parallel_executor.cc 19.7 KB
Newer Older
Y
Yang Yang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/framework/parallel_executor.h"
D
dzhwinter 已提交
16
#include <algorithm>
C
chengduoZH 已提交
17
#include <string>
18
#include <tuple>
Q
qiaolongfei 已提交
19
#include <vector>
C
chengduo 已提交
20
#include "paddle/fluid/framework/ir/graph_helper.h"
Y
Yu Yang 已提交
21

X
clean  
Xin Pan 已提交
22
#include "paddle/fluid/framework/ir/graph.h"
X
Xin Pan 已提交
23

Q
can run  
Qiao Longfei 已提交
24
#include "paddle/fluid/framework/details/async_ssa_graph_executor.h"
Y
yuyang18 已提交
25
#include "paddle/fluid/framework/details/fast_threaded_ssa_graph_executor.h"
26
#include "paddle/fluid/framework/details/multi_devices_helper.h"
Y
Yancey1989 已提交
27
#include "paddle/fluid/framework/details/parallel_ssa_graph_executor.h"
S
sneaxiy 已提交
28
#include "paddle/fluid/framework/details/reference_count_pass_helper.h"
Y
yuyang18 已提交
29
#include "paddle/fluid/framework/details/scope_buffered_ssa_graph_executor.h"
Y
Yu Yang 已提交
30
#include "paddle/fluid/framework/details/threaded_ssa_graph_executor.h"
31
#include "paddle/fluid/platform/profiler.h"
Y
Yu Yang 已提交
32

Y
Yu Yang 已提交
33
#ifdef WITH_GPERFTOOLS
Y
Yu Yang 已提交
34
#include "gperftools/profiler.h"
Y
Yu Yang 已提交
35
#endif
Y
Yu Yang 已提交
36
DEFINE_string(pe_profile_fname, "",
Y
Yu Yang 已提交
37 38
              "Profiler filename for PE, which generated by gperftools."
              "Only valid when compiled `WITH_PRIFILER=ON`. Empty if disable.");
39
DEFINE_bool(enable_parallel_graph, false,
Y
Yancey1989 已提交
40
            "Force disable parallel graph execution mode if set false.");
Y
Yu Yang 已提交
41

Y
Yang Yang 已提交
42
namespace paddle {
Y
Yu Yang 已提交
43 44
namespace framework {

Y
Yu Yang 已提交
45
static std::once_flag gProfileOnce;
Y
Yu Yang 已提交
46
#ifdef WITH_GPERFTOOLS
Y
Yu Yang 已提交
47
static bool gProfileStarted = false;
Y
Yu Yang 已提交
48
#endif
Y
Yu Yang 已提交
49 50 51
class ParallelExecutorPrivate {
 public:
  explicit ParallelExecutorPrivate(const std::vector<platform::Place> &places)
Y
Yu Yang 已提交
52
      : places_(places) {
Y
Yu Yang 已提交
53
    if (!FLAGS_pe_profile_fname.empty()) {
Y
Yu Yang 已提交
54 55
      std::call_once(gProfileOnce, [] {
#ifdef WITH_GPERFTOOLS
Y
Yu Yang 已提交
56
        ProfilerStart(FLAGS_pe_profile_fname.c_str());
Y
Yu Yang 已提交
57 58 59
        gProfileStarted = true;
#else
        LOG(WARNING) << "Paddle is not compiled with gperftools. "
Y
Yu Yang 已提交
60
                        "FLAGS_pe_profile_fname will be ignored";
Y
Yu Yang 已提交
61 62 63 64
#endif
      });
    }
  }
Y
Yu Yang 已提交
65

66 67 68 69 70 71 72 73 74 75 76
  ~ParallelExecutorPrivate() {
    if (own_local_scope_) {
      for (size_t i = 1; i < local_scopes_.size(); ++i) {
        // Skip the first scope, since it is the global scope.
        Scope *local_scope = local_scopes_[i];
        if (global_scope_->HasKid(local_scope)) {
          global_scope_->DeleteScope(local_scope);
        }
      }
    }
  }
S
sneaxiy 已提交
77

