pooling.py 86.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

# TODO: define pooling functions
16 17
from ...fluid.layers import utils, LayerHelper
from ...tensor.manipulation import unsqueeze, squeeze
18
from ...fluid.data_feeder import check_type, check_variable_and_dtype
19
from paddle import _C_ops, _legacy_C_ops
Z
zhiboniu 已提交
20
from paddle import in_dynamic_mode
21 22 23
from paddle.fluid import core
from paddle.fluid.framework import _in_legacy_dygraph, Variable
from paddle.fluid.framework import in_dygraph_mode, _non_static_mode
24

25 26
__all__ = []

27

28 29 30 31 32
def _is_list_or_tuple(input):
    return isinstance(input, (list, tuple))


def _check_input(x, dimension):
33
    if len(x.shape) != dimension:
34 35 36
        raise ValueError(
            "Excepted Input X is {}-D tensor, but received {}-D {}".format(
                dimension, len(x.shape), type(x)))
37 38


39
def _check_instance(x, x_name, types=(int, float)):
40 41

    if not isinstance(x, types):
42 43 44
        raise ValueError(
            "Excepted {} type for {} but received type: {}. ".format(
                types, x_name, type(x)))
45 46


D
Double_V 已提交
47
def _check_value_limitation(x, x_name, min_limit=1e-3):
48

D
Double_V 已提交
49 50 51
    def _check_value(x, x_name, min_limit=1e-3):
        if isinstance(x, int) and min_limit is not None and x < min_limit:
            raise ValueError(
52 53
                "Excepted the input {} to be greater than {} but received x: {}. "
                .format(x_name, min_limit, x))
D
Double_V 已提交
54 55 56 57 58

    for ele in x:
        _check_value(ele, x_name)


59 60 61
def _zero_padding_in_batch_and_channel(padding, channel_last):
    if channel_last:
        return list(padding[0]) == [0, 0] and list(padding[-1]) == [0, 0]
62
    else:
63
        return list(padding[0]) == [0, 0] and list(padding[1]) == [0, 0]
64 65


66 67 68 69
def _exclude_padding_in_batch_and_channel(padding, channel_last):
    padding_ = padding[1:-1] if channel_last else padding[2:]
    padding_ = [elem for pad_a_dim in padding_ for elem in pad_a_dim]
    return padding_
70 71


72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93
def _channel_last(data_format, num_dims):
    if num_dims == 1:
        if data_format not in ['NCL', 'NLC']:
            raise ValueError(
                "Attr(data_format) should be 'NCL' or 'NLC'. Received "
                "Attr(data_format): %s" % str(data_format))
        else:
            return True if data_format == "NLC" else False
    if num_dims == 2:
        if data_format not in ['NCHW', 'NHWC']:
            raise ValueError(
                "Attr(data_format) should be 'NCHW' or 'NHWC'. Received "
                "Attr(data_format): %s" % str(data_format))
        else:
            return True if data_format == "NHWC" else False
    if num_dims == 3:
        if data_format not in ['NCDHW', 'NDHWC']:
            raise ValueError(
                "Attr(data_format) should be 'NCDHW' or 'NDHWC'. Received "
                "Attr(data_format): %s" % str(data_format))
        else:
            return True if data_format == "NDHWC" else False
94 95


96 97 98 99 100 101 102 103 104
def _update_padding_nd(padding, num_dims, channel_last=False, ceil_mode=False):
    if isinstance(padding, str):
        padding = padding.upper()
        if padding not in ["SAME", "VALID"]:
            raise ValueError(
                "Unknown padding: '{}'. It can only be 'SAME' or 'VALID'.".
                format(padding))
        if padding == "VALID":
            if ceil_mode != False:
105
                raise ValueError(
106 107 108 109 110 111 112 113 114 115 116 117 118 119
                    "When Attr(padding) is \"VALID\", Attr(ceil_mode) must be False. "
                    "Received ceil_mode: True.")

