reshape_op.cc 24.6 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Y
Yibing Liu 已提交
2

L
Luo Tao 已提交
3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
Y
Yibing Liu 已提交
6

L
Luo Tao 已提交
7
    http://www.apache.org/licenses/LICENSE-2.0
Y
Yibing Liu 已提交
8

L
Luo Tao 已提交
9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
Y
Yibing Liu 已提交
14

Y
Yi Wang 已提交
15 16
#include <string>
#include <vector>
Y
yuyang18 已提交
17
#include "paddle/fluid/framework/op_registry.h"
Y
Yi Wang 已提交
18

Y
Yibing Liu 已提交
19 20 21
namespace paddle {
namespace operators {

22 23 24 25 26 27 28 29
using Tensor = framework::Tensor;

inline std::vector<int> get_new_shape(
    const std::vector<const Tensor *> &list_new_shape_tensor) {
  // get tensor from
  std::vector<int> vec_new_shape;
  for (size_t i = 0; i < list_new_shape_tensor.size(); ++i) {
    auto tensor = list_new_shape_tensor[i];
30 31 32 33 34 35
    PADDLE_ENFORCE_EQ(
        tensor->dims(), framework::make_ddim({1}),
        "ShapeError: If the element type of 'shape' in ReshapeOp is Tensor, "
        "the element's shape must be [1]. But received the element's shape "
        "is [%s]",
        tensor->dims());
36 37 38 39 40 41 42 43 44 45 46 47 48
    if (platform::is_gpu_place(tensor->place())) {
      framework::Tensor temp;
      TensorCopySync(*tensor, platform::CPUPlace(), &temp);

      vec_new_shape.push_back(static_cast<int32_t>(*temp.data<int32_t>()));
    } else {
      vec_new_shape.push_back(static_cast<int32_t>(*tensor->data<int32_t>()));
    }
  }

  return vec_new_shape;
}

Y
yuyang18 已提交
49 50 51 52 53 54 55 56
class ReshapeOp : public framework::OperatorWithKernel {
 public:
  ReshapeOp(const std::string &type, const framework::VariableNameMap &inputs,
            const framework::VariableNameMap &outputs,
            const framework::AttributeMap &attrs)
      : OperatorWithKernel(type, inputs, outputs, attrs) {}

  void InferShape(framework::InferShapeContext *ctx) const override {
57 58 59 60
    PADDLE_ENFORCE_EQ(ctx->HasInput("X"), true,
                      "Input(X) of ReshapeOp should not be null.");
    PADDLE_ENFORCE_EQ(ctx->HasOutput("Out"), true,
                      "Output(Out) of ReshapeOp should not be null.");
Y
yuyang18 已提交
61

62 63
    if (ctx->HasInputs("ShapeTensor")) {
      // top prority shape
64
      auto ShapeTensor = ctx->Inputs("ShapeTensor");
65 66 67 68 69 70
      PADDLE_ENFORCE_GT(
          ShapeTensor.size(), 0,
          "ShapeError: When `shape` in ReshapeOp is a list or tuple "
          "which contains Tensor, the shape's size can't be zero. "
          "But received shape's size is %d.",
          ShapeTensor.size());
71 72 73 74 75 76 77
      auto infer_shape = ctx->Attrs().Get<std::vector<int>>("shape");
      const int64_t copy_dim_val = 0;
      auto in_dims = ctx->GetInputDim("X");
      for (size_t i = 0; i < infer_shape.size(); ++i) {
        if (infer_shape[i] == copy_dim_val) {
          PADDLE_ENFORCE_LT(
              static_cast<int>(i), in_dims.size(),
78 79 80 81
              "ShapeError: The index of 0 in `shape` must be less than "
              "the input tensor X's dimensions. But received shape[%d] "
              "= 0, X's dimensions = %d, X's shape = [%s].",
              i, in_dims.size(), in_dims);
82 83 84 85 86 87 88
          infer_shape[i] = in_dims[i];
        }
      }
      auto infer_out_dims = framework::make_ddim(infer_shape);
      ctx->SetOutputDim("Out", infer_out_dims);
      return;
    }
Y
yuyang18 已提交
89