S
sneaxiy 已提交
78 79 80 81 82 83 84 85 86 87 88 89 90 91
  std::unique_ptr<ir::Graph> PrepareGCAndRefCnts(
      std::unique_ptr<ir::Graph> graph, size_t max_memory_size);

  inline bool HasGarbageCollectors() const { return !gcs_.empty(); }

  void ResetRuntimeReferenceCount(const std::vector<std::string> &fetch_tensors,
                                  const std::string &fetched_var_name) {
    for (size_t i = 0; i < runtime_ref_cnts_.size(); ++i) {
      for (auto &pair : global_ref_cnts_[i]) {
        runtime_ref_cnts_[i][pair.first] = pair.second;
      }

      for (auto &fetch_name : fetch_tensors) {
        runtime_ref_cnts_[i].erase(fetch_name);
S
sneaxiy 已提交
92
      }
S
sneaxiy 已提交
93
      runtime_ref_cnts_[i].erase(fetched_var_name);
S
sneaxiy 已提交
94 95 96
    }
  }

D
dzhwinter 已提交
97
  BuildStrategy build_strategy_;
Y
Yu Yang 已提交
98 99
  std::vector<platform::Place> places_;
  std::vector<Scope *> local_scopes_;
100
  Scope *global_scope_;  // not owned
Y
Yu Yang 已提交
101
  std::unique_ptr<details::SSAGraphExecutor> executor_;
Y
Yu Yang 已提交
102

P
peizhilin 已提交
103
#if defined(PADDLE_WITH_CUDA) && !defined(_WIN32)
Y
Yu Yang 已提交
104
  std::unique_ptr<platform::NCCLContextMap> nccl_ctxs_;
Y
Yu Yang 已提交
105
#endif
C
chengduoZH 已提交
106 107
  bool own_local_scope_;
  bool use_cuda_;
108
  bool use_all_reduce_;
109
  size_t nranks_;
S
sneaxiy 已提交
110

S
sneaxiy 已提交
111 112 113 114 115 116
  // global_ref_cnts_ is only initialized when ParallelExecutor constructs, and
  // then keeps unchanged
  // Before each iteration, runtime_ref_cnts_ is reset to global_ref_cnts_
  std::vector<details::ReferenceCountMap> global_ref_cnts_;
  std::vector<details::AtomicReferenceCountMap> runtime_ref_cnts_;
  details::GarbageCollectorMap gcs_;
Y
Yu Yang 已提交
117 118
};

S
sneaxiy 已提交
119 120 121 122 123 124 125
std::unique_ptr<ir::Graph> ParallelExecutorPrivate::PrepareGCAndRefCnts(
    std::unique_ptr<ir::Graph> graph, size_t max_memory_size) {
  for (size_t i = 0; i < places_.size(); ++i) {
    auto &place = places_[i];
    if (gcs_.count(place) > 0) {
      continue;
    }
S
sneaxiy 已提交
126
    std::unique_ptr<GarbageCollector> gc;
S
sneaxiy 已提交
127
#ifdef PADDLE_WITH_CUDA
S
sneaxiy 已提交
128 129
    if (platform::is_gpu_place(place)) {
      if (IsFastEagerDeletionModeEnabled()) {
S
sneaxiy 已提交
130 131
        gc.reset(new UnsafeFastGPUGarbageCollector(
            boost::get<platform::CUDAPlace>(place), max_memory_size));
S
sneaxiy 已提交
132
      } else {
S
sneaxiy 已提交
133 134
        gc.reset(new StreamGarbageCollector(
            boost::get<platform::CUDAPlace>(place), max_memory_size));
S
sneaxiy 已提交
135 136
      }
      VLOG(10) << "Created " << i << "-th GarbageCollector at " << place;
S
sneaxiy 已提交
137
    } else {
S
sneaxiy 已提交
138
#endif
S
sneaxiy 已提交
139 140 141 142 143 144 145
      if (platform::is_cpu_place(place)) {
        gc.reset(new CPUGarbageCollector(boost::get<platform::CPUPlace>(place),
                                         max_memory_size));
        VLOG(10) << "Created GarbageCollector at " << place;
      } else {
        PADDLE_THROW("Unsupported place for garbage collection");
      }
S
sneaxiy 已提交
146 147 148 149
#ifdef PADDLE_WITH_CUDA
    }
#endif

