165 166 167 168 169 170 171 172 173 174 175 176 177
  }
};

template <typename T>
class SqrtGradMLUKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    auto* out = ctx.Input<Tensor>("Out");
    auto* dout = ctx.Input<Tensor>(framework::GradVarName("Out"));
    auto* dx = ctx.Output<Tensor>(framework::GradVarName("X"));
    auto place = ctx.GetPlace();

    dx->mutable_data<T>(place);

    MLUCnnlTensorDesc data_desc(*out);
178 179 180 181
    MLUCnnl::SqrtGrad(ctx,
                      data_desc.get(),
                      GetBasePtr(out),
                      GetBasePtr(dout),
182 183 184 185
                      GetBasePtr(dx));
  }
};

186 187 188 189 190 191 192 193 194 195 196 197 198 199 200
// CNNL_LOG_E = 0,
// CNNL_LOG_2 = 1,
// CNNL_LOG_10 = 2,
template <cnnlLogBase_t Log_base, typename T>
class LogMLUKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    auto* input = ctx.Input<Tensor>("X");
    auto* output = ctx.Output<Tensor>("Out");
    output->mutable_data<T>(ctx.GetPlace());

    MLUCnnlTensorDesc input_desc(*input);
    MLUCnnlTensorDesc output_desc(*output);
    cnnlComputationPreference_t prefer = CNNL_COMPUTATION_HIGH_PRECISION;

201 202 203 204 205 206 207
    MLUCnnl::Log(ctx,
                 prefer,
                 Log_base,
                 input_desc.get(),
                 GetBasePtr(input),
                 output_desc.get(),
                 GetBasePtr(output));
208 209 210
  }
};

211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258
template <typename T>
class ExpMLUKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    auto* input = ctx.Input<Tensor>("X");
    auto* output = ctx.Output<Tensor>("Out");
    output->mutable_data<T>(ctx.GetPlace());

    MLUCnnlTensorDesc input_desc(*input);
    MLUCnnlTensorDesc output_desc(*output);
    cnnlComputationPreference_t prefer = CNNL_COMPUTATION_HIGH_PRECISION;

    MLUCnnl::Exp(ctx,
                 prefer,
                 input_desc.get(),
                 GetBasePtr(input),
                 output_desc.get(),
                 GetBasePtr(output));
  }
};

template <typename T>
class ExpGradMLUKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    auto* out = ctx.Input<Tensor>("Out");
    auto* dout = ctx.Input<Tensor>(framework::GradVarName("Out"));
    auto* dx = ctx.Output<Tensor>(framework::GradVarName("X"));
    dx->mutable_data<T>(ctx.GetPlace());
    MLUCnnlTensorDesc dout_desc(*dout);
    MLUCnnlTensorDesc dx_desc(*dx);
    MLUCnnlTensorDesc out_desc(*out);

    MLUCnnlOpTensorDesc op_tensor_desc(
        CNNL_OP_TENSOR_MUL, ToCnnlDataType<T>(), CNNL_NOT_PROPAGATE_NAN);

    MLUCnnl::OpTensor(ctx,
                      op_tensor_desc.get(),
                      dout_desc.get(),
                      GetBasePtr(dout),
                      out_desc.get(),
                      GetBasePtr(out),
                      dx_desc.get(),
                      GetBasePtr(dx),
                      ToCnnlDataType<T>());
  }
};

F
fwenguang 已提交
259 260 261 262 263
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;

264
// relu
F
fwenguang 已提交
265
REGISTER_OP_MLU_KERNEL(
266 267
    relu,
    ops::ActivationMLUKernel<CNNL_ACTIVATION_RELU, float>,
268
    ops::ActivationMLUKernel<CNNL_ACTIVATION_RELU, paddle::platform::float16>);
F
fwenguang 已提交
269
REGISTER_OP_MLU_KERNEL(
270 271
    relu_grad,
    ops::ActivationGradMLUKernelV3<CNNL_ACTIVATION_RELU, float>,
272 273 274 275 276
    ops::ActivationGradMLUKernelV3<CNNL_ACTIVATION_RELU,
                                   paddle::platform::float16>);

// relu6
REGISTER_OP_MLU_KERNEL(
277 278
    relu6,
    ops::ActivationMLUKernel<CNNL_ACTIVATION_RELU6, float>,
279 280
    ops::ActivationMLUKernel<CNNL_ACTIVATION_RELU6, paddle::platform::float16>);
REGISTER_OP_MLU_KERNEL(
281 282
    relu6_grad,
    ops::ActivationGradMLUKernelV3<CNNL_ACTIVATION_RELU6, float>,
283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298
    ops::ActivationGradMLUKernelV3<CNNL_ACTIVATION_RELU6,
                                   paddle::platform::float16>);

