reshape_op.cc 6.2 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Y
Yibing Liu 已提交
2

L
Luo Tao 已提交
3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
Y
Yibing Liu 已提交
6

L
Luo Tao 已提交
7
    http://www.apache.org/licenses/LICENSE-2.0
Y
Yibing Liu 已提交
8

L
Luo Tao 已提交
9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
Y
Yibing Liu 已提交
14

Y
Yi Wang 已提交
15
#include "paddle/fluid/operators/reshape_op.h"
Y
Yibing Liu 已提交
16 17 18 19 20 21 22 23 24 25 26

namespace paddle {
namespace operators {

class ReshapeOp : public framework::OperatorWithKernel {
 public:
  ReshapeOp(const std::string &type, const framework::VariableNameMap &inputs,
            const framework::VariableNameMap &outputs,
            const framework::AttributeMap &attrs)
      : OperatorWithKernel(type, inputs, outputs, attrs) {}

27
  void InferShape(framework::InferShapeContext *ctx) const override {
Y
Yibing Liu 已提交
28
    // input check
Q
Qiao Longfei 已提交
29 30 31 32
    PADDLE_ENFORCE(ctx->HasInput("X"),
                   "Input(X) of ReshapeOp should not be null.");
    PADDLE_ENFORCE(ctx->HasOutput("Out"),
                   "Output(Out) of ReshapeOp should not be null.");
33

Y
ying 已提交
34 35 36 37 38 39 40
    const std::vector<int> &shape = ctx->Attrs().Get<std::vector<int>>("shape");

    PADDLE_ENFORCE_EQ(shape.empty(), ctx->HasInput("Shape"),
                      "The shape information can only be set by Attr(shape) or "
                      "by Input(Shape). Attr(shape) and Input(Shape) cannot be "
                      "set at the same time.");

Q
Qiao Longfei 已提交
41
    auto x_dims = ctx->GetInputDim("X");
42

Y
ying 已提交
43 44
    if (ctx->HasInput("Shape")) {
      auto shape_dims = ctx->GetInputDim("Shape");
45

Y
ying 已提交
46 47 48 49 50 51 52 53 54 55 56 57 58
      PADDLE_ENFORCE(shape_dims.size() == 2UL && shape_dims[0] == 1UL,
                     "The Input(Label) should be a 2-D tensor with the 1st "
                     "dimensions fixed to 1 (a row vector).");

      // The actual output shape will be set at runtime, here temporially the
      // the shape of output the same as the shape of input.
      ctx->SetOutputDim("Out", x_dims);
    } else {
      std::vector<int64_t> output_shape;
      ValidateShape(shape, framework::product(x_dims), output_shape);

      auto out_dims = framework::make_ddim(output_shape);
      ctx->SetOutputDim("Out", out_dims);
59
    }
Y
ying 已提交
60

Q
Qiao Longfei 已提交
61
    if (shape[0] == x_dims[0]) {
Y
ying 已提交
62 63
      // Only pass LoD when the first dimension of output and input are the
      // same.
Q
Qiao Longfei 已提交
64
      ctx->ShareLoD("X", /*->*/ "Out");
D
Fix bug  
dangqingqing 已提交
65
    }
Y
Yibing Liu 已提交
66
  }
Y
ying 已提交
67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96

 private:
  void ValidateShape(const std::vector<int> &shape, const int64_t in_size,
                     std::vector<int64_t> &output_shape) const {
    std::vector<size_t> neg_dims_idx;
    const int unknown_index = -1;  // only one dimension canbe set to -1, whose
                                   // size will be automatically infered.

    for (size_t i = 0; i < shape.size(); ++i) {
      PADDLE_ENFORCE(shape[i] > 1 || shape[i] == unknown_index,
                     "Each input dimension of Attr(shape) must be positive, or "
                     "only one input dimension can be -1.");
      if (shape[i] == unknown_index) neg_dims_idx.push_back(i);
    }
    PADDLE_ENFORCE_LE(
        neg_dims_idx.size(), 1,
        "Only one input dimension of Attr(shape) may be unknown.");

    int64_t inferred_dim = 0;
    if (neg_dims_idx.size()) {
      int64_t capacity = std::accumulate(shape.begin(), shape.end(), 1,
                                         std::multiplies<int>());
      inferred_dim = in_size / (-capacity);
    }

