activation_op_mlu.cc 10.2 KB
Newer Older
F
fwenguang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the Licnse. */

#include <memory>
#include <string>

#include "paddle/fluid/operators/activation_op.h"
#include "paddle/fluid/operators/mlu/mlu_baseop.h"

namespace paddle {
namespace operators {

using Tensor = framework::Tensor;

26
template <cnnlActivationMode_t act_mode, typename T>
F
fwenguang 已提交
27 28 29 30 31
class ActivationMLUKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    auto* input = ctx.Input<Tensor>("X");
    auto* output = ctx.Output<Tensor>("Out");
32
    float alpha = ctx.HasAttr("alpha") ? ctx.Attr<float>("alpha") : 1.0f;
F
fwenguang 已提交
33 34 35

    output->mutable_data<T>(ctx.GetPlace());

36
    MLUCnnlActivationDesc act_desc(act_mode, alpha);
37 38 39
    MLUCnnlTensorDesc input_desc(*input);
    MLUCnnlTensorDesc output_desc(*output);

40 41 42 43 44 45
    MLUCnnl::Active(ctx,
                    act_desc.get(),
                    input_desc.get(),
                    GetBasePtr(input),
                    output_desc.get(),
                    GetBasePtr(output));
F
fwenguang 已提交
46 47 48
  }
};

49
// For gelu, leaky_relu
50
template <cnnlActivationMode_t act_mode, typename T>
51 52 53 54 55 56 57 58 59 60 61 62 63 64
class ActivationGradMLUKernelV1 : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    auto* x = ctx.Input<Tensor>("X");
    auto* dout = ctx.Input<Tensor>(framework::GradVarName("Out"));
    auto* dx = ctx.Output<Tensor>(framework::GradVarName("X"));
    float alpha = ctx.HasAttr("alpha") ? ctx.Attr<float>("alpha") : 1.0f;

    dx->mutable_data<T>(ctx.GetPlace());

    MLUCnnlTensorDesc x_desc(*x);
    MLUCnnlTensorDesc dout_desc(*dout);
    MLUCnnlTensorDesc dx_desc(*dx);
    MLUCnnlActivationDesc act_desc(act_mode, alpha);
65 66 67 68 69 70 71 72 73 74 75 76
    MLUCnnl::ActiveGrad(ctx,
                        act_desc.get(),
                        nullptr,
                        nullptr,
                        nullptr,
                        nullptr,
                        dout_desc.get(),
                        GetBasePtr(dout),
                        x_desc.get(),
                        GetBasePtr(x),
                        dx_desc.get(),
                        GetBasePtr(dx));
77 78 79 80 81 82
  }
};

// For tanh, sigmoid
template <cnnlActivationMode_t act_mode, typename T>
class ActivationGradMLUKernelV2 : public framework::OpKernel<T> {
F
fwenguang 已提交
83 84 85 86 87
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    auto* out = ctx.Input<Tensor>("Out");
    auto* dout = ctx.Input<Tensor>(framework::GradVarName("Out"));
    auto* dx = ctx.Output<Tensor>(framework::GradVarName("X"));
88
    float alpha = ctx.HasAttr("alpha") ? ctx.Attr<float>("alpha") : 1.0f;
F
fwenguang 已提交
89 90 91

    dx->mutable_data<T>(ctx.GetPlace());

92 93 94
    MLUCnnlTensorDesc out_desc(*out);
    MLUCnnlTensorDesc dout_desc(*dout);
    MLUCnnlTensorDesc dx_desc(*dx);
95
    MLUCnnlActivationDesc act_desc(act_mode, alpha);
96 97 98 99 100 101 102 103 104 105 106 107
    MLUCnnl::ActiveGrad(ctx,
                        act_desc.get(),
                        nullptr,
                        nullptr,
                        out_desc.get(),
                        GetBasePtr(out),
                        dout_desc.get(),
                        GetBasePtr(dout),
                        nullptr,
                        nullptr,
                        dx_desc.get(),
                        GetBasePtr(dx));
108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126
  }
};

// For relu, relu6
template <cnnlActivationMode_t act_mode, typename T>
class ActivationGradMLUKernelV3 : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    auto* out = ctx.Input<Tensor>("Out");
    auto* dout = ctx.Input<Tensor>(framework::GradVarName("Out"));
    auto* dx = ctx.Output<Tensor>(framework::GradVarName("X"));
    float alpha = ctx.HasAttr("alpha") ? ctx.Attr<float>("alpha") : 1.0f;

    dx->mutable_data<T>(ctx.GetPlace());