S
sneaxiy 已提交
150
    gcs_.emplace(place, std::move(gc));
S
sneaxiy 已提交
151 152
  }

S
sneaxiy 已提交
153
  if (!gcs_.empty()) {
S
sneaxiy 已提交
154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174
    std::vector<details::LastLiveOpsOfVars> last_live_ops_of_vars;

    auto ref_cnt_pass =
        ir::PassRegistry::Instance().Get("reference_count_pass");
    ref_cnt_pass->SetNotOwned(details::kGlobalReferenceCount,
                              &global_ref_cnts_);
    ref_cnt_pass->SetNotOwned(details::kLastLiveOpsOfVars,
                              &last_live_ops_of_vars);
    graph = ref_cnt_pass->Apply(std::move(graph));
    VLOG(10) << "ReferenceCountPass Applied";

    auto eager_deletion_pass =
        ir::PassRegistry::Instance().Get("eager_deletion_pass");
    eager_deletion_pass->SetNotOwned(details::kRuntimeReferenceCount,
                                     &runtime_ref_cnts_);
    eager_deletion_pass->SetNotOwned(details::kGarbageCollector, &gcs_);
    eager_deletion_pass->SetNotOwned(details::kLastLiveOpsOfVars,
                                     &last_live_ops_of_vars);
    eager_deletion_pass->SetNotOwned(details::kAllPlaces, &places_);
    graph = eager_deletion_pass->Apply(std::move(graph));
    VLOG(10) << "EagerDeletionPass Applied";
D
dzhwinter 已提交
175 176 177 178 179 180 181 182

    if (build_strategy_.memory_early_delete_) {
      auto early_delete_pass =
          ir::PassRegistry::Instance().Get("memory_early_delete_pass");
      early_delete_pass->SetNotOwned(details::kGarbageCollector, &gcs_);
      graph = early_delete_pass->Apply(std::move(graph));
    }
    VLOG(10) << "MemoryEarlyDeletePass Applied.";
S
sneaxiy 已提交
183 184 185 186 187
  }

  return graph;
}

188 189 190 191
std::vector<Scope *> &ParallelExecutor::GetLocalScopes() {
  return member_->local_scopes_;
}

Y
Yu Yang 已提交
192
ParallelExecutor::ParallelExecutor(
193
    const std::vector<platform::Place> &places,
194 195
    const std::unordered_set<std::string> &bcast_vars,
    const ProgramDesc &main_program, const std::string &loss_var_name,
Y
yuyang18 已提交
196
    Scope *scope, const std::vector<Scope *> &local_scopes,
197
    const ExecutionStrategy &exec_strategy, const BuildStrategy &build_strategy)
Y
Yu Yang 已提交
198
    : member_(new ParallelExecutorPrivate(places)) {
Y
Yu Yang 已提交
199
  member_->global_scope_ = scope;
200
  member_->use_cuda_ = exec_strategy.use_cuda_;
D
dzhwinter 已提交
201
  member_->build_strategy_ = build_strategy;
202 203
  member_->use_all_reduce_ =
      build_strategy.reduce_ == BuildStrategy::ReduceStrategy::kAllReduce;
X
Xin Pan 已提交
204
  member_->nranks_ = build_strategy.num_trainers_ * places.size();
205 206 207 208 209

  if (!member_->use_all_reduce_) {
    PADDLE_ENFORCE(places.size() > 1,
                   "If you set build_strategy.reduce with 'Reduce',"
                   "the number of places must be greater than 1.");
Y
Yancey1989 已提交
210 211
  }

