parallel_executor.cc 14.3 KB
Newer Older
Y
Yang Yang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/framework/parallel_executor.h"
C
chengduoZH 已提交
16
#include <string>
17
#include <tuple>
Q
qiaolongfei 已提交
18
#include <vector>
C
chengduo 已提交
19
#include "paddle/fluid/framework/ir/graph_helper.h"
Y
Yu Yang 已提交
20

X
clean  
Xin Pan 已提交
21
#include "paddle/fluid/framework/ir/graph.h"
X
Xin Pan 已提交
22

P
peizhilin 已提交
23
#if defined(PADDLE_WITH_CUDA) && !defined(_WIN32)
Y
Yu Yang 已提交
24
#include "paddle/fluid/platform/nccl_helper.h"
Y
Yu Yang 已提交
25
#endif
Y
Yang Yang 已提交
26

Y
yuyang18 已提交
27
#include "paddle/fluid/framework/details/fast_threaded_ssa_graph_executor.h"
28
#include "paddle/fluid/framework/details/multi_devices_helper.h"
Y
Yancey1989 已提交
29
#include "paddle/fluid/framework/details/parallel_ssa_graph_executor.h"
Y
yuyang18 已提交
30
#include "paddle/fluid/framework/details/scope_buffered_ssa_graph_executor.h"
Y
Yu Yang 已提交
31
#include "paddle/fluid/framework/details/threaded_ssa_graph_executor.h"
32
#include "paddle/fluid/platform/profiler.h"
Y
Yu Yang 已提交
33

Y
Yang Yang 已提交
34
namespace paddle {
Y
Yu Yang 已提交
35 36
namespace framework {

Y
Yu Yang 已提交
37 38 39
class ParallelExecutorPrivate {
 public:
  explicit ParallelExecutorPrivate(const std::vector<platform::Place> &places)
Y
Yu Yang 已提交
40
      : places_(places) {}
Y
Yu Yang 已提交
41

42 43 44 45 46 47 48 49 50 51 52
  ~ParallelExecutorPrivate() {
    if (own_local_scope_) {
      for (size_t i = 1; i < local_scopes_.size(); ++i) {
        // Skip the first scope, since it is the global scope.
        Scope *local_scope = local_scopes_[i];
        if (global_scope_->HasKid(local_scope)) {
          global_scope_->DeleteScope(local_scope);
        }
      }
    }
  }
Y
Yu Yang 已提交
53 54
  std::vector<platform::Place> places_;
  std::vector<Scope *> local_scopes_;
55
  Scope *global_scope_;  // not owned
Y
Yu Yang 已提交
56
  std::unique_ptr<details::SSAGraphExecutor> executor_;
Y
Yu Yang 已提交
57

P
peizhilin 已提交
58
#if defined(PADDLE_WITH_CUDA) && !defined(_WIN32)
Y
Yu Yang 已提交
59
  std::unique_ptr<platform::NCCLContextMap> nccl_ctxs_;
Y
Yu Yang 已提交
60
#endif
C
chengduoZH 已提交
61 62
  bool own_local_scope_;
  bool use_cuda_;
63
  bool use_all_reduce_;
Y
Yu Yang 已提交
64 65
};

66 67 68 69
std::vector<Scope *> &ParallelExecutor::GetLocalScopes() {
  return member_->local_scopes_;
}

Y
Yu Yang 已提交
70
ParallelExecutor::ParallelExecutor(
71
    const std::vector<platform::Place> &places,
Y
Yu Yang 已提交
72
    const std::unordered_set<std::string> &params,
73 74
    const std::unordered_set<std::string> &bcast_vars,
    const ProgramDesc &main_program, const std::string &loss_var_name,
Y
yuyang18 已提交
75
    Scope *scope, const std::vector<Scope *> &local_scopes,
76
    const ExecutionStrategy &exec_strategy, const BuildStrategy &build_strategy,
77
    size_t num_trainers, size_t trainer_id)
Y
Yu Yang 已提交
78
    : member_(new ParallelExecutorPrivate(places)) {
Y
Yu Yang 已提交
79
  member_->global_scope_ = scope;
80
  member_->use_cuda_ = exec_strategy.use_cuda_;
81 82 83 84 85 86 87
  member_->use_all_reduce_ =
      build_strategy.reduce_ == BuildStrategy::ReduceStrategy::kAllReduce;

  if (!member_->use_all_reduce_) {
    PADDLE_ENFORCE(places.size() > 1,
                   "If you set build_strategy.reduce with 'Reduce',"
                   "the number of places must be greater than 1.");
Y
Yancey1989 已提交
88 89 90
    PADDLE_ENFORCE(exec_strategy.type_ != ExecutionStrategy::kParallelGraph,
                   "You should set build_strategy.reduce with 'AllReduce' for "
                   "ParallelGraph executor type");
91
  }
Y
Yu Yang 已提交
92