    MLUCnnlTensorDesc out_desc(*out);
    MLUCnnlTensorDesc dout_desc(*dout);
    MLUCnnlTensorDesc dx_desc(*dx);
    MLUCnnlActivationDesc act_desc(act_mode, alpha);
127 128 129 130 131 132 133 134 135 136 137 138
    MLUCnnl::ActiveGrad(ctx,
                        act_desc.get(),
                        nullptr,
                        nullptr,
                        nullptr,
                        nullptr,
                        dout_desc.get(),
                        GetBasePtr(dout),
                        out_desc.get(),
                        GetBasePtr(out),
                        dx_desc.get(),
                        GetBasePtr(dx));
F
fwenguang 已提交
139 140 141
  }
};

142 143 144 145 146 147 148 149 150 151 152 153 154 155 156
// For sqrt
template <typename T>
class SqrtMLUKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    auto* x = ctx.Input<Tensor>("X");
    auto* out = ctx.Output<Tensor>("Out");
    auto place = ctx.GetPlace();

    out->mutable_data<T>(place);

    MLUCnnlTensorDesc input_desc(*x);
    MLUCnnlTensorDesc output_desc(*out);

    cnnlComputationPreference_t prefer = CNNL_COMPUTATION_FAST;
157 158 159 160 161 162
    MLUCnnl::Sqrt(ctx,
                  prefer,
                  input_desc.get(),
                  GetBasePtr(x),
                  output_desc.get(),
                  GetBasePtr(out));
163 164 165 166 167 168 169 170 171 172 173 174 175 176 177
  }
};

template <typename T>
class SqrtGradMLUKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    auto* out = ctx.Input<Tensor>("Out");
    auto* dout = ctx.Input<Tensor>(framework::GradVarName("Out"));
    auto* dx = ctx.Output<Tensor>(framework::GradVarName("X"));
    auto place = ctx.GetPlace();

    dx->mutable_data<T>(place);

    MLUCnnlTensorDesc data_desc(*out);
178 179 180 181
    MLUCnnl::SqrtGrad(ctx,
                      data_desc.get(),
                      GetBasePtr(out),
                      GetBasePtr(dout),
182 183 184 185
                      GetBasePtr(dx));
  }
};

186 187 188 189 190 191 192 193 194 195 196 197 198 199 200
// CNNL_LOG_E = 0,
// CNNL_LOG_2 = 1,
// CNNL_LOG_10 = 2,
template <cnnlLogBase_t Log_base, typename T>
class LogMLUKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    auto* input = ctx.Input<Tensor>("X");
    auto* output = ctx.Output<Tensor>("Out");
    output->mutable_data<T>(ctx.GetPlace());

    MLUCnnlTensorDesc input_desc(*input);
    MLUCnnlTensorDesc output_desc(*output);
    cnnlComputationPreference_t prefer = CNNL_COMPUTATION_HIGH_PRECISION;

201 202 203 204 205 206 207
    MLUCnnl::Log(ctx,
                 prefer,
                 Log_base,
                 input_desc.get(),
                 GetBasePtr(input),
                 output_desc.get(),
                 GetBasePtr(output));
208 209 210
  }
};

F
fwenguang 已提交
211 212 213 214 215
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;

216
// relu
F
fwenguang 已提交
217
REGISTER_OP_MLU_KERNEL(
218 219
    relu,
    ops::ActivationMLUKernel<CNNL_ACTIVATION_RELU, float>,
220
    ops::ActivationMLUKernel<CNNL_ACTIVATION_RELU, paddle::platform::float16>);
F
fwenguang 已提交
221
REGISTER_OP_MLU_KERNEL(
222 223
    relu_grad,
    ops::ActivationGradMLUKernelV3<CNNL_ACTIVATION_RELU, float>,
224 225 226 227 228
    ops::ActivationGradMLUKernelV3<CNNL_ACTIVATION_RELU,
                                   paddle::platform::float16>);