            padding_algorithm = "VALID"
            padding = [0] * num_dims
        else:
            padding_algorithm = "SAME"
            padding = [0] * num_dims
    elif _is_list_or_tuple(padding):
        # for padding like
        # [(pad_before, pad_after), (pad_before, pad_after), ...]
        # padding for batch_dim and channel_dim included
        if len(padding) == 2 + num_dims and _is_list_or_tuple(padding[0]):
            if not _zero_padding_in_batch_and_channel(padding, channel_last):
120
                raise ValueError(
121 122 123
                    "Non-zero padding({}) in the batch or channel dimensions "
                    "is not supported.".format(padding))
            padding_algorithm = "EXPLICIT"
124 125
            padding = _exclude_padding_in_batch_and_channel(
                padding, channel_last)
126 127 128 129 130 131 132 133 134 135 136 137 138 139 140
            if utils._is_symmetric_padding(padding, num_dims):
                padding = padding[0::2]
        # for padding like [pad_before, pad_after, pad_before, pad_after, ...]
        elif len(padding) == 2 * num_dims and isinstance(padding[0], int):
            padding_algorithm = "EXPLICIT"
            padding = utils.convert_to_list(padding, 2 * num_dims, 'padding')
            if utils._is_symmetric_padding(padding, num_dims):
                padding = padding[0::2]
        # for padding like [pad_d1, pad_d2, ...]
        elif len(padding) == num_dims and isinstance(padding[0], int):
            padding_algorithm = "EXPLICIT"
            padding = utils.convert_to_list(padding, num_dims, 'padding')
        else:
            raise ValueError("Invalid padding: {}".format(padding))
    # for integer padding
141
    else:
142 143 144 145
        padding_algorithm = "EXPLICIT"
        padding = utils.convert_to_list(padding, num_dims, 'padding')
    return padding, padding_algorithm

146

147 148 149 150 151 152 153 154
def _expand_low_nd_padding(padding):
    #1d to 2d fake input
    if len(padding) == 2:
        padding = [0] * 2 + padding
    elif len(padding) == 1:
        padding = [0] + padding
    else:
        raise ValueError(
155 156
            "The size of padding's dimmention should be 1 or 2. But got padding={}"
            .format(padding))
157 158 159 160 161 162 163
    return padding


def avg_pool1d(x,
               kernel_size,
               stride=None,
               padding=0,
164
               exclusive=True,
165 166
               ceil_mode=False,
               name=None):
D
Double_V 已提交
167
    """
168 169
    This API implements average pooling 1d operation,
    See more details in :ref:`api_nn_pooling_AvgPool1d` .
170 171 172 173

    Args:
        x (Tensor): The input tensor of pooling operator which is a 3-D tensor with
                          shape [N, C, L]. where `N` is batch size, `C` is the number of channels,
174
                          `L` is the length of the feature. The data type is float32 or float64.
175
        kernel_size (int|list|tuple): The pool kernel size. If pool kernel size is a tuple or list,
176
            it must contain an integer.
177
        stride (int|list|tuple): The pool stride size. If pool stride size is a tuple or list,
178 179 180 181 182 183 184 185
            it must contain an integer.
        padding (string|int|list|tuple): The padding size. Padding could be in one of the following forms.
            1. A string in ['valid', 'same'].
            2. An int, which means the feature map is zero padded by size of `padding` on every sides.
            3. A list[int] or tuple(int) whose length is 1, which means the feature map is zero padded by the size of `padding[0]` on every sides.
            4. A list[int] or tuple(int) whose length is 2. It has the form [pad_before, pad_after].
            5. A list or tuple of pairs of integers. It has the form [[pad_before, pad_after], [pad_before, pad_after], ...]. Note that, the batch dimension and channel dimension should be [0,0] or (0,0).
            The default value is 0.
186
        exclusive (bool): Whether to exclude padding points in average pooling
187
                          mode, default is `True`.
188
        ceil_mode (bool): ${ceil_mode_comment}Whether to use the ceil function to calculate output height and width.
189
            If it is set to False, the floor function will be used. The default value is False.
190 191 192 193 194 195 196 197
        name(str, optional): For detailed information, please refer
                             to :ref:`api_guide_Name`. Usually name is no need to set and
                             None by default.
    Returns:
        Tensor: The output tensor of pooling result. The data type is same as input tensor.

    Examples:
        .. code-block:: python
C
Chen Long 已提交
198 199
          
            import paddle
200
            import paddle.nn as nn
C
Chen Long 已提交
201

202 203 204 205
            data = paddle.uniform([1, 3, 32], paddle.float32)
            AvgPool1D = nn.AvgPool1D(kernel_size=2, stride=2, padding=0)
            pool_out = AvgPool1D(data)
            # pool_out shape: [1, 3, 16]
206 207 208
    """
    """NCL to NCHW"""
    data_format = "NCHW"
Z
zhiboniu 已提交
209
    if not in_dynamic_mode():
210
        check_variable_and_dtype(x, 'x', ['float32', 'float64'], 'avg_pool1d')
211
    _check_input(x, 3)
212
    x = unsqueeze(x, [2])
213
    kernel_size = utils.convert_to_list(kernel_size, 1, 'kernel_size')
214 215 216 217 218 219 220
    kernel_size = [1] + kernel_size
    if stride is None:
        stride = kernel_size
    else:
        stride = utils.convert_to_list(stride, 1, 'pool_stride')
        stride = [1] + stride