90 91 92 93 94 95 96 97 98 99 100
    const std::vector<int> &shape = ctx->Attrs().Get<std::vector<int>>("shape");
    if (ctx->HasInput("Shape") && shape.empty()) {
      auto shape_dims = ctx->GetInputDim("Shape");
      int num_ele = 1;
      for (int i = 0; i < shape_dims.size(); ++i) {
        num_ele *= shape_dims[i];
      }
      auto vec_dims = std::vector<int>(num_ele, -1);
      auto out_dims = framework::make_ddim(vec_dims);
      ctx->SetOutputDim("Out", out_dims);
      ctx->ShareLoD("X", /*->*/ "Out");
101 102
      return;
    }
103 104

    if (ctx->HasInput("Shape") && !shape.empty() && ctx->IsRuntime()) {
Y
yuyang18 已提交
105 106 107 108 109
      // If true, set the shape of Output(Out) according to Input(Shape) in
      // ReshapeKernel with ExecutionContext. Also check LoD in ReshapeKernel.
      ctx->ShareLoD("X", /*->*/ "Out");
      return;
    }
110

111 112 113 114
    PADDLE_ENFORCE_EQ(
        !shape.empty(), true,
        "ShapeError: The parameter 'shape' in ReshapeOp must be set. "
        "But received 'shape' is empty.");
Y
yuyang18 已提交
115 116 117 118 119 120 121 122 123 124 125 126 127
    auto x_dims = ctx->GetInputDim("X");
    auto out_dims = ValidateShape(shape, x_dims);
    ctx->SetOutputDim("Out", out_dims);
    if (x_dims[0] == out_dims[0]) {
      // Only pass LoD when the first dimension of output and Input(X)
      // are the same.
      ctx->ShareLoD("X", /*->*/ "Out");
    }
  }

  static framework::DDim ValidateShape(const std::vector<int> shape,
                                       const framework::DDim &in_dims) {
    const int64_t in_size = framework::product(in_dims);
C
chengduo 已提交
128 129 130
    auto in_dims_vec = framework::vectorize(in_dims);
    bool all_positive = std::all_of(in_dims_vec.cbegin(), in_dims_vec.cend(),
                                    [](int64_t i) { return i > 0; });
Y
yuyang18 已提交
131 132 133 134 135 136 137 138 139 140
    // only one dimension can be set to -1, whose size will be automatically
    // infered.
    const int64_t unk_dim_val = -1;
    const int64_t copy_dim_val = 0;

    std::vector<int64_t> output_shape(shape.size(), 0);
    int64_t capacity = 1;
    int unk_dim_idx = -1;
    for (size_t i = 0; i < shape.size(); ++i) {
      if (shape[i] == unk_dim_val) {
141 142
        PADDLE_ENFORCE_EQ(
            unk_dim_idx, -1,
143 144 145
            "ShapeError: Only one dimension value of 'shape' in ReshapeOp can "
            "be -1. But received shape = [%s], shape[%d] is also -1.",
            framework::make_ddim(shape), i);
Y
yuyang18 已提交
146 147
        unk_dim_idx = i;
      } else if (shape[i] == copy_dim_val) {
148 149
        PADDLE_ENFORCE_LT(
            static_cast<int>(i), in_dims.size(),
150 151 152 153 154
            "ShapeError: The index of 0 in `shape` must be less than "
            "the input tensor X's dimensions. "
            "But received shape = [%s], shape[%d] = 0, X's shape = [%s], "
            "X's dimensions = %d.",
            framework::make_ddim(shape), i, in_dims, in_dims.size());
Y
yuyang18 已提交
155
      } else {
156 157
        PADDLE_ENFORCE_GT(
            shape[i], 0,
158 159 160 161
            "ShapeError: Each dimension value of 'shape' in ReshapeOp must not "
            "be negtive except one unknown dimension. "
            "But received  shape = [%s], shape[%d] = %d.",
            framework::make_ddim(shape), i, shape[i]);
Y
yuyang18 已提交
162 163 164 165 166 167 168 169
      }

