reshape_op.cc 5.3 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Y
Yibing Liu 已提交
2

L
Luo Tao 已提交
3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
Y
Yibing Liu 已提交
6

L
Luo Tao 已提交
7
    http://www.apache.org/licenses/LICENSE-2.0
Y
Yibing Liu 已提交
8

L
Luo Tao 已提交
9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
Y
Yibing Liu 已提交
14

Y
Yi Wang 已提交
15
#include "paddle/fluid/operators/reshape_op.h"
Y
Yibing Liu 已提交
16

Y
Yi Wang 已提交
17 18 19
#include <string>
#include <vector>

Y
Yibing Liu 已提交
20 21 22 23 24
namespace paddle {
namespace operators {

class ReshapeOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
25
  ReshapeOpMaker(OpProto *proto, OpAttrChecker *op_checker)
Y
Yibing Liu 已提交
26
      : OpProtoAndCheckerMaker(proto, op_checker) {
27 28 29 30 31 32 33 34
    AddInput("X", "(Tensor). The input tensor of reshape operator.");
    AddInput("Shape",
             "(Tensor<int32>, optional). If provided, reshape according to "
             "this given shape. That is to say it has a higher priority than "
             "the shape attribute, while the shape attribute still should be "
             "set correctly to gurantee shape inference in compile time.")
        .AsDispensable();
    AddOutput("Out", "(Tensor). The output tensor of reshape operator.");
C
caoying03 已提交
35
    AddAttr<std::vector<int>>(
C
caoying03 已提交
36
        "shape", "(std::vector<int>) Target shape of reshape operator.");
Y
Yan Chunwei 已提交
37
    AddAttr<bool>("inplace",
C
caoying03 已提交
38 39 40 41 42
                  "(default: false) Change the source tensor's shape without "
                  "memory copy. When Attr(inplace) is set true, the output "
                  "tensor shares memory with Input(X), otherwise, a new output "
                  "tensor is created, and its data are copied from Input(x).")
        .SetDefault(false);
K
kexinzhao 已提交
43 44
    AddComment(R"DOC(
Reshape Operator.
Y
Yibing Liu 已提交
45

46 47
Reshape Input(X) into the shape specified by Attr(shape) or Input(Shape). The
data in Input(X) are unchanged.
Y
Yibing Liu 已提交
48

C
caoying03 已提交
49
Examples:
Y
Yibing Liu 已提交
50

C
caoying03 已提交
51 52 53 54
1. Given a 3-D tensor Input(X) with a shape [2, 4, 6], and the target shape
specified by Attr(shape) is [6, 8], the reshape operator will transform Input(X)
into a 2-D tensor with shape [6, 8] and leaving Input(X)'s data unchanged.

55
2. Given a 3-D tensor Input(X) with a shape [2, 4, 6], and the target shape
C
caoying03 已提交
56 57 58 59 60 61
specified by Attr(shape) is [2, 3, -1, 2], the reshape operator will transform
Input(X) into a 4-D tensor with shape [2, 3, 4, 2] and leaving Input(X)'s data
unchanged. In this case, one and only dimension of Attr(shape) can be set to -1,
the value of this dimension is inferred from the total element number of
Input(X) and remaining dimensions.

62
3. Given a 3-D tensor Input(X) with a shape [2, 4, 6], and the target shape
C
caoying03 已提交
63 64 65 66
specified by Attr(shape) is [-1, 0, 3, 2], the reshape operator will transform
Input(X) into a 4-D tensor with shape [2, 4, 3, 2] and leaving Input(X)'s data
unchanged. In this case, besides -1, 0 means the actual dimension value is going
to be copied from the corresponding dimension of Input(X).
Y
Yibing Liu 已提交
67

C
caoying03 已提交
68
Note:
Y
Yibing Liu 已提交
69

C
caoying03 已提交
70 71 72
1. One and only one dimension in Attr(shape) can be set -1. In this case,
the actual dimension value will be infered from the total element number of
Input(X) and remaining dimensions.
73 74

2. More than one dimensions in Attr(shape) can be set to 0, which means the real
C
caoying03 已提交
75
dimension value will be copied from Input(X) at runtime. Note that the index of
G
guosheng 已提交
76
0 can not exceed Rank(X). For example, Input(X) is a 3-D tensor with shape
C
caoying03 已提交
77
[2, 3, 4], Attr(shape) = [2, 3, 2, 0] is an invalid input.
78 79

3. Input(Shape) has a higher priority than Attr(shape) if it is provided, while
80 81
Attr(shape) still should be set correctly to gurantee shape inference in 
compile-time.
Y
Yibing Liu 已提交
82

Y
Yibing Liu 已提交
83 84 85 86 87 88 89 90 91 92 93 94
)DOC");
  }
};

class ReshapeGradOp : public framework::OperatorWithKernel {
 public:
  ReshapeGradOp(const std::string &type,
                const framework::VariableNameMap &inputs,
                const framework::VariableNameMap &outputs,
                const framework::AttributeMap &attrs)
      : OperatorWithKernel(type, inputs, outputs, attrs) {}

95
  void InferShape(framework::InferShapeContext *ctx) const override {
Q
Qiao Longfei 已提交
96 97 98 99
    PADDLE_ENFORCE(ctx->HasInput("X"), "Input(X) shouldn't be null.");
    PADDLE_ENFORCE(ctx->HasInput(framework::GradVarName("Out")),
                   "Input(Out@GRAD) shouldn't be null.");
    ctx->SetOutputDim(framework::GradVarName("X"), ctx->GetInputDim("X"));
Y
Yibing Liu 已提交
100
  }
101 102 103 104 105 106 107 108

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext &ctx) const override {
    return framework::OpKernelType(
        framework::ToDataType(ctx.Input<framework::LoDTensor>("X")->type()),
        ctx.device_context());
  }
Y
Yibing Liu 已提交
109 110 111 112 113
};

}  // namespace operators
}  // namespace paddle
namespace ops = paddle::operators;
114
using CPU = paddle::platform::CPUDeviceContext;
Y
Yibing Liu 已提交
115 116 117

REGISTER_OP(reshape, ops::ReshapeOp, ops::ReshapeOpMaker, reshape_grad,
            ops::ReshapeGradOp);
118 119 120 121 122 123 124 125
REGISTER_OP_CPU_KERNEL(reshape, ops::ReshapeKernel<CPU, float>,
                       ops::ReshapeKernel<CPU, double>,
                       ops::ReshapeKernel<CPU, int>,
                       ops::ReshapeKernel<CPU, int64_t>);
REGISTER_OP_CPU_KERNEL(reshape_grad, ops::ReshapeGradKernel<CPU, float>,
                       ops::ReshapeGradKernel<CPU, double>,
                       ops::ReshapeGradKernel<CPU, int>,
                       ops::ReshapeGradKernel<CPU, int64_t>);