D
Double_V 已提交
221 222 223
    _check_value_limitation(kernel_size, "kernel_size", min_limit=1e-3)
    _check_value_limitation(stride, "stride", min_limit=1e-3)

224
    channel_last = _channel_last("NCL", 1)
225 226 227 228
    padding, padding_algorithm = _update_padding_nd(padding,
                                                    1,
                                                    channel_last=channel_last,
                                                    ceil_mode=ceil_mode)
229

230 231
    # use 2d to implenment 1d should expand padding in advance.
    padding = _expand_low_nd_padding(padding)
232

Z
zhiboniu 已提交
233
    if in_dynamic_mode():
234 235 236 237 238 239 240
        output = _legacy_C_ops.pool2d(x, 'pooling_type', 'avg', 'ksize',
                                      kernel_size, 'global_pooling', False,
                                      'strides', stride, 'paddings', padding,
                                      'padding_algorithm', padding_algorithm,
                                      'use_cudnn', True, 'ceil_mode', ceil_mode,
                                      'use_mkldnn', False, 'exclusive',
                                      exclusive, 'data_format', data_format)
241 242 243 244
        return squeeze(output, [2])

    op_type = 'pool2d'
    helper = LayerHelper(op_type, **locals())
245
    dtype = helper.input_dtype(input_param_name='x')
246 247
    pool_out = helper.create_variable_for_type_inference(dtype)

248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263
    helper.append_op(type=op_type,
                     inputs={"X": x},
                     outputs={"Out": pool_out},
                     attrs={
                         "pooling_type": 'avg',
                         "ksize": kernel_size,
                         "global_pooling": False,
                         "strides": stride,
                         "paddings": padding,
                         "padding_algorithm": padding_algorithm,
                         "use_cudnn": True,
                         "ceil_mode": ceil_mode,
                         "use_mkldnn": False,
                         "exclusive": exclusive,
                         "data_format": data_format,
                     })
264 265 266 267

    return squeeze(pool_out, [2])


268
def avg_pool2d(x,
269 270 271 272
               kernel_size,
               stride=None,
               padding=0,
               ceil_mode=False,
273
               exclusive=True,
274 275
               divisor_override=None,
               data_format="NCHW",
276 277
               name=None):
    """
278 279
    This API implements average pooling 2d operation.
    See more details in :ref:`api_nn_pooling_AvgPool2d` .
D
Double_V 已提交
280

281
    Args:
282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301
        x (Tensor): The input tensor of pooling operator which is a 4-D tensor with
                          shape [N, C, H, W]. The format of input tensor is `"NCHW"` or
                          `"NHWC"`, where `N` is batch size, `C` is the number of channels,
                          `H` is the height of the feature, and `W` is the width of the
                          feature. The data type if float32 or float64.
        kernel_size (int|list|tuple): The pool kernel size. If it is a tuple or list,
            it must contain two integers, (kernel_size_Height, kernel_size_Width).
            Otherwise, the pool kernel size will be a square of an int.
        stride (int|list|tuple): The stride size. If it is a tuple or list,
            it must contain two integers, (stride_Height, stride_Width).
            Otherwise, the stride size will be a square of an int.

        padding (string|int|list|tuple): The padding size. Padding could be in one of the following forms.
            1. A string in ['valid', 'same'].
            2. An int, which means the feature map is zero padded by size of `padding` on every sides.
            3. A list[int] or tuple(int) whose length is 2, [pad_height, pad_weight] whose value means the padding size of each dimension.
            4. A list[int] or tuple(int) whose length is 4. [pad_height_top, pad_height_bottom, pad_width_left, pad_width_right] whose value means the padding size of each side.
            5. A list or tuple of pairs of integers. It has the form [[pad_before, pad_after], [pad_before, pad_after], ...]. Note that, the batch dimension and channel dimension should be [0,0] or (0,0).
            The default value is 0.
        ceil_mode (bool): when True, will use `ceil` instead of `floor` to compute the output shape
302
        exclusive (bool): Whether to exclude padding points in average pooling
303 304 305 306 307
                          mode, default is `true`.
        divisor_override (float): if specified, it will be used as divisor, otherwise kernel_size will be used. Default None.
        data_format (string): The data format of the input and output data. An optional string from: `"NCHW"`, `"NHWC"`.
                        The default is `"NCHW"`. When it is `"NCHW"`, the data is stored in the order of:
                        `[batch_size, input_channels, input_height, input_width]`.
308 309 310
        name(str, optional): For detailed information, please refer
                             to :ref:`api_guide_Name`. Usually name is no need to set and
                             None by default.
C
Chen Long 已提交
311
    