212
  // Step 1. Bcast the bcast_vars to devs.
Y
Yu Yang 已提交
213
  // Create local scopes
214
  if (local_scopes.empty()) {
C
chengduoZH 已提交
215
    member_->own_local_scope_ = true;
Y
Yu Yang 已提交
216 217
    member_->local_scopes_.emplace_back(member_->global_scope_);
    for (size_t i = 1; i < member_->places_.size(); ++i) {
Y
Debug  
Yu Yang 已提交
218
      member_->local_scopes_.emplace_back(&scope->NewScope());
219 220
    }
  } else {
C
chengduoZH 已提交
221
    member_->own_local_scope_ = false;
222 223
    PADDLE_ENFORCE_EQ(member_->places_.size(), local_scopes.size());
    for (size_t i = 0; i < member_->places_.size(); ++i) {
224
      member_->local_scopes_.emplace_back(&local_scopes[i]->NewScope());
225
    }
Y
Yu Yang 已提交
226 227
  }

Y
Yancey1989 已提交
228 229 230 231 232 233 234 235 236
  // FIXME(Yancey1989): parallel graph mode get better performance
  // in GPU allreduce distributed training. Need an elegant way to
  // choice the execution strategy.
  build_strategy.enable_parallel_graph_ =
      EnableParallelGraphExecution(main_program, exec_strategy, build_strategy);

  VLOG(1) << "Enable ParallelGraph Execution: "
          << build_strategy.enable_parallel_graph_;

C
chengduoZH 已提交
237
  if (member_->use_cuda_) {
Y
Yu Yang 已提交
238
// Bcast Parameters to all GPUs
P
peizhilin 已提交
239
#if defined(PADDLE_WITH_CUDA) && !defined(_WIN32)
Y
Yancey1989 已提交
240 241 242
    ncclUniqueId *nccl_id = nullptr;
    // gen_nccl_id operator can broadcast the ncclUniqueId for nccl2 collective
    // distributed training
C
chengduoZH 已提交
243
    auto *nccl_id_var = scope->FindVar(NCCL_ID_VARNAME);
Y
Yancey1989 已提交
244
    if (nccl_id_var != nullptr) {
Y
Yancey1989 已提交
245
      nccl_id = nccl_id_var->GetMutable<ncclUniqueId>();
Y
Yancey1989 已提交
246
    }
247
    if (build_strategy.enable_parallel_graph_ && member_->nranks_ > 1UL) {
Y
Yancey1989 已提交
248 249 250 251
      if (nccl_id == nullptr) {
        local_nccl_id_.reset(new ncclUniqueId());
        platform::dynload::ncclGetUniqueId(local_nccl_id_.get());
        nccl_id = local_nccl_id_.get();
Y
Yancey1989 已提交
252
      }
C
chengduoZH 已提交
253
    }
Y
Yancey1989 已提交
254

C
chengduoZH 已提交
255
    member_->nccl_ctxs_.reset(new platform::NCCLContextMap(
256 257
        member_->places_, nccl_id, build_strategy.num_trainers_,
        build_strategy.trainer_id_));
C
chengduoZH 已提交
258 259
#else
    PADDLE_THROW("Not compiled with CUDA");
Y
Yu Yang 已提交
260
#endif
C
chengduoZH 已提交
261 262
  }
  if (member_->local_scopes_.size() != 1 && local_scopes.empty()) {
Y
Yancey1989 已提交
263
    BCastParamsToDevices(bcast_vars);
Y
Yu Yang 已提交
264
  }
Y
Yancey1989 已提交
265
  // Startup Program has been run. All local scopes has correct parameters.
Y
yuyang18 已提交
266