93
  // Step 1. Bcast the params to devs.
Y
Yu Yang 已提交
94
  // Create local scopes
95
  if (local_scopes.empty()) {
C
chengduoZH 已提交
96
    member_->own_local_scope_ = true;
Y
Yu Yang 已提交
97 98
    member_->local_scopes_.emplace_back(member_->global_scope_);
    for (size_t i = 1; i < member_->places_.size(); ++i) {
Y
Debug  
Yu Yang 已提交
99
      member_->local_scopes_.emplace_back(&scope->NewScope());
100 101
    }
  } else {
C
chengduoZH 已提交
102
    member_->own_local_scope_ = false;
103 104
    PADDLE_ENFORCE_EQ(member_->places_.size(), local_scopes.size());
    for (size_t i = 0; i < member_->places_.size(); ++i) {
105
      member_->local_scopes_.emplace_back(&local_scopes[i]->NewScope());
106
    }
Y
Yu Yang 已提交
107 108
  }

C
chengduoZH 已提交
109
  if (member_->use_cuda_) {
Y
Yu Yang 已提交
110
// Bcast Parameters to all GPUs
P
peizhilin 已提交
111
#if defined(PADDLE_WITH_CUDA) && !defined(_WIN32)
C
chengduoZH 已提交
112
    auto *nccl_id_var = scope->FindVar(NCCL_ID_VARNAME);
Y
Yancey1989 已提交
113 114
    std::unique_ptr<ncclUniqueId> nccl_id = nullptr;
    bool need_group_call = true;
C
chengduoZH 已提交
115
    if (nccl_id_var != nullptr) {
Y
Yancey1989 已提交
116 117 118 119 120 121 122 123 124
      nccl_id.reset(nccl_id_var->GetMutable<ncclUniqueId>());
    } else if (exec_strategy.type_ == ExecutionStrategy::kParallelGraph) {
      nccl_id.reset(new ncclUniqueId());
      PADDLE_ENFORCE(platform::dynload::ncclGetUniqueId(nccl_id.get()));
      *member_->global_scope_->Var(NCCL_ID_VARNAME)
           ->GetMutable<ncclUniqueId>() = *nccl_id.get();
      need_group_call = false;
    } else {
      // init nccl_id in NCCLContextMap
C
chengduoZH 已提交
125
    }
Y
Yancey1989 已提交
126

C
chengduoZH 已提交
127
    member_->nccl_ctxs_.reset(new platform::NCCLContextMap(
Y
Yancey1989 已提交
128 129
        member_->places_, nccl_id.get(), num_trainers, trainer_id,
        need_group_call));
C
chengduoZH 已提交
130 131
#else
    PADDLE_THROW("Not compiled with CUDA");
Y
Yu Yang 已提交
132
#endif
C
chengduoZH 已提交
133 134
  }
  if (member_->local_scopes_.size() != 1 && local_scopes.empty()) {
Y
Yancey1989 已提交
135
    BCastParamsToDevices(bcast_vars);
Y
Yu Yang 已提交
136
  }
Y
Yancey1989 已提交
137
  // Startup Program has been run. All local scopes has correct parameters.
Y
yuyang18 已提交
138

Y
Yancey1989 已提交
139 140 141
  // Step 2. Convert main_program to SSA form and dependency graph. Also, insert
  // ncclOp
  std::vector<std::unique_ptr<ir::Graph>> graphs;
P
peizhilin 已提交
142
#if defined(PADDLE_WITH_CUDA) && !defined(_WIN32)
Y
Yancey1989 已提交
143
  if (exec_strategy.type_ == ExecutionStrategy::kParallelGraph) {
Y
Yancey1989 已提交
144
    VLOG(1) << "kParallelGraph mode!!";
Y
Yancey1989 已提交
145 146 147 148 149 150 151 152 153 154 155 156 157
    for (size_t i = 0; i < member_->places_.size(); ++i) {
      std::unique_ptr<ir::Graph> graph = build_strategy.Apply(
          main_program, {member_->places_[i]}, loss_var_name, params,
          {member_->local_scopes_[i]}, member_->use_cuda_,
          member_->nccl_ctxs_.get());
      graphs.push_back(std::move(graph));
    }
  } else {
    std::unique_ptr<ir::Graph> graph = build_strategy.Apply(
        main_program, member_->places_, loss_var_name, params,
        member_->local_scopes_, member_->use_cuda_, member_->nccl_ctxs_.get());
    graphs.push_back(std::move(graph));
  }
S
sneaxiy 已提交
158 159

