parallel_executor.cc 14.1 KB
Newer Older
Y
Yang Yang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/framework/parallel_executor.h"
C
chengduoZH 已提交
16
#include <string>
17
#include <tuple>
Q
qiaolongfei 已提交
18
#include <vector>
C
chengduo 已提交
19
#include "paddle/fluid/framework/ir/graph_helper.h"
Y
Yu Yang 已提交
20

X
clean  
Xin Pan 已提交
21
#include "paddle/fluid/framework/ir/graph.h"
X
Xin Pan 已提交
22

P
peizhilin 已提交
23
#if defined(PADDLE_WITH_CUDA) && !defined(_WIN32)
Y
Yu Yang 已提交
24
#include "paddle/fluid/platform/nccl_helper.h"
Y
Yu Yang 已提交
25
#endif
Y
Yang Yang 已提交
26

Y
yuyang18 已提交
27
#include "paddle/fluid/framework/details/fast_threaded_ssa_graph_executor.h"
28
#include "paddle/fluid/framework/details/multi_devices_helper.h"
Y
Yancey1989 已提交
29
#include "paddle/fluid/framework/details/parallel_ssa_graph_executor.h"
Y
yuyang18 已提交
30
#include "paddle/fluid/framework/details/scope_buffered_ssa_graph_executor.h"
Y
Yu Yang 已提交
31
#include "paddle/fluid/framework/details/threaded_ssa_graph_executor.h"
32
#include "paddle/fluid/platform/profiler.h"
Y
Yu Yang 已提交
33

Y
Yang Yang 已提交
34
namespace paddle {
Y
Yu Yang 已提交
35 36
namespace framework {

Y
Yu Yang 已提交
37 38 39
class ParallelExecutorPrivate {
 public:
  explicit ParallelExecutorPrivate(const std::vector<platform::Place> &places)
Y
Yu Yang 已提交
40
      : places_(places) {}
Y
Yu Yang 已提交
41

42 43 44 45 46 47 48 49 50 51 52
  ~ParallelExecutorPrivate() {
    if (own_local_scope_) {
      for (size_t i = 1; i < local_scopes_.size(); ++i) {
        // Skip the first scope, since it is the global scope.
        Scope *local_scope = local_scopes_[i];
        if (global_scope_->HasKid(local_scope)) {
          global_scope_->DeleteScope(local_scope);
        }
      }
    }
  }
Y
Yu Yang 已提交
53 54
  std::vector<platform::Place> places_;
  std::vector<Scope *> local_scopes_;
55
  Scope *global_scope_;  // not owned
Y
Yu Yang 已提交
56
  std::unique_ptr<details::SSAGraphExecutor> executor_;
Y
Yu Yang 已提交
57

P
peizhilin 已提交
58
#if defined(PADDLE_WITH_CUDA) && !defined(_WIN32)
Y
Yu Yang 已提交
59
  std::unique_ptr<platform::NCCLContextMap> nccl_ctxs_;
Y
Yu Yang 已提交
60
#endif
C
chengduoZH 已提交
61 62
  bool own_local_scope_;
  bool use_cuda_;
63
  bool use_all_reduce_;
Y
Yu Yang 已提交
64 65
};

66 67 68 69
std::vector<Scope *> &ParallelExecutor::GetLocalScopes() {
  return member_->local_scopes_;
}

Y
Yu Yang 已提交
70
ParallelExecutor::ParallelExecutor(
71
    const std::vector<platform::Place> &places,
Y
Yu Yang 已提交
72
    const std::unordered_set<std::string> &params,
73 74
    const std::unordered_set<std::string> &bcast_vars,
    const ProgramDesc &main_program, const std::string &loss_var_name,
Y
yuyang18 已提交
75
    Scope *scope, const std::vector<Scope *> &local_scopes,
76
    const ExecutionStrategy &exec_strategy, const BuildStrategy &build_strategy,
77
    size_t num_trainers, size_t trainer_id)
Y
Yu Yang 已提交
78
    : member_(new ParallelExecutorPrivate(places)) {
Y
Yu Yang 已提交
79
  member_->global_scope_ = scope;
80
  member_->use_cuda_ = exec_strategy.use_cuda_;
81 82 83 84 85 86 87
  member_->use_all_reduce_ =
      build_strategy.reduce_ == BuildStrategy::ReduceStrategy::kAllReduce;

  if (!member_->use_all_reduce_) {
    PADDLE_ENFORCE(places.size() > 1,
                   "If you set build_strategy.reduce with 'Reduce',"
                   "the number of places must be greater than 1.");
Y
Yancey1989 已提交
88 89 90
    PADDLE_ENFORCE(exec_strategy.type_ != ExecutionStrategy::kParallelGraph,
                   "You should set build_strategy.reduce with 'AllReduce' for "
                   "ParallelGraph executor type");
91
  }
Y
Yu Yang 已提交
92