      capacity *= (shape[i] ? shape[i] : in_dims[i]);
      output_shape[i] =
          (shape[i] ? static_cast<int64_t>(shape[i]) : in_dims[i]);
    }

    if (unk_dim_idx != -1) {
C
chengduo 已提交
170
      if (all_positive) {
Y
yuyang18 已提交
171 172 173 174 175 176
        // in_size < 0 and is un-determinate in compile time, skip the check,
        // for example, in_dims = [-1, 8, 1, 1], shape = [-1, 3, 8],
        // capacity = -24, in_size = -8, output_shape[0] = 0
        // the following check will fail.
        output_shape[unk_dim_idx] = -in_size / capacity;
        PADDLE_ENFORCE_EQ(output_shape[unk_dim_idx] * capacity, -in_size,
177 178 179 180 181 182 183 184
                          "ShapeError: The 'shape' in ReshapeOp is invalid. "
                          "The input tensor X'size must be divisible by known "
                          "capacity of 'shape'. "
                          "But received X's shape = [%s], X's size = %d, "
                          "'shape' is [%s], known "
                          "capacity of 'shape' is %d.",
                          in_dims, in_size, framework::make_ddim(shape),
                          capacity);
Y
yuyang18 已提交
185 186 187 188
      } else {
        output_shape[unk_dim_idx] = -1;
      }
    } else {
189 190 191 192 193 194 195
      PADDLE_ENFORCE_EQ(
          capacity, in_size,
          "ShapeError: The 'shape' in ReshapeOp is invalid. "
          "The input tensor X'size must be equal to the capacity of 'shape'. "
          "But received X's shape = [%s], X's size = %d, 'shape' is [%s], the "
          "capacity of 'shape' is %d.",
          in_dims, in_size, framework::make_ddim(shape), capacity);
Y
yuyang18 已提交
196 197 198 199 200 201 202
    }
    return framework::make_ddim(output_shape);
  }

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext &ctx) const override {
Y
Yu Yang 已提交
203 204
    return framework::OpKernelType(ctx.Input<framework::LoDTensor>("X")->type(),
                                   ctx.device_context());
Y
yuyang18 已提交
205
  }
206 207 208 209 210 211 212 213 214 215

  framework::OpKernelType GetKernelTypeForVar(
      const std::string &var_name, const Tensor &tensor,
      const framework::OpKernelType &expected_kernel_type) const override {
    if (var_name == "ShapeTensor") {
      return expected_kernel_type;
    }
    return framework::OpKernelType(expected_kernel_type.data_type_,
                                   tensor.place(), tensor.layout());
  }
Y
yuyang18 已提交
216 217
};

Y
Yibing Liu 已提交
218 219
class ReshapeOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
Y
Yu Yang 已提交
220
  void Make() override {
221 222
    AddInput("X", "(Tensor). The input tensor of reshape operator.");
    AddInput("Shape",
223 224 225
             "(Tensor<int32>, optional). Target shape of reshape operator. "
             "It has a higher priority than Attr(shape) but a lower priority "
             "than Input(ShapeTensor). The Attr(shape) still should be "
226 227
             "set correctly to gurantee shape inference in compile time.")
        .AsDispensable();
228 229
    AddInput(
        "ShapeTensor",
230 231 232 233
        "(vector<Tensor<int32>>, optional). Target shape of reshape operator. "
        "It has the highest priority compare with Input(Shape) and "
        "Attr(shape)."
        "The shape of the element in vector must be [1].")
234 235
        .AsDuplicable()
        .AsDispensable();
236
    AddOutput("Out", "(Tensor). The output tensor of reshape operator.");
C
caoying03 已提交
237
    AddAttr<std::vector<int>>(
238 239 240 241
        "shape",
        "(std::vector<int>) Target shape of reshape operator."
        "It has the lowest priority compare with Input(Shape) and "
        " Input(ShapeTensor).")
242
        .SetDefault({});
K
kexinzhao 已提交
243 244
    AddComment(R"DOC(
Reshape Operator.
Y
Yibing Liu 已提交
245