  auto max_memory_size = GetEagerDeletionThreshold();
Y
Yancey1989 已提交
160 161 162
  // FIXME(Yancey1989): need to fix on parallel graph mode
  if (max_memory_size >= 0 &&
      exec_strategy.type_ != ExecutionStrategy::kParallelGraph) {
S
sneaxiy 已提交
163 164 165 166 167 168 169 170 171
    for (auto &place : member_->places_) {
      if (!platform::is_gpu_place(place)) continue;
      auto gpu_place = boost::get<platform::CUDAPlace>(place);
      if (gcs_[gpu_place.device] == nullptr) {
        ref_cnts_[gpu_place.device].reset(new details::ReferenceCountMap());
        cur_ref_cnts_[gpu_place.device].reset(
            new details::AtomicReferenceCountMap());
        gcs_[gpu_place.device].reset(
            new StreamGarbageCollector<Tensor>(gpu_place, max_memory_size));
S
sneaxiy 已提交
172 173
      }
    }
S
sneaxiy 已提交
174
    if (!gcs_.empty()) {
Y
Yancey1989 已提交
175 176 177 178 179 180 181 182 183
      for (size_t i = 0; i < graphs.size(); ++i) {
        auto ref_cnt_pass =
            ir::PassRegistry::Instance().Get("reference_count_pass");
        ref_cnt_pass->SetNotOwned(details::kGlobalReferenceCount, &ref_cnts_);
        ref_cnt_pass->SetNotOwned(details::kCurReferenceCount, &cur_ref_cnts_);
        ref_cnt_pass->SetNotOwned(details::kGarbageCollector, &gcs_);
        graphs[0] = ref_cnt_pass->Apply(std::move(graphs[i]));
        graphs[0]->SetNotOwned("garbage_collector", &gcs_);
      }
S
sneaxiy 已提交
184 185
    }
  }
C
chengduoZH 已提交
186
#else
187 188 189
  std::unique_ptr<ir::Graph> graph =
      build_strategy.Apply(main_program, member_->places_, loss_var_name,
                           params, member_->local_scopes_, member_->use_cuda_);
Y
Yancey1989 已提交
190
  graphs.push_back(std::move(graph));
Y
Yu Yang 已提交
191
#endif
X
Xin Pan 已提交
192

193 194
  // Step 3. Create vars in each scope. Passes may also create new vars.
  //         skip control vars and empty vars
Y
Yancey1989 已提交
195 196 197 198 199 200 201 202 203 204
  std::vector<std::vector<details::VariableInfo>> var_infos_list;
  for (size_t i = 0; i < graphs.size(); ++i) {
    std::vector<details::VariableInfo> var_infos;
    for (auto &node : graphs[i]->Nodes()) {
      if (node->IsVar() && !node->IsCtrlVar() && node->Var()) {
        var_infos.emplace_back();
        var_infos.back().name_ = node->Var()->Name();
        var_infos.back().type_ = node->Var()->GetType();
        var_infos.back().persistable_ = node->Var()->Persistable();
      }
205
    }
Y
Yancey1989 已提交
206
    var_infos_list.emplace_back(std::move(var_infos));
207
  }
Y
Yancey1989 已提交
208

W
Wu Yi 已提交
209 210
  // If the loss_var_name is given, the number of graph should be only one.
  if (loss_var_name.size()) {
Y
Yancey1989 已提交
211
    size_t graph_num = ir::GraphNum(*graphs[0]);
C
chengduo 已提交
212 213 214 215
    if (graph_num > 1) {
      LOG(WARNING)
          << "The number of graph should be only one, "
             "but the current graph has "
Y
Yancey1989 已提交
216
          << ir::GraphNum(*graphs[0])
C
chengduo 已提交
217 218 219 220 221
          << " sub_graphs. If you want to see the nodes of the "
             "sub_graphs, you should use 'FLAGS_print_sub_graph_dir' "
             "to specify the output dir. NOTES: if you not do training, "
             "please don't pass loss_var_name.";
    }
W
Wu Yi 已提交
222 223
  }