Y
Yancey1989 已提交
267 268 269
  // Step 2. Convert main_program to SSA form and dependency graph. Also, insert
  // ncclOp
  std::vector<std::unique_ptr<ir::Graph>> graphs;
P
peizhilin 已提交
270
#if defined(PADDLE_WITH_CUDA) && !defined(_WIN32)
Y
Yancey1989 已提交
271
  if (build_strategy.enable_parallel_graph_) {
Y
Yancey1989 已提交
272
    for (size_t i = 0; i < member_->places_.size(); ++i) {
Y
Yancey1989 已提交
273 274
      std::unique_ptr<ir::Graph> graph = build_strategy.Apply(
          main_program, {member_->places_[i]}, loss_var_name,
275 276
          {member_->local_scopes_[i]}, member_->nranks_, member_->use_cuda_,
          member_->nccl_ctxs_.get());
Y
Yancey1989 已提交
277 278 279 280
      graphs.push_back(std::move(graph));
    }
  } else {
    std::unique_ptr<ir::Graph> graph = build_strategy.Apply(
281
        main_program, member_->places_, loss_var_name, member_->local_scopes_,
282
        member_->nranks_, member_->use_cuda_, member_->nccl_ctxs_.get());
Y
Yancey1989 已提交
283 284
    graphs.push_back(std::move(graph));
  }
C
chengduoZH 已提交
285
#else
Q
can run  
Qiao Longfei 已提交
286 287 288 289 290 291 292 293 294 295 296 297 298
  if (build_strategy.async_mode_) {
    for (size_t i = 0; i < member_->places_.size(); ++i) {
      std::unique_ptr<ir::Graph> graph = build_strategy.Apply(
          main_program, {member_->places_[i]}, loss_var_name,
          {member_->local_scopes_[i]}, member_->nranks_, member_->use_cuda_);
      graphs.push_back(std::move(graph));
    }
  } else {
    std::unique_ptr<ir::Graph> graph = build_strategy.Apply(
        main_program, member_->places_, loss_var_name, member_->local_scopes_,
        member_->nranks_, member_->use_cuda_);
    graphs.push_back(std::move(graph));
  }
Y
Yu Yang 已提交
299
#endif
Y
Yancey1989 已提交
300
  auto max_memory_size = GetEagerDeletionThreshold();
Y
Yancey1989 已提交
301 302 303 304 305
  if (max_memory_size >= 0) {
    for (size_t i = 0; i < graphs.size(); ++i) {
      graphs[i] = member_->PrepareGCAndRefCnts(
          std::move(graphs[i]), static_cast<size_t>(max_memory_size));
    }
Y
Yancey1989 已提交
306 307
  }

308 309
  // Step 3. Create vars in each scope. Passes may also create new vars.
  //         skip control vars and empty vars
Y
Yancey1989 已提交
310 311 312 313 314 315 316 317 318 319 320
  std::vector<details::VariableInfo> var_infos;
  for (auto &graph : graphs) {
    for (auto &node : graph->Nodes()) {
      if (node->IsVar() && !node->IsCtrlVar() && node->Var()) {
        var_infos.emplace_back();
        var_infos.back().name_ = node->Var()->Name();
        var_infos.back().type_ = node->Var()->GetType();
        var_infos.back().persistable_ = node->Var()->Persistable();
      }
    }
  }
Y
Yancey1989 已提交
321

