activation_op_mlu.cc 6.7 KB
Newer Older
F
fwenguang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the Licnse. */

#include <memory>
#include <string>

#include "paddle/fluid/operators/activation_op.h"
#include "paddle/fluid/operators/mlu/mlu_baseop.h"

namespace paddle {
namespace operators {

using Tensor = framework::Tensor;

26
template <cnnlActivationMode_t act_mode, typename T>
F
fwenguang 已提交
27 28 29 30 31
class ActivationMLUKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    auto* input = ctx.Input<Tensor>("X");
    auto* output = ctx.Output<Tensor>("Out");
32
    float alpha = ctx.HasAttr("alpha") ? ctx.Attr<float>("alpha") : 1.0f;
F
fwenguang 已提交
33 34 35

    output->mutable_data<T>(ctx.GetPlace());

36
    MLUCnnlActivationDesc act_desc(act_mode, alpha);
37 38 39 40 41
    MLUCnnlTensorDesc input_desc(*input);
    MLUCnnlTensorDesc output_desc(*output);

    MLUCnnl::Active(ctx, act_desc.get(), input_desc.get(), GetBasePtr(input),
                    output_desc.get(), GetBasePtr(output));
F
fwenguang 已提交
42 43 44
  }
};

45
// For gelu, leaky_relu
46
template <cnnlActivationMode_t act_mode, typename T>
47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69
class ActivationGradMLUKernelV1 : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    auto* x = ctx.Input<Tensor>("X");
    auto* dout = ctx.Input<Tensor>(framework::GradVarName("Out"));
    auto* dx = ctx.Output<Tensor>(framework::GradVarName("X"));
    float alpha = ctx.HasAttr("alpha") ? ctx.Attr<float>("alpha") : 1.0f;

    dx->mutable_data<T>(ctx.GetPlace());

    MLUCnnlTensorDesc x_desc(*x);
    MLUCnnlTensorDesc dout_desc(*dout);
    MLUCnnlTensorDesc dx_desc(*dx);
    MLUCnnlActivationDesc act_desc(act_mode, alpha);
    MLUCnnl::ActiveGrad(ctx, act_desc.get(), nullptr, nullptr, nullptr, nullptr,
                        dout_desc.get(), GetBasePtr(dout), x_desc.get(),
                        GetBasePtr(x), dx_desc.get(), GetBasePtr(dx));
  }
};

// For tanh, sigmoid
template <cnnlActivationMode_t act_mode, typename T>
class ActivationGradMLUKernelV2 : public framework::OpKernel<T> {
F
fwenguang 已提交
70 71 72 73 74
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    auto* out = ctx.Input<Tensor>("Out");
    auto* dout = ctx.Input<Tensor>(framework::GradVarName("Out"));
    auto* dx = ctx.Output<Tensor>(framework::GradVarName("X"));
75
    float alpha = ctx.HasAttr("alpha") ? ctx.Attr<float>("alpha") : 1.0f;
F
fwenguang 已提交
76 77 78

    dx->mutable_data<T>(ctx.GetPlace());

79 80 81
    MLUCnnlTensorDesc out_desc(*out);
    MLUCnnlTensorDesc dout_desc(*dout);
    MLUCnnlTensorDesc dx_desc(*dx);
82
    MLUCnnlActivationDesc act_desc(act_mode, alpha);
83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107
    MLUCnnl::ActiveGrad(ctx, act_desc.get(), nullptr, nullptr, out_desc.get(),
                        GetBasePtr(out), dout_desc.get(), GetBasePtr(dout),
                        nullptr, nullptr, dx_desc.get(), GetBasePtr(dx));
  }
};

// For relu, relu6
template <cnnlActivationMode_t act_mode, typename T>
class ActivationGradMLUKernelV3 : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    auto* out = ctx.Input<Tensor>("Out");
    auto* dout = ctx.Input<Tensor>(framework::GradVarName("Out"));
    auto* dx = ctx.Output<Tensor>(framework::GradVarName("X"));
    float alpha = ctx.HasAttr("alpha") ? ctx.Attr<float>("alpha") : 1.0f;

    dx->mutable_data<T>(ctx.GetPlace());