312 313
    Returns:
        Tensor: The output tensor of pooling result. The data type is same as input tensor.
C
Chen Long 已提交
314
    
315 316
    Examples:
        .. code-block:: python
C
Chen Long 已提交
317 318 319 320 321
          
            import paddle
            import paddle.nn.functional as F
            
            # avg pool2d
322
            x = paddle.uniform([1, 3, 32, 32], paddle.float32)
C
Chen Long 已提交
323 324 325 326
            out = F.avg_pool2d(x,
                            kernel_size=2,
                            stride=2, padding=0)
            # out.shape [1, 3, 16, 16]
327
    """
328
    kernel_size = utils.convert_to_list(kernel_size, 2, 'pool_size')
329 330 331
    if stride is None:
        stride = kernel_size
    else:
332
        stride = utils.convert_to_list(stride, 2, 'pool_stride')
333

D
Double_V 已提交
334 335 336
    _check_value_limitation(kernel_size, "kernel_size", min_limit=1e-3)
    _check_value_limitation(stride, "stride", min_limit=1e-3)

337
    channel_last = _channel_last(data_format, 2)
338 339 340 341
    padding, padding_algorithm = _update_padding_nd(padding,
                                                    2,
                                                    channel_last,
                                                    ceil_mode=ceil_mode)
342

F
From00 已提交
343 344
    if in_dygraph_mode() or _in_legacy_dygraph():
        if in_dygraph_mode():
345 346 347
            output = _C_ops.pool2d(x, kernel_size, stride, padding, ceil_mode,
                                   exclusive, data_format, 'avg', False, False,
                                   padding_algorithm)
F
From00 已提交
348
        else:
349 350 351 352 353 354
            output = _legacy_C_ops.pool2d(
                x, 'pooling_type', 'avg', 'ksize', kernel_size,
                'global_pooling', False, 'padding_algorithm', padding_algorithm,
                'strides', stride, 'paddings', padding, 'use_cudnn', True,
                'ceil_mode', ceil_mode, 'use_mkldnn', False, 'exclusive',
                exclusive, 'data_format', data_format)
355 356 357 358 359
        if divisor_override is None:
            return output
        else:
            _check_instance(divisor_override, "divisor_override")
            return output * (kernel_size[0] * kernel_size[1]) / divisor_override
360

361
    op_type = 'pool2d'
362
    helper = LayerHelper(op_type, **locals())
363
    check_variable_and_dtype(x, 'x', ['float32', 'float64'], 'avg_pool2d')
364
    dtype = helper.input_dtype(input_param_name='x')
365 366
    pool_out = helper.create_variable_for_type_inference(dtype)

367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382
    helper.append_op(type=op_type,
                     inputs={"X": x},
                     outputs={"Out": pool_out},
                     attrs={
                         "pooling_type": "avg",
                         "ksize": kernel_size,
                         "global_pooling": False,
                         "strides": stride,
                         "paddings": padding,
                         "padding_algorithm": padding_algorithm,
                         "use_cudnn": True,
                         "ceil_mode": ceil_mode,
                         "use_mkldnn": False,
                         "exclusive": exclusive,
                         "data_format": data_format,
                     })
383

384 385 386 387 388
    if divisor_override is None:
        return pool_out
    else:
        _check_instance(divisor_override, "divisor_override")
        return pool_out * (kernel_size[0] * kernel_size[1]) / divisor_override
389 390


391 392 393 394 395
def avg_pool3d(x,
               kernel_size,
               stride=None,
               padding=0,
               ceil_mode=False,
396
               exclusive=True,
397 398 399
               divisor_override=None,
               data_format="NCDHW",
               name=None):
400
    """
401 402
    This API implements average pooling 3d operation.
    See more details in :ref:`api_nn_pooling_AvgPool3d` .
403 404