// relu6
REGISTER_OP_MLU_KERNEL(
229 230
    relu6,
    ops::ActivationMLUKernel<CNNL_ACTIVATION_RELU6, float>,
231 232
    ops::ActivationMLUKernel<CNNL_ACTIVATION_RELU6, paddle::platform::float16>);
REGISTER_OP_MLU_KERNEL(
233 234
    relu6_grad,
    ops::ActivationGradMLUKernelV3<CNNL_ACTIVATION_RELU6, float>,
235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250
    ops::ActivationGradMLUKernelV3<CNNL_ACTIVATION_RELU6,
                                   paddle::platform::float16>);

// sigmoid
REGISTER_OP_MLU_KERNEL(sigmoid,
                       ops::ActivationMLUKernel<CNNL_ACTIVATION_SIGMOID, float>,
                       ops::ActivationMLUKernel<CNNL_ACTIVATION_SIGMOID,
                                                paddle::platform::float16>);
REGISTER_OP_MLU_KERNEL(
    sigmoid_grad,
    ops::ActivationGradMLUKernelV2<CNNL_ACTIVATION_SIGMOID, float>,
    ops::ActivationGradMLUKernelV2<CNNL_ACTIVATION_SIGMOID,
                                   paddle::platform::float16>);

// tanh
REGISTER_OP_MLU_KERNEL(
251 252
    tanh,
    ops::ActivationMLUKernel<CNNL_ACTIVATION_TANH, float>,
253 254
    ops::ActivationMLUKernel<CNNL_ACTIVATION_TANH, paddle::platform::float16>);
REGISTER_OP_MLU_KERNEL(
255 256
    tanh_grad,
    ops::ActivationGradMLUKernelV2<CNNL_ACTIVATION_TANH, float>,
257 258 259 260 261
    ops::ActivationGradMLUKernelV2<CNNL_ACTIVATION_TANH,
                                   paddle::platform::float16>);

// gelu
REGISTER_OP_MLU_KERNEL(
262 263
    gelu,
    ops::ActivationMLUKernel<CNNL_ACTIVATION_GELU, float>,
264 265
    ops::ActivationMLUKernel<CNNL_ACTIVATION_GELU, paddle::platform::float16>);
REGISTER_OP_MLU_KERNEL(
266 267
    gelu_grad,
    ops::ActivationGradMLUKernelV1<CNNL_ACTIVATION_GELU, float>,
268 269 270 271 272
    ops::ActivationGradMLUKernelV1<CNNL_ACTIVATION_GELU,
                                   paddle::platform::float16>);

// leaky_relu
REGISTER_OP_MLU_KERNEL(
273 274
    leaky_relu,
    ops::ActivationMLUKernel<CNNL_ACTIVATION_LEAKYRELU, float>,
275 276 277 278 279 280 281
    ops::ActivationMLUKernel<CNNL_ACTIVATION_LEAKYRELU,
                             paddle::platform::float16>);
REGISTER_OP_MLU_KERNEL(
    leaky_relu_grad,
    ops::ActivationGradMLUKernelV1<CNNL_ACTIVATION_LEAKYRELU, float>,
    ops::ActivationGradMLUKernelV1<CNNL_ACTIVATION_LEAKYRELU,
                                   paddle::platform::float16>);
282 283

// sqrt
284 285
REGISTER_OP_MLU_KERNEL(sqrt,
                       ops::SqrtMLUKernel<float>,
286
                       ops::SqrtMLUKernel<paddle::platform::float16>);
287 288
REGISTER_OP_MLU_KERNEL(sqrt_grad,
                       ops::SqrtGradMLUKernel<float>,
289
                       ops::SqrtGradMLUKernel<paddle::platform::float16>);
290 291 292

// log log2 log10
REGISTER_OP_MLU_KERNEL(
293 294
    log,
    ops::LogMLUKernel<CNNL_LOG_E, float>,
295 296 297
    ops::LogMLUKernel<CNNL_LOG_E, paddle::platform::float16>);

REGISTER_OP_MLU_KERNEL(
298 299
    log2,
    ops::LogMLUKernel<CNNL_LOG_2, float>,
300 301 302
    ops::LogMLUKernel<CNNL_LOG_2, paddle::platform::float16>);

REGISTER_OP_MLU_KERNEL(
303 304
    log10,
    ops::LogMLUKernel<CNNL_LOG_10, float>,
305
    ops::LogMLUKernel<CNNL_LOG_10, paddle::platform::float16>);