246 247
Reshape Input(X) into the shape specified by Attr(shape) or Input(Shape). The
data in Input(X) are unchanged.
Y
Yibing Liu 已提交
248

C
caoying03 已提交
249
Examples:
Y
Yibing Liu 已提交
250

C
caoying03 已提交
251 252 253 254
1. Given a 3-D tensor Input(X) with a shape [2, 4, 6], and the target shape
specified by Attr(shape) is [6, 8], the reshape operator will transform Input(X)
into a 2-D tensor with shape [6, 8] and leaving Input(X)'s data unchanged.

255
2. Given a 3-D tensor Input(X) with a shape [2, 4, 6], and the target shape
C
caoying03 已提交
256 257 258 259 260 261
specified by Attr(shape) is [2, 3, -1, 2], the reshape operator will transform
Input(X) into a 4-D tensor with shape [2, 3, 4, 2] and leaving Input(X)'s data
unchanged. In this case, one and only dimension of Attr(shape) can be set to -1,
the value of this dimension is inferred from the total element number of
Input(X) and remaining dimensions.

262
3. Given a 3-D tensor Input(X) with a shape [2, 4, 6], and the target shape
C
caoying03 已提交
263 264 265 266
specified by Attr(shape) is [-1, 0, 3, 2], the reshape operator will transform
Input(X) into a 4-D tensor with shape [2, 4, 3, 2] and leaving Input(X)'s data
unchanged. In this case, besides -1, 0 means the actual dimension value is going
to be copied from the corresponding dimension of Input(X).
Y
Yibing Liu 已提交
267

C
caoying03 已提交
268
Note:
Y
Yibing Liu 已提交
269

C
caoying03 已提交
270 271 272
1. One and only one dimension in Attr(shape) can be set -1. In this case,
the actual dimension value will be infered from the total element number of
Input(X) and remaining dimensions.
273 274

2. More than one dimensions in Attr(shape) can be set to 0, which means the real
C
caoying03 已提交
275
dimension value will be copied from Input(X) at runtime. Note that the index of
G
guosheng 已提交
276
0 can not exceed Rank(X). For example, Input(X) is a 3-D tensor with shape
C
caoying03 已提交
277
[2, 3, 4], Attr(shape) = [2, 3, 2, 0] is an invalid input.
278 279

3. Input(Shape) has a higher priority than Attr(shape) if it is provided, while
M
minqiyang 已提交
280
Attr(shape) still should be set correctly to gurantee shape inference in
281
compile-time.
Y
Yibing Liu 已提交
282

Y
Yibing Liu 已提交
283 284 285 286 287 288 289 290 291 292 293 294
)DOC");
  }
};

class ReshapeGradOp : public framework::OperatorWithKernel {
 public:
  ReshapeGradOp(const std::string &type,
                const framework::VariableNameMap &inputs,
                const framework::VariableNameMap &outputs,
                const framework::AttributeMap &attrs)
      : OperatorWithKernel(type, inputs, outputs, attrs) {}

295
  void InferShape(framework::InferShapeContext *ctx) const override {
296 297 298
    PADDLE_ENFORCE_EQ(ctx->HasInput("X"), true, "Input(X) shouldn't be null.");
    PADDLE_ENFORCE_EQ(ctx->HasInput(framework::GradVarName("Out")), true,
                      "Input(Out@GRAD) shouldn't be null.");
Q
Qiao Longfei 已提交
299
    ctx->SetOutputDim(framework::GradVarName("X"), ctx->GetInputDim("X"));
Y
Yibing Liu 已提交
300
  }
301 302 303 304