    Args:
405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422
        x (Tensor): The input tensor of pooling operator, which is a 5-D tensor with
                          shape [N, C, D, H, W], where `N` represents the batch size, `C` represents
                          the number of channels, `D`, `H` and `W` represent the depth, height and width of the feature respectively.
        kernel_size (int|list|tuple): The pool kernel size. If pool kernel size
            is a tuple or list, it must contain three integers,
            (kernel_size_Depth, kernel_size_Height, kernel_size_Width).
            Otherwise, the pool kernel size will be the cube of an int.
        stride (int|list|tuple): The pool stride size. If pool stride size is a tuple or list,
            it must contain three integers, [stride_Depth, stride_Height, stride_Width).
            Otherwise, the pool stride size will be a cube of an int.
        padding (string|int|list|tuple): The padding size. Padding could be in one of the following forms.
            1. A string in ['valid', 'same'].
            2. An int, which means the feature map is zero padded by size of `padding` on every sides.
            3. A list[int] or tuple(int) whose length is 3, [pad_depth, pad_height, pad_weight] whose value means the padding size of each dimension.
            4. A list[int] or tuple(int) whose length is 6. [pad_depth_front, pad_depth_back, pad_height_top, pad_height_bottom, pad_width_left, pad_width_right] whose value means the padding size of each side.
            5. A list or tuple of pairs of integers. It has the form [[pad_before, pad_after], [pad_before, pad_after], ...]. Note that, the batch dimension and channel dimension should be [0,0] or (0,0).
            The default value is 0.
        ceil_mode (bool): ${ceil_mode_comment}
423
        exclusive (bool): Whether to exclude padding points in average pooling
424 425 426 427 428
                          mode, default is True.
        divisor_override (int|float) if specified, it will be used as divisor, otherwise kernel_size will be used. Default None.
        data_format (string): The data format of the input and output data. An optional string from: `"NCDHW"`, `"NDHWC"`.
                        The default is `"NCDHW"`. When it is `"NCDHW"`, the data is stored in the order of:
                        `[batch_size, input_channels, input_depth, input_height, input_width]`.
429
        name(str, optional): For detailed information, please refer
430 431
                             to :ref:`api_guide_Name`. Usually name is no need to set and
                             None by default.
C
Chen Long 已提交
432
    
433
    Returns:
434
        Tensor: The output tensor of pooling result. The data type is same as input tensor.
435

436 437
    Examples:
        .. code-block:: python
C
Chen Long 已提交
438
          
439
          import paddle
C
Chen Long 已提交
440

441
          x = paddle.uniform([1, 3, 32, 32, 32], paddle.float32)
442 443 444 445 446 447 448
          # avg pool3d
          out = paddle.nn.functional.avg_pool3d(
                                            x,
                                            kernel_size = 2,
                                            stride = 2,
                                            padding=0)
          # out.shape: [1, 3, 16, 16, 16]
449
    """
450 451 452 453 454
    kernel_size = utils.convert_to_list(kernel_size, 3, 'pool_size')
    if stride is None:
        stride = kernel_size
    else:
        stride = utils.convert_to_list(stride, 3, 'pool_stride')
455

456
    channel_last = _channel_last(data_format, 3)
457 458 459 460
    padding, padding_algorithm = _update_padding_nd(padding,
                                                    3,
                                                    channel_last=channel_last,
                                                    ceil_mode=ceil_mode)
461

D
Double_V 已提交
462 463 464
    _check_value_limitation(kernel_size, "kernel_size", min_limit=1e-3)
    _check_value_limitation(stride, "stride", min_limit=1e-3)

465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499
    if in_dygraph_mode():
        pool_out = _C_ops.pool3d(x, kernel_size, stride, padding, ceil_mode,
                                 exclusive, data_format, 'avg', False, False,
                                 padding_algorithm, True)
    elif _in_legacy_dygraph():
        pool_out = _legacy_C_ops.pool3d(
            x, 'pooling_type', 'avg', 'ksize', kernel_size, 'strides', stride,
            'paddings', padding, 'global_pooling', False, 'padding_algorithm',
            padding_algorithm, 'use_cudnn', True, 'ceil_mode', ceil_mode,
            'use_mkldnn', False, 'exclusive', exclusive, 'data_format',
            data_format)
    else:
        op_type = "pool3d"
        helper = LayerHelper(op_type, **locals())
        check_variable_and_dtype(x, 'x', ['float32', 'float64'], 'max_pool3d')
        dtype = helper.input_dtype(input_param_name='x')
        pool_out = helper.create_variable_for_type_inference(dtype)
        outputs = {"Out": pool_out}

        helper.append_op(type=op_type,
                         inputs={"X": x},
                         outputs=outputs,
                         attrs={
                             "pooling_type": 'avg',
                             "ksize": kernel_size,
                             "global_pooling": False,
                             "strides": stride,
                             "paddings": padding,
                             "padding_algorithm": padding_algorithm,
                             "use_cudnn": True,
                             "ceil_mode": ceil_mode,
                             "use_mkldnn": False,
                             "exclusive": exclusive,
                             "data_format": data_format,
                         })
500

501 502 503 504 505 506
    if divisor_override is None:
        return pool_out
    else:
        _check_instance(divisor_override, "divisor_override")
        return pool_out * (kernel_size[0] * kernel_size[1] *
                           kernel_size[2]) / divisor_override
507 508