W
Wu Yi 已提交
322 323
  // If the loss_var_name is given, the number of graph should be only one.
  if (loss_var_name.size()) {
Y
Yancey1989 已提交
324
    size_t graph_num = ir::GraphNum(*graphs[0]);
C
chengduo 已提交
325 326 327 328
    if (graph_num > 1) {
      LOG(WARNING)
          << "The number of graph should be only one, "
             "but the current graph has "
Y
Yancey1989 已提交
329
          << ir::GraphNum(*graphs[0])
C
chengduo 已提交
330 331 332 333 334
          << " sub_graphs. If you want to see the nodes of the "
             "sub_graphs, you should use 'FLAGS_print_sub_graph_dir' "
             "to specify the output dir. NOTES: if you not do training, "
             "please don't pass loss_var_name.";
    }
W
Wu Yi 已提交
335
  }
Q
can run  
Qiao Longfei 已提交
336 337 338 339 340 341 342
  if (build_strategy.async_mode_) {
    VLOG(3) << "use AsyncSSAGraphExecutor";
    member_->executor_.reset(new details::AsyncSSAGraphExecutor(
        exec_strategy, member_->local_scopes_, member_->places_,
        std::move(graphs)));
  } else if (build_strategy.enable_parallel_graph_) {
    VLOG(3) << "use ParallelSSAGraphExecutor";
Y
Yancey1989 已提交
343
    member_->executor_.reset(new details::ParallelSSAGraphExecutor(
Y
Yancey1989 已提交
344 345
        exec_strategy, member_->local_scopes_, member_->places_,
        std::move(graphs)));
Y
yuyang18 已提交
346
  } else {
Y
Yancey1989 已提交
347
    if (exec_strategy.type_ == ExecutionStrategy::kDefault) {
Q
can run  
Qiao Longfei 已提交
348
      VLOG(3) << "use ThreadedSSAGraphExecutor";
Y
Yancey1989 已提交
349 350 351 352
      member_->executor_.reset(new details::ThreadedSSAGraphExecutor(
          exec_strategy, member_->local_scopes_, member_->places_,
          std::move(graphs[0])));
    } else {
Q
can run  
Qiao Longfei 已提交
353
      VLOG(3) << "use FastThreadedSSAGraphExecutor";
Y
Yancey1989 已提交
354 355 356 357
      member_->executor_.reset(new details::FastThreadedSSAGraphExecutor(
          exec_strategy, member_->local_scopes_, member_->places_,
          std::move(graphs[0])));
    }
C
chengduoZH 已提交
358
  }
Y
yuyang18 已提交
359

Q
can run  
Qiao Longfei 已提交
360
  VLOG(3) << "use ScopeBufferedSSAGraphExecutor";
Y
yuyang18 已提交
361
  member_->executor_.reset(new details::ScopeBufferedSSAGraphExecutor(
Y
Yancey1989 已提交
362
      exec_strategy, member_->local_scopes_, std::move(var_infos),
Y
yuyang18 已提交
363
      member_->places_, std::move(member_->executor_)));
Y
Yu Yang 已提交
364 365
}

Y
Yancey1989 已提交
366
void ParallelExecutor::BCastParamsToDevices(
367
    const std::unordered_set<std::string> &vars) const {
Q
Qiao Longfei 已提交
368
  VLOG(3) << "BCastParamsToDevices";
X
Xin Pan 已提交
369
  // the initializing bcast, all vars would be bcast from device(0).
370
  for (auto &var : vars) {
X
Xin Pan 已提交
371
    framework::Variable *main_var = member_->local_scopes_[0]->FindVar(var);
J
JiayiFeng 已提交
372
    if (main_var == nullptr || !main_var->IsType<LoDTensor>()) {
373 374 375 376
      continue;
    }

    auto &main_tensor = main_var->Get<LoDTensor>();
377
    if (!main_tensor.IsInitialized()) {
M
minqiyang 已提交
378
      VLOG(3) << "one in var not inited, return!";
379 380
      continue;
    }
381 382
    auto &dims = main_tensor.dims();
    if (paddle::platform::is_gpu_place(main_tensor.place())) {
P
peizhilin 已提交
383
#if defined(PADDLE_WITH_CUDA) && !defined(_WIN32)
384
      std::vector<void *> buffers;
C
chengduo 已提交
385
      buffers.reserve(member_->places_.size());
386 387 388 389 390
      size_t numel = main_tensor.numel();
      ncclDataType_t data_type = platform::ToNCCLDataType(main_tensor.type());
      for (size_t i = 0; i < member_->places_.size(); ++i) {
        auto place = member_->places_[i];
        void *buffer;
391