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext &ctx) const override {
Y
Yu Yang 已提交
305 306
    return framework::OpKernelType(ctx.Input<framework::LoDTensor>("X")->type(),
                                   ctx.device_context());
307
  }
Y
Yibing Liu 已提交
308 309
};

Y
yuyang18 已提交
310 311 312 313 314
class ReshapeKernel {
 public:
  void operator()(const framework::ExecutionContext &ctx) const {
    auto *out = ctx.Output<framework::LoDTensor>("Out");
    auto *in = ctx.Input<framework::LoDTensor>("X");
Y
yuyang18 已提交
315

Y
yuyang18 已提交
316
    framework::DDim out_dims = out->dims();
Y
yuyang18 已提交
317

318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340
    auto list_new_shape_tensor =
        ctx.MultiInput<framework::Tensor>("ShapeTensor");
    if (list_new_shape_tensor.size() > 0) {
      // have shape tensor
      auto new_shape = get_new_shape(list_new_shape_tensor);
      out_dims = ReshapeOp::ValidateShape(new_shape, in->dims());

    } else {
      auto *shape_tensor = ctx.HasInput("Shape")
                               ? ctx.Input<framework::LoDTensor>("Shape")
                               : nullptr;

      if (shape_tensor) {
        auto *shape_data = shape_tensor->data<int>();
        framework::Tensor cpu_shape_tensor;
        if (platform::is_gpu_place(shape_tensor->place())) {
          TensorCopySync(*shape_tensor, platform::CPUPlace(),
                         &cpu_shape_tensor);
          shape_data = cpu_shape_tensor.data<int>();
        }
        auto shape =
            std::vector<int>(shape_data, shape_data + shape_tensor->numel());
        out_dims = ReshapeOp::ValidateShape(shape, in->dims());
Y
yuyang18 已提交
341 342
      }
    }
Y
yuyang18 已提交
343

344
    out->Resize(out_dims);
345
    out->mutable_data(ctx.GetPlace(), in->type());
Y
Yiqun Liu 已提交
346 347 348
    framework::TensorCopy(
        *in, ctx.GetPlace(),
        ctx.template device_context<platform::DeviceContext>(), out);
Y
yuyang18 已提交
349 350
    out->Resize(out_dims);
  }
Y
yuyang18 已提交
351 352 353 354 355 356 357
};

class ReshapeGradKernel {
 public:
  void operator()(const framework::ExecutionContext &ctx) const {
    auto *d_out = ctx.Input<framework::Tensor>(framework::GradVarName("Out"));
    auto *d_x = ctx.Output<framework::Tensor>(framework::GradVarName("X"));
D
dzhwinter 已提交
358
    auto in_dims = d_x->dims();
Y
yuyang18 已提交
359

360 361
    d_x->mutable_data(ctx.GetPlace(), d_out->type());
    framework::TensorCopySync(*d_out, ctx.GetPlace(), d_x);
D
dzhwinter 已提交
362
    d_x->Resize(in_dims);
Y
yuyang18 已提交
363
  }
Y
yuyang18 已提交
364 365
};

366 367 368 369 370 371 372 373 374 375 376 377 378 379
class ReshapeDoubleGradKernel {
 public:
  void operator()(const framework::ExecutionContext &ctx) const {
    auto *dd_x = ctx.Input<framework::Tensor>("DDX");
    auto *dd_out = ctx.Output<framework::Tensor>("DDOut");

    auto out_dims = dd_out->dims();

    dd_out->mutable_data(ctx.GetPlace(), dd_x->type());
    framework::TensorCopySync(*dd_x, ctx.GetPlace(), dd_out);
    dd_out->Resize(out_dims);
  }
};