509
def max_pool1d(x,
510 511 512
               kernel_size,
               stride=None,
               padding=0,
513
               return_mask=False,
514 515 516
               ceil_mode=False,
               name=None):
    """
517 518
    This API implements max pooling 1d opereation.
    See more details in :ref:`api_nn_pooling_MaxPool1d` .
519 520

    Args:
521 522 523
        x (Tensor): The input tensor of pooling operator which is a 3-D tensor with
                          shape [N, C, L], where `N` is batch size, `C` is the number of channels,
                          `L` is the length of the feature. The data type if float32 or float64.
524
        kernel_size (int|list|tuple): The pool kernel size. If pool kernel size is a tuple or list,
525
            it must contain an integer.
526
        stride (int|list|tuple): The pool stride size. If pool stride size is a tuple or list,
527 528 529 530 531 532 533 534
            it must contain an integer.
        padding (string|int|list|tuple): The padding size. Padding could be in one of the following forms.
            1. A string in ['valid', 'same'].
            2. An integer, which means the feature map is zero padded by size of `padding` on every sides.
            3. A list[int] or tuple(int) whose length is 1, which means the feature map is zero padded by the size of `padding[0]` on every sides.
            4. A list[int] or tuple(int) whose length is 2. It has the form [pad_before, pad_after].
            5. A list or tuple of pairs of integers. It has the form [[pad_before, pad_after], [pad_before, pad_after], ...]. Note that, the batch dimension and channel dimension should be [0,0] or (0,0).
            The default value is 0.
535
        return_mask (bool): Whether return the max indices along with the outputs. default is `False`.
536 537
        ceil_mode (bool): Whether to use the ceil function to calculate output height and width. False is the default.
            If it is set to False, the floor function will be used. Default False.
538 539 540 541 542
        name(str, optional): For detailed information, please refer
                             to :ref:`api_guide_Name`. Usually name is no need to set and
                             None by default.
    Returns:
        Tensor: The output tensor of pooling result. The data type is same as input tensor.
543

544 545 546
    Raises:
        ValueError: If `padding` is a string, but not "SAME" or "VALID".
        ValueError: If `padding` is "VALID", but `ceil_mode` is True.
547
        ShapeError: If the input is not a 3-D tensor.
548
        ShapeError: If the output's shape calculated is not greater than 0.
549

550 551
    Examples:
        .. code-block:: python
552

553 554
          import paddle
          import paddle.nn.functional as F
C
Chen Long 已提交
555

556
          data = paddle.uniform([1, 3, 32], paddle.float32)
557 558
          pool_out = F.max_pool1d(data, kernel_size=2, stride=2, padding=0)
          # pool_out shape: [1, 3, 16]
559
          pool_out, indices = F.max_pool1d(data, kernel_size=2, stride=2, padding=0, return_mask=True)
560
          # pool_out shape: [1, 3, 16],  indices shape: [1, 3, 16]
561
    """
562 563
    """NCL to NCHW"""
    data_format = "NCHW"
Z
zhiboniu 已提交
564
    if not in_dynamic_mode():
565
        check_variable_and_dtype(x, 'x', ['float32', 'float64'], 'max_pool1d')
566 567 568
    _check_input(x, 3)
    x = unsqueeze(x, [2])
    kernel_size = [1] + utils.convert_to_list(kernel_size, 1, 'pool_size')
569 570 571
    if stride is None:
        stride = kernel_size
    else:
572
        stride = [1] + utils.convert_to_list(stride, 1, 'pool_stride')
573

574 575 576
    padding, padding_algorithm = _update_padding_nd(padding,
                                                    1,
                                                    ceil_mode=ceil_mode)
577

578 579
    # use 2d to implenment 1d should expand padding in advance.
    padding = _expand_low_nd_padding(padding)
580

F
From00 已提交
581 582
    if in_dygraph_mode():
        if return_mask:
583 584
            pool_out = _C_ops.max_pool2d_with_index(x, kernel_size, stride,
                                                    padding, False, False)
F
From00 已提交
585
            return (squeeze(pool_out[0], [2]),
586 587
                    squeeze(pool_out[1], [2])) if return_mask else squeeze(
                        pool_out[0], [2])
F
From00 已提交
588
        else:
589 590 591
            pool_out = _C_ops.pool2d(x, kernel_size, stride, padding, ceil_mode,
                                     True, data_format, 'max', False, False,
                                     padding_algorithm)
F
From00 已提交
592 593 594
            return squeeze(pool_out, [2])