// sigmoid
REGISTER_OP_MLU_KERNEL(sigmoid,
                       ops::ActivationMLUKernel<CNNL_ACTIVATION_SIGMOID, float>,
                       ops::ActivationMLUKernel<CNNL_ACTIVATION_SIGMOID,
                                                paddle::platform::float16>);
REGISTER_OP_MLU_KERNEL(
    sigmoid_grad,
    ops::ActivationGradMLUKernelV2<CNNL_ACTIVATION_SIGMOID, float>,
    ops::ActivationGradMLUKernelV2<CNNL_ACTIVATION_SIGMOID,
                                   paddle::platform::float16>);

// tanh
REGISTER_OP_MLU_KERNEL(
299 300
    tanh,
    ops::ActivationMLUKernel<CNNL_ACTIVATION_TANH, float>,
301 302
    ops::ActivationMLUKernel<CNNL_ACTIVATION_TANH, paddle::platform::float16>);
REGISTER_OP_MLU_KERNEL(
303 304
    tanh_grad,
    ops::ActivationGradMLUKernelV2<CNNL_ACTIVATION_TANH, float>,
305 306 307 308 309
    ops::ActivationGradMLUKernelV2<CNNL_ACTIVATION_TANH,
                                   paddle::platform::float16>);

// gelu
REGISTER_OP_MLU_KERNEL(
310 311
    gelu,
    ops::ActivationMLUKernel<CNNL_ACTIVATION_GELU, float>,
312 313
    ops::ActivationMLUKernel<CNNL_ACTIVATION_GELU, paddle::platform::float16>);
REGISTER_OP_MLU_KERNEL(
314 315
    gelu_grad,
    ops::ActivationGradMLUKernelV1<CNNL_ACTIVATION_GELU, float>,
316 317 318 319 320
    ops::ActivationGradMLUKernelV1<CNNL_ACTIVATION_GELU,
                                   paddle::platform::float16>);

// leaky_relu
REGISTER_OP_MLU_KERNEL(
321 322
    leaky_relu,
    ops::ActivationMLUKernel<CNNL_ACTIVATION_LEAKYRELU, float>,
323 324 325 326 327 328 329
    ops::ActivationMLUKernel<CNNL_ACTIVATION_LEAKYRELU,
                             paddle::platform::float16>);
REGISTER_OP_MLU_KERNEL(
    leaky_relu_grad,
    ops::ActivationGradMLUKernelV1<CNNL_ACTIVATION_LEAKYRELU, float>,
    ops::ActivationGradMLUKernelV1<CNNL_ACTIVATION_LEAKYRELU,
                                   paddle::platform::float16>);
330 331

// sqrt
332 333
REGISTER_OP_MLU_KERNEL(sqrt,
                       ops::SqrtMLUKernel<float>,
334
                       ops::SqrtMLUKernel<paddle::platform::float16>);
335 336
REGISTER_OP_MLU_KERNEL(sqrt_grad,
                       ops::SqrtGradMLUKernel<float>,
337
                       ops::SqrtGradMLUKernel<paddle::platform::float16>);
338 339 340

// log log2 log10
REGISTER_OP_MLU_KERNEL(
341 342
    log,
    ops::LogMLUKernel<CNNL_LOG_E, float>,
343 344 345
    ops::LogMLUKernel<CNNL_LOG_E, paddle::platform::float16>);

REGISTER_OP_MLU_KERNEL(
346 347
    log2,
    ops::LogMLUKernel<CNNL_LOG_2, float>,
348 349 350
    ops::LogMLUKernel<CNNL_LOG_2, paddle::platform::float16>);

REGISTER_OP_MLU_KERNEL(
351 352
    log10,
    ops::LogMLUKernel<CNNL_LOG_10, float>,
353
    ops::LogMLUKernel<CNNL_LOG_10, paddle::platform::float16>);
354 355 356 357 358 359 360 361

REGISTER_OP_MLU_KERNEL(exp,
                       ops::ExpMLUKernel<float>,
                       ops::ExpMLUKernel<paddle::platform::float16>);

REGISTER_OP_MLU_KERNEL(exp_grad,
                       ops::ExpGradMLUKernel<float>,
                       ops::ExpGradMLUKernel<paddle::platform::float16>);