Y
yuyang18 已提交
224 225
  if (exec_strategy.type_ == ExecutionStrategy::kDefault) {
    member_->executor_.reset(new details::ThreadedSSAGraphExecutor(
Y
Yancey1989 已提交
226 227
        exec_strategy, member_->local_scopes_, member_->places_,
        std::move(graphs[0])));
Y
Yancey1989 已提交
228 229
  } else if (exec_strategy.type_ == ExecutionStrategy::kParallelGraph) {
    member_->executor_.reset(new details::ParallelSSAGraphExecutor(
Y
Yancey1989 已提交
230 231
        exec_strategy, member_->local_scopes_, member_->places_,
        std::move(graphs)));
Y
yuyang18 已提交
232 233
  } else {
    member_->executor_.reset(new details::FastThreadedSSAGraphExecutor(
Y
Yancey1989 已提交
234 235
        exec_strategy, member_->local_scopes_, member_->places_,
        std::move(graphs[0])));
C
chengduoZH 已提交
236
  }
Y
yuyang18 已提交
237 238

  member_->executor_.reset(new details::ScopeBufferedSSAGraphExecutor(
Y
Yancey1989 已提交
239
      exec_strategy, member_->local_scopes_, std::move(var_infos_list),
Y
yuyang18 已提交
240
      member_->places_, std::move(member_->executor_)));
Y
Yu Yang 已提交
241 242
}

Y
Yancey1989 已提交
243
void ParallelExecutor::BCastParamsToDevices(
244
    const std::unordered_set<std::string> &vars) const {
X
Xin Pan 已提交
245
  // the initializing bcast, all vars would be bcast from device(0).
246
  for (auto &var : vars) {
X
Xin Pan 已提交
247
    framework::Variable *main_var = member_->local_scopes_[0]->FindVar(var);
J
JiayiFeng 已提交
248
    if (main_var == nullptr || !main_var->IsType<LoDTensor>()) {
249 250 251 252
      continue;
    }

    auto &main_tensor = main_var->Get<LoDTensor>();
253
    if (!main_tensor.IsInitialized()) {
M
minqiyang 已提交
254
      VLOG(3) << "one in var not inited, return!";
255 256
      continue;
    }
257 258
    auto &dims = main_tensor.dims();
    if (paddle::platform::is_gpu_place(main_tensor.place())) {
P
peizhilin 已提交
259
#if defined(PADDLE_WITH_CUDA) && !defined(_WIN32)
260
      std::vector<void *> buffers;
261 262 263 264 265
      size_t numel = main_tensor.numel();
      ncclDataType_t data_type = platform::ToNCCLDataType(main_tensor.type());
      for (size_t i = 0; i < member_->places_.size(); ++i) {
        auto place = member_->places_[i];
        void *buffer;
266

X
Xin Pan 已提交
267
        if (i == 0) {
268 269
          buffer = const_cast<void *>(main_tensor.data<void>());
        } else {
Y
Yu Yang 已提交
270
          auto local_scope = member_->local_scopes_[i];
271
          auto *t = local_scope->Var(var)->GetMutable<LoDTensor>();
Y
Update  
Yu Yang 已提交
272
          t->Resize(dims);
273
          buffer = t->mutable_data(place, main_tensor.type());
Y
Update  
Yu Yang 已提交
274
        }
275
        buffers.push_back(buffer);
276
      }
277

278 279 280 281 282 283
      PADDLE_ENFORCE_EQ(member_->places_.size(), buffers.size(),
                        "variables' buffer size to bcast NOT equal to places");
      {
        platform::NCCLGroupGuard guard;
        for (size_t i = 0; i < member_->places_.size(); ++i) {
          auto &nccl_ctx = member_->nccl_ctxs_->at(member_->places_[i]);
X
Xin Pan 已提交
284 285
          platform::dynload::ncclBcast(buffers[i], numel, data_type, 0,
                                       nccl_ctx.comm_, nccl_ctx.stream());
286
        }
287
        member_->nccl_ctxs_->WaitAll();
288
      }
C
chengduoZH 已提交
289 290 291
#else
      PADDLE_THROW("Not compiled with CUDA");
#endif
292 293
    } else {
      platform::CPUPlace cpu;
Y
Yancey1989 已提交
294
      for (size_t i = 0; i < member_->places_.size(); ++i) {
X
Xin Pan 已提交
295
        if (i == 0) continue;
Y
Yancey1989 已提交
296