    if _in_legacy_dygraph():
595
        if return_mask:
596
            pool_out = _legacy_C_ops.max_pool2d_with_index(
D
Double_V 已提交
597 598 599 600 601
                x, 'ksize', kernel_size, 'global_pooling', False, 'strides',
                stride, 'paddings', padding, 'padding_algorithm',
                padding_algorithm, 'use_cudnn', True, 'ceil_mode', ceil_mode,
                'use_mkldnn', False, 'exclusive', True, 'data_format',
                data_format)
602
            return (squeeze(pool_out[0], [2]),
603 604
                    squeeze(pool_out[1], [2])) if return_mask else squeeze(
                        pool_out[0], [2])
D
Double_V 已提交
605
        else:
606 607 608 609 610 611
            pool_out = _legacy_C_ops.pool2d(
                x, 'pooling_type', 'max', 'ksize', kernel_size,
                'global_pooling', False, 'padding_algorithm', padding_algorithm,
                'strides', stride, 'paddings', padding, 'use_cudnn', True,
                'ceil_mode', ceil_mode, 'use_mkldnn', False, 'exclusive', True,
                'data_format', data_format)
D
Double_V 已提交
612 613
            return squeeze(pool_out, [2])

614
    op_type = 'max_pool2d_with_index' if return_mask else "pool2d"
615
    helper = LayerHelper(op_type, **locals())
616
    dtype = helper.input_dtype(input_param_name='x')
617
    pool_out = helper.create_variable_for_type_inference(dtype)
618
    mask = helper.create_variable_for_type_inference('int32')
619 620
    outputs = {"Out": pool_out, "Mask": mask}

621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636
    helper.append_op(type=op_type,
                     inputs={"X": x},
                     outputs=outputs,
                     attrs={
                         "pooling_type": 'max',
                         "ksize": kernel_size,
                         "global_pooling": False,
                         "strides": stride,
                         "paddings": padding,
                         "padding_algorithm": padding_algorithm,
                         "use_cudnn": True,
                         "ceil_mode": ceil_mode,
                         "use_mkldnn": False,
                         "exclusive": True,
                         "data_format": data_format,
                     })
637

638
    return (squeeze(pool_out, [2]),
639
            squeeze(mask, [2])) if return_mask else squeeze(pool_out, [2])
640 641


642 643 644 645
def _unpool_output_size(x, kernel_size, stride, padding, output_size):
    input_size = x.shape
    default_size = []
    for d in range(len(kernel_size)):
646 647
        default_size.append((input_size[-len(kernel_size) + d] - 1) *
                            stride[d] + kernel_size[d] - 2 * padding[d])
648 649

    has_static_var = False
650 651
    if output_size is None:
        ret = default_size
652 653 654 655 656 657 658 659 660
    elif utils._contain_var(output_size):
        if not _non_static_mode():
            has_static_var = True
            output_size = utils._convert_to_tensor_list(output_size)
        else:
            for i, var in enumerate(output_size):
                if isinstance(var, Variable):
                    output_size[i] = var.numpy()[0]
        ret = output_size
661 662 663 664 665 666 667
    else:
        if len(output_size) == len(kernel_size) + 2:
            output_size = output_size[2:]
        if len(output_size) != len(kernel_size):
            raise ValueError(
                "output_size should be a sequence containing "
                "{} or {} elements, but it has a length of '{}'".format(
668 669
                    len(kernel_size),
                    len(kernel_size) + 2, len(output_size)))
670 671 672 673 674 675 676 677
        if not has_static_var:
            for d in range(len(kernel_size)):
                min_size = default_size[d] - stride[d]
                max_size = default_size[d] + stride[d]
                if not (min_size < output_size[d] < max_size):
                    raise ValueError(
                        'invalid output_size "{}" (dim {} must be between {} and {})'
                        .format(output_size, d, min_size, max_size))
678 679 680 681 682

        ret = output_size
    return ret


683 684 685 686 687 688 689 690
def max_unpool1d(x,
                 indices,
                 kernel_size,
                 stride=None,
                 padding=0,
                 data_format="NCL",
                 output_size=None,
                 name=None):
691
    r"""
692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764
    This API implements max unpooling 1d opereation.
    `max_unpool1d` accepts the output of `max_pool1d` as input, 
    including the indices of the maximum value and calculate the partial inverse. 
    All non-maximum values ​​are set to zero.

    - Input: :math:`(N, C, L_{in})`
    - Output: :math:`(N, C, L_{out})`, where
    
    .. math::
        L_{out} = (L_{in} - 1) * stride - 2 * padding + kernel\_size

    or as given by :attr:`output_size` in the call operator.