380 381 382 383 384 385 386 387 388 389 390 391 392
// FIXME(zcd): reshape2 adds an intermediate output(XShape) based on reshape,
// the XShape is used to carry the shape and lod of X which will be used in
// reshape_grad, in this way, the framework can reuse the memory of X
// immediately the reshape_op is finished.
// Considering compatibility issues, we could not fix reshape_op
class Reshape2Op : public ReshapeOp {
 public:
  Reshape2Op(const std::string &type, const framework::VariableNameMap &inputs,
             const framework::VariableNameMap &outputs,
             const framework::AttributeMap &attrs)
      : ReshapeOp(type, inputs, outputs, attrs) {}

  void InferShape(framework::InferShapeContext *ctx) const override {
393 394
    PADDLE_ENFORCE_EQ(ctx->HasOutput("XShape"), true,
                      "Output(XShape) of ReshapeOp should not be null.");
395 396 397 398 399 400 401 402
    const auto &x_dims = ctx->GetInputDim("X");
    std::vector<int64_t> xshape_dims(x_dims.size() + 1);
    xshape_dims[0] = 0;
    for (int i = 0; i < x_dims.size(); ++i) {
      xshape_dims[i + 1] = x_dims[i];
    }
    ctx->SetOutputDim("XShape", framework::make_ddim(xshape_dims));
    ctx->ShareLoD("X", /*->*/ "XShape");
M
minqiyang 已提交
403 404

    ReshapeOp::InferShape(ctx);
405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425
  }
};

class Reshape2OpMaker : public ReshapeOpMaker {
 public:
  void Make() override {
    ReshapeOpMaker::Make();
    AddOutput("XShape",
              "XShape is just used to store the shape and lod of X, which will "
              "be used in FlattenGradOp.")
        .AsIntermediate();
  }
};

class Reshape2GradMaker : public framework::SingleGradOpDescMaker {
 public:
  using framework::SingleGradOpDescMaker::SingleGradOpDescMaker;

  std::unique_ptr<framework::OpDesc> Apply() const override {
    auto *grad_op = new framework::OpDesc();
    grad_op->SetType("reshape2_grad");
426
    grad_op->SetInput("X", Input("X"));
427
    grad_op->SetInput("XShape", Output("XShape"));
428
    grad_op->SetInput("ShapeTensor", Input("ShapeTensor"));
429 430 431 432 433 434 435
    grad_op->SetInput(framework::GradVarName("Out"), OutputGrad("Out"));
    grad_op->SetOutput(framework::GradVarName("X"), InputGrad("X"));
    grad_op->SetAttrMap(Attrs());
    return std::unique_ptr<framework::OpDesc>(grad_op);
  }
};

436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456
class Reshape2DoubleGradMaker : public framework::SingleGradOpDescMaker {
 public:
  using framework::SingleGradOpDescMaker::SingleGradOpDescMaker;

  std::unique_ptr<framework::OpDesc> Apply() const override {
    auto *grad_op = new framework::OpDesc();
    grad_op->SetType("reshape2_grad_grad");

    grad_op->SetInput("X", Input("X"));
    grad_op->SetInput("ShapeTensor", Input("ShapeTensor"));
    grad_op->SetInput("DOut", Input(framework::GradVarName("Out")));
    grad_op->SetInput("DDX", OutputGrad(framework::GradVarName("X")));

    auto ddx = OutputGrad(framework::GradVarName("X"));

    grad_op->SetOutput("DDOut", InputGrad(framework::GradVarName("Out")));
    grad_op->SetAttrMap(Attrs());
    return std::unique_ptr<framework::OpDesc>(grad_op);
  }
};

457 458 459 460 461 462 463 464 465
class Reshape2GradOp : public framework::OperatorWithKernel {
 public:
  Reshape2GradOp(const std::string &type,
                 const framework::VariableNameMap &inputs,
                 const framework::VariableNameMap &outputs,
                 const framework::AttributeMap &attrs)
      : OperatorWithKernel(type, inputs, outputs, attrs) {}

  void InferShape(framework::InferShapeContext *ctx) const override {
466 467 468 469
    PADDLE_ENFORCE_EQ(ctx->HasInput("XShape"), true,
                      "Input(XShape) shouldn't be null.");
    PADDLE_ENFORCE_EQ(ctx->HasInput(framework::GradVarName("Out")), true,
                      "Input(Out@GRAD) shouldn't be null.");
470 471 472 473 474 475 476 477 478 479
    auto xshape_dims = ctx->GetInputDim("XShape");
    auto x_dims = framework::slice_ddim(xshape_dims, 1, xshape_dims.size());
    ctx->SetOutputDim(framework::GradVarName("X"), x_dims);
    ctx->ShareLoD("XShape", framework::GradVarName("X"));
  }