X
Xin Pan 已提交
392
        if (i == 0) {
393 394
          buffer = const_cast<void *>(main_tensor.data<void>());
        } else {
Y
Yu Yang 已提交
395
          auto local_scope = member_->local_scopes_[i];
396
          auto *t = local_scope->Var(var)->GetMutable<LoDTensor>();
Y
Update  
Yu Yang 已提交
397
          t->Resize(dims);
398
          buffer = t->mutable_data(place, main_tensor.type());
Y
Update  
Yu Yang 已提交
399
        }
400
        buffers.push_back(buffer);
401
      }
402

403 404 405 406 407 408
      PADDLE_ENFORCE_EQ(member_->places_.size(), buffers.size(),
                        "variables' buffer size to bcast NOT equal to places");
      {
        platform::NCCLGroupGuard guard;
        for (size_t i = 0; i < member_->places_.size(); ++i) {
          auto &nccl_ctx = member_->nccl_ctxs_->at(member_->places_[i]);
X
Xin Pan 已提交
409 410
          platform::dynload::ncclBcast(buffers[i], numel, data_type, 0,
                                       nccl_ctx.comm_, nccl_ctx.stream());
411
        }
412
        member_->nccl_ctxs_->WaitAll();
413
      }
C
chengduoZH 已提交
414 415 416
#else
      PADDLE_THROW("Not compiled with CUDA");
#endif
417 418
    } else {
      platform::CPUPlace cpu;
C
chengduo 已提交
419
      for (size_t i = 1; i < member_->places_.size(); ++i) {
420 421
        auto local_scope = member_->local_scopes_[i];
        auto *t = local_scope->Var(var)->GetMutable<LoDTensor>();
C
chengduo 已提交
422

Q
Qiao Longfei 已提交
423
        auto copy_memory = [&] {
424 425 426
          t->Resize(dims);
          t->mutable_data(cpu, main_tensor.type());
          paddle::framework::TensorCopy(main_tensor, cpu, t);
Q
can run  
Qiao Longfei 已提交
427 428
        };

Q
Qiao Longfei 已提交
429
        auto share_memory = [&] { t->ShareDataWith(main_tensor); };
Q
can run  
Qiao Longfei 已提交
430 431 432 433 434 435 436

        // FIXME(zcd): LR_DECAY_COUNTER should not be shared. This is a hot fix.
        if (member_->build_strategy_.async_mode_) {
          share_memory();
        } else if (member_->use_all_reduce_ || member_->use_cuda_ ||
                   var == "@LR_DECAY_COUNTER@") {
          copy_memory();
437
        } else {
Q
can run  
Qiao Longfei 已提交
438
          share_memory();
439
        }
Y
Yu Yang 已提交
440
      }
Y
Stash  
Yu Yang 已提交
441 442
    }
  }
Y
Yu Yang 已提交
443
}
Y
Yu Yang 已提交
444

Y
Yu Yang 已提交
445 446
void ParallelExecutor::Run(const std::vector<std::string> &fetch_tensors,
                           const std::string &fetched_var_name) {
Y
Yu Yang 已提交
447 448 449
#ifdef WITH_GPERFTOOLS
  if (gProfileStarted) {
    ProfilerFlush();
S
sneaxiy 已提交
450 451
  }
#endif
Y
Yu Yang 已提交
452

X
Xin Pan 已提交
453
  platform::RecordBlock b(0);
S
sneaxiy 已提交
454 455
  if (member_->HasGarbageCollectors()) {
    member_->ResetRuntimeReferenceCount(fetch_tensors, fetched_var_name);
S
sneaxiy 已提交
456
  }
S
sneaxiy 已提交
457 458 459
  auto fetch_data = member_->executor_->Run(fetch_tensors);
  *member_->global_scope_->Var(fetched_var_name)->GetMutable<FeedFetchList>() =
      fetch_data;
Y
Yu Yang 已提交
460
}
Y
Yu Yang 已提交
461