93
  // Step 1. Bcast the params to devs.
Y
Yu Yang 已提交
94
  // Create local scopes
95
  if (local_scopes.empty()) {
C
chengduoZH 已提交
96
    member_->own_local_scope_ = true;
Y
Yu Yang 已提交
97 98
    member_->local_scopes_.emplace_back(member_->global_scope_);
    for (size_t i = 1; i < member_->places_.size(); ++i) {
Y
Debug  
Yu Yang 已提交
99
      member_->local_scopes_.emplace_back(&scope->NewScope());
100 101
    }
  } else {
C
chengduoZH 已提交
102
    member_->own_local_scope_ = false;
103 104
    PADDLE_ENFORCE_EQ(member_->places_.size(), local_scopes.size());
    for (size_t i = 0; i < member_->places_.size(); ++i) {
105
      member_->local_scopes_.emplace_back(&local_scopes[i]->NewScope());
106
    }
Y
Yu Yang 已提交
107 108
  }

C
chengduoZH 已提交
109
  if (member_->use_cuda_) {
Y
Yu Yang 已提交
110
// Bcast Parameters to all GPUs
P
peizhilin 已提交
111
#if defined(PADDLE_WITH_CUDA) && !defined(_WIN32)
C
chengduoZH 已提交
112
    auto *nccl_id_var = scope->FindVar(NCCL_ID_VARNAME);
Y
Yancey1989 已提交
113 114
    std::unique_ptr<ncclUniqueId> nccl_id = nullptr;
    bool need_group_call = true;
C
chengduoZH 已提交
115
    if (nccl_id_var != nullptr) {
Y
Yancey1989 已提交
116 117 118 119 120 121 122 123 124
      nccl_id.reset(nccl_id_var->GetMutable<ncclUniqueId>());
    } else if (exec_strategy.type_ == ExecutionStrategy::kParallelGraph) {
      nccl_id.reset(new ncclUniqueId());
      PADDLE_ENFORCE(platform::dynload::ncclGetUniqueId(nccl_id.get()));
      *member_->global_scope_->Var(NCCL_ID_VARNAME)
           ->GetMutable<ncclUniqueId>() = *nccl_id.get();
      need_group_call = false;
    } else {
      // init nccl_id in NCCLContextMap
C
chengduoZH 已提交
125
    }
Y
Yancey1989 已提交
126

C
chengduoZH 已提交
127
    member_->nccl_ctxs_.reset(new platform::NCCLContextMap(
Y
Yancey1989 已提交
128 129
        member_->places_, nccl_id.get(), num_trainers, trainer_id,
        need_group_call));
C
chengduoZH 已提交
130 131
#else
    PADDLE_THROW("Not compiled with CUDA");
Y
Yu Yang 已提交
132
#endif
C
chengduoZH 已提交
133 134
  }
  if (member_->local_scopes_.size() != 1 && local_scopes.empty()) {
Y
Yancey1989 已提交
135
    BCastParamsToDevices(bcast_vars);
Y
Yu Yang 已提交
136
  }
Y
Yancey1989 已提交
137
  // Startup Program has been run. All local scopes has correct parameters.
Y
yuyang18 已提交
138

Y
Yancey1989 已提交
139 140 141
  // Step 2. Convert main_program to SSA form and dependency graph. Also, insert
  // ncclOp
  std::vector<std::unique_ptr<ir::Graph>> graphs;
P
peizhilin 已提交
142
#if defined(PADDLE_WITH_CUDA) && !defined(_WIN32)
Y
Yancey1989 已提交
143 144 145 146 147 148 149 150 151 152 153 154 155 156
  if (exec_strategy.type_ == ExecutionStrategy::kParallelGraph) {
    for (size_t i = 0; i < member_->places_.size(); ++i) {
      std::unique_ptr<ir::Graph> graph = build_strategy.Apply(
          main_program, {member_->places_[i]}, loss_var_name, params,
          {member_->local_scopes_[i]}, member_->use_cuda_,
          member_->nccl_ctxs_.get());
      graphs.push_back(std::move(graph));
    }
  } else {
    std::unique_ptr<ir::Graph> graph = build_strategy.Apply(
        main_program, member_->places_, loss_var_name, params,
        member_->local_scopes_, member_->use_cuda_, member_->nccl_ctxs_.get());
    graphs.push_back(std::move(graph));
  }
S
sneaxiy 已提交
157 158