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext &ctx) const override {
    return framework::OpKernelType(
Y
Yu Yang 已提交
480
        ctx.Input<framework::LoDTensor>(framework::GradVarName("Out"))->type(),
481 482
        ctx.device_context());
  }
483 484 485 486 487 488 489 490 491 492

  framework::OpKernelType GetKernelTypeForVar(
      const std::string &var_name, const Tensor &tensor,
      const framework::OpKernelType &expected_kernel_type) const override {
    if (var_name == "ShapeTensor") {
      return expected_kernel_type;
    }
    return framework::OpKernelType(expected_kernel_type.data_type_,
                                   tensor.place(), tensor.layout());
  }
493 494
};

495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530
class Reshape2DoubleGradOp : public framework::OperatorWithKernel {
 public:
  Reshape2DoubleGradOp(const std::string &type,
                       const framework::VariableNameMap &inputs,
                       const framework::VariableNameMap &outputs,
                       const framework::AttributeMap &attrs)
      : OperatorWithKernel(type, inputs, outputs, attrs) {}

  void InferShape(framework::InferShapeContext *ctx) const override {
    PADDLE_ENFORCE_EQ(ctx->HasInput("X"), true, "Input(X) shouldn't be null.");
    PADDLE_ENFORCE_EQ(ctx->HasInput("DDX"), true,
                      "Input(X@GRAD_GRAD) shouldn't be null.");

    if (ctx->HasOutput("DDOut") && ctx->HasInput("DDX")) {
      ctx->ShareDim("DOut", "DDOut");
    }
  }

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext &ctx) const override {
    return framework::OpKernelType(ctx.Input<framework::Tensor>("DDX")->type(),
                                   ctx.device_context());
  }

  framework::OpKernelType GetKernelTypeForVar(
      const std::string &var_name, const Tensor &tensor,
      const framework::OpKernelType &expected_kernel_type) const override {
    if (var_name == "ShapeTensor") {
      return expected_kernel_type;
    }
    return framework::OpKernelType(expected_kernel_type.data_type_,
                                   tensor.place(), tensor.layout());
  }
};

531 532 533 534
DECLARE_INPLACE_OP_INFERER(ReshapeOpInplaceInToOut, {"X", "Out"});
DECLARE_INPLACE_OP_INFERER(ReshapeGradInplaceInToOut,
                           {framework::GradVarName("Out"),
                            framework::GradVarName("X")});
535
DECLARE_INPLACE_OP_INFERER(ReshapeDoubleGradInplaceInToOut, {"DDX", "DDOut"});
D
dzhwinter 已提交
536

Y
Yibing Liu 已提交
537 538 539
}  // namespace operators
}  // namespace paddle
namespace ops = paddle::operators;
540
namespace plat = paddle::platform;
Y
Yibing Liu 已提交
541

Y
Yang Yang 已提交
542
REGISTER_OPERATOR(reshape, ops::ReshapeOp, ops::ReshapeOpMaker,
D
dzhwinter 已提交
543 544 545 546
                  paddle::framework::DefaultGradOpDescMaker<true>,
                  ops::ReshapeOpInplaceInToOut);
REGISTER_OPERATOR(reshape_grad, ops::ReshapeGradOp,
                  ops::ReshapeGradInplaceInToOut);
547