    output_shape.resize(shape.size(), 0);
    std::transform(shape.begin(), shape.end(), output_shape.begin(),
                   [](int a) { return static_cast<int64_t>(a); });
    if (neg_dims_idx.size()) output_shape[neg_dims_idx[0]] = inferred_dim;
  }
Y
Yibing Liu 已提交
97 98 99 100
};

class ReshapeOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
101
  ReshapeOpMaker(OpProto *proto, OpAttrChecker *op_checker)
Y
Yibing Liu 已提交
102 103
      : OpProtoAndCheckerMaker(proto, op_checker) {
    AddInput("X", "The input tensor of reshape operator.");
Y
ying 已提交
104 105
    AddInput("Shape", "a 1-D tensor that provides the shape information.")
        .AsDispensable();
Y
Yibing Liu 已提交
106
    AddOutput("Out", "The output tensor of reshape operator.");
K
kexinzhao 已提交
107
    AddAttr<std::vector<int>>("shape",
Y
ying 已提交
108 109
                              "(vector<int>) Target shape of reshape operator.")
        .SetDefault(std::vector<int>());
K
kexinzhao 已提交
110 111
    AddComment(R"DOC(
Reshape Operator.
Y
Yibing Liu 已提交
112

Y
Yibing Liu 已提交
113
Reshape Input(X) into the shape specified by Attr(shape).
Y
Yibing Liu 已提交
114 115

An example:
Y
ying 已提交
116
Given a 2-D tensor X with 2 rows and 2 columns : [[1, 2], [3, 4]]
Y
Yibing Liu 已提交
117

K
kexinzhao 已提交
118
and target shape = [1, 4], the reshape operator will transform
Y
ying 已提交
119
the tensor X into a 2-D tensor: [[1, 2, 3, 4]]
Y
Yibing Liu 已提交
120

Y
Yibing Liu 已提交
121
One dimension in the target shape can be set -1, representing that its
Y
ying 已提交
122
size is unknown. In this case, the real dimension will be infered from
Y
Yibing Liu 已提交
123
the original shape of Input(X) and other dimensions in the target shape.
Y
Yibing Liu 已提交
124 125 126 127 128 129 130 131 132 133 134 135
)DOC");
  }
};

class ReshapeGradOp : public framework::OperatorWithKernel {
 public:
  ReshapeGradOp(const std::string &type,
                const framework::VariableNameMap &inputs,
                const framework::VariableNameMap &outputs,
                const framework::AttributeMap &attrs)
      : OperatorWithKernel(type, inputs, outputs, attrs) {}

136
  void InferShape(framework::InferShapeContext *ctx) const override {
Q
Qiao Longfei 已提交
137 138 139 140
    PADDLE_ENFORCE(ctx->HasInput("X"), "Input(X) shouldn't be null.");
    PADDLE_ENFORCE(ctx->HasInput(framework::GradVarName("Out")),
                   "Input(Out@GRAD) shouldn't be null.");
    ctx->SetOutputDim(framework::GradVarName("X"), ctx->GetInputDim("X"));
Y
Yibing Liu 已提交
141 142 143 144 145 146
  }
};

}  // namespace operators
}  // namespace paddle
namespace ops = paddle::operators;
147
using CPU = paddle::platform::CPUDeviceContext;
Y
Yibing Liu 已提交
148 149 150

REGISTER_OP(reshape, ops::ReshapeOp, ops::ReshapeOpMaker, reshape_grad,
            ops::ReshapeGradOp);
151 152 153 154 155 156 157 158
REGISTER_OP_CPU_KERNEL(reshape, ops::ReshapeKernel<CPU, float>,
                       ops::ReshapeKernel<CPU, double>,
                       ops::ReshapeKernel<CPU, int>,
                       ops::ReshapeKernel<CPU, int64_t>);
REGISTER_OP_CPU_KERNEL(reshape_grad, ops::ReshapeGradKernel<CPU, float>,
                       ops::ReshapeGradKernel<CPU, double>,
                       ops::ReshapeGradKernel<CPU, int>,
                       ops::ReshapeGradKernel<CPU, int64_t>);