  auto max_memory_size = GetEagerDeletionThreshold();
Y
Yancey1989 已提交
159 160 161
  // FIXME(Yancey1989): need to fix on parallel graph mode
  if (max_memory_size >= 0 &&
      exec_strategy.type_ != ExecutionStrategy::kParallelGraph) {
S
sneaxiy 已提交
162 163 164 165 166 167 168 169 170
    for (auto &place : member_->places_) {
      if (!platform::is_gpu_place(place)) continue;
      auto gpu_place = boost::get<platform::CUDAPlace>(place);
      if (gcs_[gpu_place.device] == nullptr) {
        ref_cnts_[gpu_place.device].reset(new details::ReferenceCountMap());
        cur_ref_cnts_[gpu_place.device].reset(
            new details::AtomicReferenceCountMap());
        gcs_[gpu_place.device].reset(
            new StreamGarbageCollector<Tensor>(gpu_place, max_memory_size));
S
sneaxiy 已提交
171 172
      }
    }
S
sneaxiy 已提交
173
    if (!gcs_.empty()) {
Y
Yancey1989 已提交
174 175 176 177 178 179
      for (size_t i = 0; i < graphs.size(); ++i) {
        auto ref_cnt_pass =
            ir::PassRegistry::Instance().Get("reference_count_pass");
        ref_cnt_pass->SetNotOwned(details::kGlobalReferenceCount, &ref_cnts_);
        ref_cnt_pass->SetNotOwned(details::kCurReferenceCount, &cur_ref_cnts_);
        ref_cnt_pass->SetNotOwned(details::kGarbageCollector, &gcs_);
Y
Yancey1989 已提交
180 181
        graphs[i] = ref_cnt_pass->Apply(std::move(graphs[i]));
        graphs[i]->SetNotOwned("garbage_collector", &gcs_);
Y
Yancey1989 已提交
182
      }
S
sneaxiy 已提交
183 184
    }
  }
C
chengduoZH 已提交
185
#else
186 187 188
  std::unique_ptr<ir::Graph> graph =
      build_strategy.Apply(main_program, member_->places_, loss_var_name,
                           params, member_->local_scopes_, member_->use_cuda_);
Y
Yancey1989 已提交
189
  graphs.push_back(std::move(graph));
Y
Yu Yang 已提交
190
#endif
X
Xin Pan 已提交
191

192 193
  // Step 3. Create vars in each scope. Passes may also create new vars.
  //         skip control vars and empty vars
Y
Yancey1989 已提交
194 195 196 197 198 199 200 201 202 203 204
  std::vector<details::VariableInfo> var_infos;
  for (auto &graph : graphs) {
    for (auto &node : graph->Nodes()) {
      if (node->IsVar() && !node->IsCtrlVar() && node->Var()) {
        var_infos.emplace_back();
        var_infos.back().name_ = node->Var()->Name();
        var_infos.back().type_ = node->Var()->GetType();
        var_infos.back().persistable_ = node->Var()->Persistable();
      }
    }
  }
Y
Yancey1989 已提交
205

W
Wu Yi 已提交
206 207
  // If the loss_var_name is given, the number of graph should be only one.
  if (loss_var_name.size()) {
Y
Yancey1989 已提交
208
    size_t graph_num = ir::GraphNum(*graphs[0]);
C
chengduo 已提交
209 210 211 212
    if (graph_num > 1) {
      LOG(WARNING)
          << "The number of graph should be only one, "
             "but the current graph has "
Y
Yancey1989 已提交
213
          << ir::GraphNum(*graphs[0])
C
chengduo 已提交
214 215 216 217 218
          << " sub_graphs. If you want to see the nodes of the "
             "sub_graphs, you should use 'FLAGS_print_sub_graph_dir' "
             "to specify the output dir. NOTES: if you not do training, "
             "please don't pass loss_var_name.";
    }
W
Wu Yi 已提交
219 220
  }