297 298
        auto local_scope = member_->local_scopes_[i];
        auto *t = local_scope->Var(var)->GetMutable<LoDTensor>();
C
chengduo 已提交
299 300 301 302

        // FIXME(zcd): LR_DECAY_COUNTER should not be shared. This is a hot fix.
        if (member_->use_all_reduce_ || member_->use_cuda_ ||
            var == "@LR_DECAY_COUNTER@") {
303 304 305 306 307 308
          t->Resize(dims);
          t->mutable_data(cpu, main_tensor.type());
          paddle::framework::TensorCopy(main_tensor, cpu, t);
        } else {
          t->ShareDataWith(main_tensor);
        }
Y
Yu Yang 已提交
309
      }
Y
Stash  
Yu Yang 已提交
310 311
    }
  }
Y
Yu Yang 已提交
312
}
Y
Yu Yang 已提交
313

Y
Yu Yang 已提交
314 315
void ParallelExecutor::Run(const std::vector<std::string> &fetch_tensors,
                           const std::string &fetched_var_name) {
X
Xin Pan 已提交
316
  platform::RecordBlock b(0);
S
sneaxiy 已提交
317 318 319
#ifdef PADDLE_WITH_CUDA
  if (!gcs_.empty()) {
    ResetReferenceCount();
S
sneaxiy 已提交
320 321 322 323 324 325 326
    for (auto &pair : cur_ref_cnts_) {
      auto &name_map = *(pair.second);
      for (auto &fetch_name : fetch_tensors) {
        name_map.erase(fetch_name);
      }
      name_map.erase(fetched_var_name);
    }
S
sneaxiy 已提交
327 328
  }
#endif
S
sneaxiy 已提交
329 330 331
  auto fetch_data = member_->executor_->Run(fetch_tensors);
  *member_->global_scope_->Var(fetched_var_name)->GetMutable<FeedFetchList>() =
      fetch_data;
Y
Yu Yang 已提交
332
}
Y
Yu Yang 已提交
333

Y
Yu Yang 已提交
334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352
void ParallelExecutor::FeedTensorsIntoLocalScopes(
    const std::vector<std::unordered_map<std::string, LoDTensor>> &tensors) {
  PADDLE_ENFORCE_EQ(member_->local_scopes_.size(), tensors.size());

  for (size_t i = 0; i < tensors.size(); ++i) {
    auto &map = tensors[i];
    auto *scope = member_->local_scopes_[i];
    for (auto &pair : map) {
      auto *trg = scope->Var(pair.first)->GetMutable<LoDTensor>();
      trg->ShareDataWith(pair.second);
      trg->set_lod(pair.second.lod());
    }
  }
}

void ParallelExecutor::FeedAndSplitTensorIntoLocalScopes(
    const std::unordered_map<std::string, LoDTensor> &tensors) {
  for (auto pair : tensors) {
    auto lod_tensors = pair.second.SplitLoDTensor(member_->places_);
353 354 355 356 357
    PADDLE_ENFORCE_EQ(
        member_->places_.size(), lod_tensors.size(),
        "The number of samples of current batch is less than the count of "
        "devices, currently, it is not allowed. (%d vs %d)",
        member_->places_.size(), lod_tensors.size());
X
Xin Pan 已提交
358 359
    for (size_t j = 0; j < member_->places_.size(); ++j) {
      // TODO(panxy0718): Do I need to delete this var?
360
      auto t =
Y
Yu Yang 已提交
361
          member_->local_scopes_[j]->Var(pair.first)->GetMutable<LoDTensor>();
362 363
      t->ShareDataWith(lod_tensors[j]);
      t->set_lod(lod_tensors[j].lod());
X
Xin Pan 已提交
364 365 366 367
    }
  }
}

368
ParallelExecutor::~ParallelExecutor() {
369 370
  for (auto &p : member_->places_) {
    platform::DeviceContextPool::Instance().Get(p)->Wait();
C
chengduozh 已提交
371
  }
S
sneaxiy 已提交
372 373
  // member_ must be destructed before gcs_ since the destructor of
  // ReferenceCountOpHandle use raw pointers of gcs_ inside.
S
sneaxiy 已提交
374
  member_.reset();
375 376
}

Y
Yu Yang 已提交
377
}  // namespace framework
Y
Yang Yang 已提交
378
}  // namespace paddle
S
sneaxiy 已提交
379 380 381
#ifdef PADDLE_WITH_CUDA
USE_PASS(reference_count_pass);
#endif