Y
Yu Yang 已提交
462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480
void ParallelExecutor::FeedTensorsIntoLocalScopes(
    const std::vector<std::unordered_map<std::string, LoDTensor>> &tensors) {
  PADDLE_ENFORCE_EQ(member_->local_scopes_.size(), tensors.size());

  for (size_t i = 0; i < tensors.size(); ++i) {
    auto &map = tensors[i];
    auto *scope = member_->local_scopes_[i];
    for (auto &pair : map) {
      auto *trg = scope->Var(pair.first)->GetMutable<LoDTensor>();
      trg->ShareDataWith(pair.second);
      trg->set_lod(pair.second.lod());
    }
  }
}

void ParallelExecutor::FeedAndSplitTensorIntoLocalScopes(
    const std::unordered_map<std::string, LoDTensor> &tensors) {
  for (auto pair : tensors) {
    auto lod_tensors = pair.second.SplitLoDTensor(member_->places_);
481 482 483 484 485
    PADDLE_ENFORCE_EQ(
        member_->places_.size(), lod_tensors.size(),
        "The number of samples of current batch is less than the count of "
        "devices, currently, it is not allowed. (%d vs %d)",
        member_->places_.size(), lod_tensors.size());
X
Xin Pan 已提交
486 487
    for (size_t j = 0; j < member_->places_.size(); ++j) {
      // TODO(panxy0718): Do I need to delete this var?
488
      auto t =
Y
Yu Yang 已提交
489
          member_->local_scopes_[j]->Var(pair.first)->GetMutable<LoDTensor>();
490 491
      t->ShareDataWith(lod_tensors[j]);
      t->set_lod(lod_tensors[j].lod());
X
Xin Pan 已提交
492 493 494 495
    }
  }
}

496 497 498
bool ParallelExecutor::EnableParallelGraphExecution(
    const ProgramDesc &main_program, const ExecutionStrategy &exec_strategy,
    const BuildStrategy &build_strategy) const {
Y
Yancey1989 已提交
499
  if (!FLAGS_enable_parallel_graph) return false;
500

Y
Yancey1989 已提交
501
  bool enable_parallel_graph = true;
502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522
  // TODO(Yancey1989): support sparse update in ParallelGraph mode.
  for (auto &var_desc : main_program.Block(0).AllVars()) {
    if (var_desc->GetType() == proto::VarType::SELECTED_ROWS) {
      enable_parallel_graph = false;
    }
  }

  // TODO(Yancey1989): support pserver mode
  for (auto &op_desc : main_program.Block(0).AllOps()) {
    if (op_desc->Type() == "send" || op_desc->Type() == "recv") {
      enable_parallel_graph = false;
      break;
    }
  }

  if (!member_->use_all_reduce_ || !member_->use_cuda_)
    enable_parallel_graph = false;

  if (build_strategy.enable_sequential_execution_ ||
      exec_strategy.type_ == ExecutionStrategy::ExecutorType::kExperimental)
    enable_parallel_graph = false;
Y
Yancey1989 已提交
523
  return enable_parallel_graph;
524 525
}

526
ParallelExecutor::~ParallelExecutor() {
527 528
  for (auto &p : member_->places_) {
    platform::DeviceContextPool::Instance().Get(p)->Wait();
C
chengduozh 已提交
529
  }
S
sneaxiy 已提交
530
  delete member_;
531 532
}

Y
Yu Yang 已提交
533
}  // namespace framework
Y
Yang Yang 已提交
534
}  // namespace paddle
S
sneaxiy 已提交
535

D
dzhwinter 已提交
536
USE_PASS(memory_early_delete_pass);
S
sneaxiy 已提交
537
USE_PASS(reference_count_pass);
S
sneaxiy 已提交
538
USE_PASS(eager_deletion_pass);