Y
yuyang18 已提交
221 222
  if (exec_strategy.type_ == ExecutionStrategy::kDefault) {
    member_->executor_.reset(new details::ThreadedSSAGraphExecutor(
Y
Yancey1989 已提交
223 224
        exec_strategy, member_->local_scopes_, member_->places_,
        std::move(graphs[0])));
Y
Yancey1989 已提交
225 226
  } else if (exec_strategy.type_ == ExecutionStrategy::kParallelGraph) {
    member_->executor_.reset(new details::ParallelSSAGraphExecutor(
Y
Yancey1989 已提交
227 228
        exec_strategy, member_->local_scopes_, member_->places_,
        std::move(graphs)));
Y
yuyang18 已提交
229 230
  } else {
    member_->executor_.reset(new details::FastThreadedSSAGraphExecutor(
Y
Yancey1989 已提交
231 232
        exec_strategy, member_->local_scopes_, member_->places_,
        std::move(graphs[0])));
C
chengduoZH 已提交
233
  }
Y
yuyang18 已提交
234 235

  member_->executor_.reset(new details::ScopeBufferedSSAGraphExecutor(
Y
Yancey1989 已提交
236
      exec_strategy, member_->local_scopes_, std::move(var_infos),
Y
yuyang18 已提交
237
      member_->places_, std::move(member_->executor_)));
Y
Yu Yang 已提交
238 239
}

Y
Yancey1989 已提交
240
void ParallelExecutor::BCastParamsToDevices(
241
    const std::unordered_set<std::string> &vars) const {
X
Xin Pan 已提交
242
  // the initializing bcast, all vars would be bcast from device(0).
243
  for (auto &var : vars) {
X
Xin Pan 已提交
244
    framework::Variable *main_var = member_->local_scopes_[0]->FindVar(var);
J
JiayiFeng 已提交
245
    if (main_var == nullptr || !main_var->IsType<LoDTensor>()) {
246 247 248 249
      continue;
    }

    auto &main_tensor = main_var->Get<LoDTensor>();
250
    if (!main_tensor.IsInitialized()) {
M
minqiyang 已提交
251
      VLOG(3) << "one in var not inited, return!";
252 253
      continue;
    }
254 255
    auto &dims = main_tensor.dims();
    if (paddle::platform::is_gpu_place(main_tensor.place())) {
P
peizhilin 已提交
256
#if defined(PADDLE_WITH_CUDA) && !defined(_WIN32)
257
      std::vector<void *> buffers;
258 259 260 261 262
      size_t numel = main_tensor.numel();
      ncclDataType_t data_type = platform::ToNCCLDataType(main_tensor.type());
      for (size_t i = 0; i < member_->places_.size(); ++i) {
        auto place = member_->places_[i];
        void *buffer;
263

X
Xin Pan 已提交
264
        if (i == 0) {
265 266
          buffer = const_cast<void *>(main_tensor.data<void>());
        } else {
Y
Yu Yang 已提交
267
          auto local_scope = member_->local_scopes_[i];
268
          auto *t = local_scope->Var(var)->GetMutable<LoDTensor>();
Y
Update  
Yu Yang 已提交
269
          t->Resize(dims);
270
          buffer = t->mutable_data(place, main_tensor.type());
Y
Update  
Yu Yang 已提交
271
        }
272
        buffers.push_back(buffer);
273
      }
274

275 276 277 278 279 280
      PADDLE_ENFORCE_EQ(member_->places_.size(), buffers.size(),
                        "variables' buffer size to bcast NOT equal to places");
      {
        platform::NCCLGroupGuard guard;
        for (size_t i = 0; i < member_->places_.size(); ++i) {
          auto &nccl_ctx = member_->nccl_ctxs_->at(member_->places_[i]);
X
Xin Pan 已提交
281 282
          platform::dynload::ncclBcast(buffers[i], numel, data_type, 0,
                                       nccl_ctx.comm_, nccl_ctx.stream());
283
        }
284
        member_->nccl_ctxs_->WaitAll();
285
      }
C
chengduoZH 已提交
286 287 288
#else
      PADDLE_THROW("Not compiled with CUDA");
#endif
289 290
    } else {
      platform::CPUPlace cpu;
Y
Yancey1989 已提交
291
      for (size_t i = 0; i < member_->places_.size(); ++i) {
X
Xin Pan 已提交
292
        if (i == 0) continue;
Y
Yancey1989 已提交
293