    MLUCnnlTensorDesc out_desc(*out);
    MLUCnnlTensorDesc dout_desc(*dout);
    MLUCnnlTensorDesc dx_desc(*dx);
    MLUCnnlActivationDesc act_desc(act_mode, alpha);
    MLUCnnl::ActiveGrad(ctx, act_desc.get(), nullptr, nullptr, nullptr, nullptr,
                        dout_desc.get(), GetBasePtr(dout), out_desc.get(),
                        GetBasePtr(out), dx_desc.get(), GetBasePtr(dx));
F
fwenguang 已提交
108 109 110 111 112 113 114 115
  }
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;

116
// relu
F
fwenguang 已提交
117
REGISTER_OP_MLU_KERNEL(
118 119
    relu, ops::ActivationMLUKernel<CNNL_ACTIVATION_RELU, float>,
    ops::ActivationMLUKernel<CNNL_ACTIVATION_RELU, paddle::platform::float16>);
F
fwenguang 已提交
120
REGISTER_OP_MLU_KERNEL(
121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172
    relu_grad, ops::ActivationGradMLUKernelV3<CNNL_ACTIVATION_RELU, float>,
    ops::ActivationGradMLUKernelV3<CNNL_ACTIVATION_RELU,
                                   paddle::platform::float16>);

// relu6
REGISTER_OP_MLU_KERNEL(
    relu6, ops::ActivationMLUKernel<CNNL_ACTIVATION_RELU6, float>,
    ops::ActivationMLUKernel<CNNL_ACTIVATION_RELU6, paddle::platform::float16>);
REGISTER_OP_MLU_KERNEL(
    relu6_grad, ops::ActivationGradMLUKernelV3<CNNL_ACTIVATION_RELU6, float>,
    ops::ActivationGradMLUKernelV3<CNNL_ACTIVATION_RELU6,
                                   paddle::platform::float16>);

// sigmoid
REGISTER_OP_MLU_KERNEL(sigmoid,
                       ops::ActivationMLUKernel<CNNL_ACTIVATION_SIGMOID, float>,
                       ops::ActivationMLUKernel<CNNL_ACTIVATION_SIGMOID,
                                                paddle::platform::float16>);
REGISTER_OP_MLU_KERNEL(
    sigmoid_grad,
    ops::ActivationGradMLUKernelV2<CNNL_ACTIVATION_SIGMOID, float>,
    ops::ActivationGradMLUKernelV2<CNNL_ACTIVATION_SIGMOID,
                                   paddle::platform::float16>);

// tanh
REGISTER_OP_MLU_KERNEL(
    tanh, ops::ActivationMLUKernel<CNNL_ACTIVATION_TANH, float>,
    ops::ActivationMLUKernel<CNNL_ACTIVATION_TANH, paddle::platform::float16>);
REGISTER_OP_MLU_KERNEL(
    tanh_grad, ops::ActivationGradMLUKernelV2<CNNL_ACTIVATION_TANH, float>,
    ops::ActivationGradMLUKernelV2<CNNL_ACTIVATION_TANH,
                                   paddle::platform::float16>);

// gelu
REGISTER_OP_MLU_KERNEL(
    gelu, ops::ActivationMLUKernel<CNNL_ACTIVATION_GELU, float>,
    ops::ActivationMLUKernel<CNNL_ACTIVATION_GELU, paddle::platform::float16>);
REGISTER_OP_MLU_KERNEL(
    gelu_grad, ops::ActivationGradMLUKernelV1<CNNL_ACTIVATION_GELU, float>,
    ops::ActivationGradMLUKernelV1<CNNL_ACTIVATION_GELU,
                                   paddle::platform::float16>);

// leaky_relu
REGISTER_OP_MLU_KERNEL(
    leaky_relu, ops::ActivationMLUKernel<CNNL_ACTIVATION_LEAKYRELU, float>,
    ops::ActivationMLUKernel<CNNL_ACTIVATION_LEAKYRELU,
                             paddle::platform::float16>);
REGISTER_OP_MLU_KERNEL(
    leaky_relu_grad,
    ops::ActivationGradMLUKernelV1<CNNL_ACTIVATION_LEAKYRELU, float>,
    ops::ActivationGradMLUKernelV1<CNNL_ACTIVATION_LEAKYRELU,
                                   paddle::platform::float16>);