548 549 550 551 552 553 554
REGISTER_OP_CPU_KERNEL_FUNCTOR(reshape, float, ops::ReshapeKernel, double,
                               ops::ReshapeKernel, int, ops::ReshapeKernel,
                               int64_t, ops::ReshapeKernel);
REGISTER_OP_CPU_KERNEL_FUNCTOR(reshape_grad, float, ops::ReshapeGradKernel,
                               double, ops::ReshapeGradKernel, int,
                               ops::ReshapeGradKernel, int64_t,
                               ops::ReshapeGradKernel);
555
REGISTER_OPERATOR(reshape2, ops::Reshape2Op, ops::Reshape2OpMaker,
D
dzhwinter 已提交
556 557
                  ops::Reshape2GradMaker, ops::ReshapeOpInplaceInToOut);
REGISTER_OPERATOR(reshape2_grad, ops::Reshape2GradOp,
558 559 560 561
                  ops::Reshape2DoubleGradMaker, ops::ReshapeGradInplaceInToOut);
REGISTER_OPERATOR(reshape2_grad_grad, ops::Reshape2DoubleGradOp,
                  ops::ReshapeDoubleGradInplaceInToOut);

562 563 564 565 566 567 568
REGISTER_OP_CPU_KERNEL_FUNCTOR(reshape2, float, ops::ReshapeKernel, double,
                               ops::ReshapeKernel, int, ops::ReshapeKernel,
                               int64_t, ops::ReshapeKernel);
REGISTER_OP_CPU_KERNEL_FUNCTOR(reshape2_grad, float, ops::ReshapeGradKernel,
                               double, ops::ReshapeGradKernel, int,
                               ops::ReshapeGradKernel, int64_t,
                               ops::ReshapeGradKernel);
569 570 571 572 573
REGISTER_OP_CPU_KERNEL_FUNCTOR(reshape2_grad_grad, float,
                               ops::ReshapeDoubleGradKernel, double,
                               ops::ReshapeDoubleGradKernel, int,
                               ops::ReshapeDoubleGradKernel, int64_t,
                               ops::ReshapeDoubleGradKernel);
574

Y
yuyang18 已提交
575
#ifdef PADDLE_WITH_CUDA
576 577
REGISTER_OP_CUDA_KERNEL_FUNCTOR(reshape, float, ops::ReshapeKernel, double,
                                ops::ReshapeKernel, int, ops::ReshapeKernel,
578 579
                                int64_t, ops::ReshapeKernel, plat::float16,
                                ops::ReshapeKernel);
580 581 582
REGISTER_OP_CUDA_KERNEL_FUNCTOR(reshape_grad, float, ops::ReshapeGradKernel,
                                double, ops::ReshapeGradKernel, int,
                                ops::ReshapeGradKernel, int64_t,
583
                                ops::ReshapeGradKernel, plat::float16,
584 585 586
                                ops::ReshapeGradKernel);
REGISTER_OP_CUDA_KERNEL_FUNCTOR(reshape2, float, ops::ReshapeKernel, double,
                                ops::ReshapeKernel, int, ops::ReshapeKernel,
587 588
                                int64_t, ops::ReshapeKernel, plat::float16,
                                ops::ReshapeKernel);
589 590 591
REGISTER_OP_CUDA_KERNEL_FUNCTOR(reshape2_grad, float, ops::ReshapeGradKernel,
                                double, ops::ReshapeGradKernel, int,
                                ops::ReshapeGradKernel, int64_t,
592
                                ops::ReshapeGradKernel, plat::float16,
593
                                ops::ReshapeGradKernel);
594 595 596 597 598 599 600

REGISTER_OP_CUDA_KERNEL_FUNCTOR(reshape2_grad_grad, float,
                                ops::ReshapeDoubleGradKernel, double,
                                ops::ReshapeDoubleGradKernel, int,
                                ops::ReshapeDoubleGradKernel, int64_t,
                                ops::ReshapeDoubleGradKernel, plat::float16,
                                ops::ReshapeDoubleGradKernel);
Y
yuyang18 已提交
601
#endif