294 295
        auto local_scope = member_->local_scopes_[i];
        auto *t = local_scope->Var(var)->GetMutable<LoDTensor>();
C
chengduo 已提交
296 297 298 299

        // FIXME(zcd): LR_DECAY_COUNTER should not be shared. This is a hot fix.
        if (member_->use_all_reduce_ || member_->use_cuda_ ||
            var == "@LR_DECAY_COUNTER@") {
300 301 302 303 304 305
          t->Resize(dims);
          t->mutable_data(cpu, main_tensor.type());
          paddle::framework::TensorCopy(main_tensor, cpu, t);
        } else {
          t->ShareDataWith(main_tensor);
        }
Y
Yu Yang 已提交
306
      }
Y
Stash  
Yu Yang 已提交
307 308
    }
  }
Y
Yu Yang 已提交
309
}
Y
Yu Yang 已提交
310

Y
Yu Yang 已提交
311 312
void ParallelExecutor::Run(const std::vector<std::string> &fetch_tensors,
                           const std::string &fetched_var_name) {
X
Xin Pan 已提交
313
  platform::RecordBlock b(0);
S
sneaxiy 已提交
314 315 316
#ifdef PADDLE_WITH_CUDA
  if (!gcs_.empty()) {
    ResetReferenceCount();
S
sneaxiy 已提交
317 318 319 320 321 322 323
    for (auto &pair : cur_ref_cnts_) {
      auto &name_map = *(pair.second);
      for (auto &fetch_name : fetch_tensors) {
        name_map.erase(fetch_name);
      }
      name_map.erase(fetched_var_name);
    }
S
sneaxiy 已提交
324 325
  }
#endif
S
sneaxiy 已提交
326 327 328
  auto fetch_data = member_->executor_->Run(fetch_tensors);
  *member_->global_scope_->Var(fetched_var_name)->GetMutable<FeedFetchList>() =
      fetch_data;
Y
Yu Yang 已提交
329
}
Y
Yu Yang 已提交
330

Y
Yu Yang 已提交
331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349
void ParallelExecutor::FeedTensorsIntoLocalScopes(
    const std::vector<std::unordered_map<std::string, LoDTensor>> &tensors) {
  PADDLE_ENFORCE_EQ(member_->local_scopes_.size(), tensors.size());

  for (size_t i = 0; i < tensors.size(); ++i) {
    auto &map = tensors[i];
    auto *scope = member_->local_scopes_[i];
    for (auto &pair : map) {
      auto *trg = scope->Var(pair.first)->GetMutable<LoDTensor>();
      trg->ShareDataWith(pair.second);
      trg->set_lod(pair.second.lod());
    }
  }
}

void ParallelExecutor::FeedAndSplitTensorIntoLocalScopes(
    const std::unordered_map<std::string, LoDTensor> &tensors) {
  for (auto pair : tensors) {
    auto lod_tensors = pair.second.SplitLoDTensor(member_->places_);
350 351 352 353 354
    PADDLE_ENFORCE_EQ(
        member_->places_.size(), lod_tensors.size(),
        "The number of samples of current batch is less than the count of "
        "devices, currently, it is not allowed. (%d vs %d)",
        member_->places_.size(), lod_tensors.size());
X
Xin Pan 已提交
355 356
    for (size_t j = 0; j < member_->places_.size(); ++j) {
      // TODO(panxy0718): Do I need to delete this var?
357
      auto t =
Y
Yu Yang 已提交
358
          member_->local_scopes_[j]->Var(pair.first)->GetMutable<LoDTensor>();
359 360
      t->ShareDataWith(lod_tensors[j]);
      t->set_lod(lod_tensors[j].lod());
X
Xin Pan 已提交
361 362 363 364
    }
  }
}

365
ParallelExecutor::~ParallelExecutor() {
366 367
  for (auto &p : member_->places_) {
    platform::DeviceContextPool::Instance().Get(p)->Wait();
C
chengduozh 已提交
368
  }
S
sneaxiy 已提交
369 370
  // member_ must be destructed before gcs_ since the destructor of
  // ReferenceCountOpHandle use raw pointers of gcs_ inside.
S
sneaxiy 已提交
371
  member_.reset();
372 373
}

Y
Yu Yang 已提交
374
}  // namespace framework
Y
Yang Yang 已提交
375
}  // namespace paddle
S
sneaxiy 已提交
376 377 378
#ifdef PADDLE_WITH_CUDA
USE_PASS(reference_count_pass);
#endif