    Args:
        x (Tensor): The input tensor of unpooling operator which is a 3-D tensor with
                          shape [N, C, L]. The format of input tensor is `"NCL"`, 
                          where `N` is batch size, `C` is the number of channels, `L` is
                          the length of the feature. The data type is float32 or float64.
        indices (Tensor): The indices given out by maxpooling1d which is a 3-D tensor with
                          shape [N, C, L]. The format of input tensor is `"NCL"` , 
                          where `N` is batch size, `C` is the number of channels, `L` is
                          the length of the featuree. The data type is float32 or float64.
        kernel_size (int|list|tuple): The unpool kernel size. If unpool kernel size is a tuple or list,
            it must contain an integer.
        stride (int|list|tuple): The unpool stride size. If unpool stride size is a tuple or list,
            it must contain an integer.
        padding (int | tuple): Padding that was added to the input.
        output_size(list|tuple, optional): The target output size. If output_size is not specified, 
                           the actual output shape will be automatically calculated by (input_shape,
                           kernel_size, stride, padding).
        data_format (string): The data format of the input and output data.
                        The default is `"NCL"`. When it is `"NCL"`, the data is stored in the order of:
                        `[batch_size, input_channels, input_length]`.
        name(str, optional): For detailed information, please refer
                             to :ref:`api_guide_Name`. Usually name is no need to set and
                             None by default.

    Returns:
        Tensor: The output tensor of unpooling result. 

    Examples:
        .. code-block:: python
        
            import paddle
            import paddle.nn.functional as F

            data = paddle.rand(shape=[1, 3, 16])
            pool_out, indices = F.max_pool1d(data, kernel_size=2, stride=2, padding=0, return_mask=True)
            # pool_out shape: [1, 3, 8],  indices shape: [1, 3, 8]
            unpool_out = F.max_unpool1d(pool_out, indices, kernel_size=2, padding=0)
            # unpool_out shape: [1, 3, 16]

    """
    """NCL to NCHW"""
    if data_format not in ["NCL"]:
        raise ValueError("Attr(data_format) should be 'NCL'. Received "
                         "Attr(data_format): %s." % str(data_format))
    data_format = "NCHW"
    x = unsqueeze(x, [2])
    indices = unsqueeze(indices, [2])
    kernel_size = [1] + utils.convert_to_list(kernel_size, 1, 'pool_size')
    if stride is None:
        stride = kernel_size
    else:
        stride = [1] + utils.convert_to_list(stride, 1, 'pool_stride')
    padding, padding_algorithm = _update_padding_nd(padding, 1)
    # use 2d to implenment 1d should expand padding in advance.
    padding = _expand_low_nd_padding(padding)

    output_size = _unpool_output_size(x, kernel_size, stride, padding,
                                      output_size)

X
xiaoting 已提交
765
    if in_dygraph_mode():
766 767
        output = _C_ops.unpool(x, indices, kernel_size, stride, padding,
                               output_size, data_format)
X
xiaoting 已提交
768 769
        return squeeze(output, [2])
    elif in_dynamic_mode():
770 771 772 773
        output = _legacy_C_ops.unpool(x, indices, 'unpooling_type', 'max',
                                      'ksize', kernel_size, 'strides', stride,
                                      'paddings', padding, "output_size",
                                      output_size, "data_format", data_format)
774 775 776 777 778 779 780
        return squeeze(output, [2])

    op_type = "unpool"
    helper = LayerHelper(op_type, **locals())
    dtype = helper.input_dtype(input_param_name="x")
    unpool_out = helper.create_variable_for_type_inference(dtype)

781 782 783 784 785 786 787 788 789 790 791 792 793
    helper.append_op(type=op_type,
                     inputs={
                         "X": x,
                         "Indices": indices
                     },
                     outputs={"Out": unpool_out},
                     attrs={
                         "unpooling_type": "max",
                         "ksize": kernel_size,
                         "strides": stride,
                         "paddings": padding,
                         "output_size": output_size
                     })
794 795 796
    return squeeze(unpool_out, [2])


797 798 799 800 801 802 803 804
def max_unpool2d(x,
                 indices,
                 kernel_size,
                 stride=None,
                 padding=0,
                 data_format="NCHW",
                 output_size=None,
                 name=None):
805
    r"""
806
    This API implements max unpooling 2d opereation.
807
    See more details in :ref:`api_nn_pooling_MaxUnPool2D` .
808

809 810

    Args:
811 812 813
        x (Tensor): The input tensor of unpooling operator which is a 4-D tensor with
                          shape [N, C, H, W]. The format of input tensor is `"NCHW"`, 
                          where `N` is batch size, `C` is the number of channels,
814 815
                          `H` is the height of the feature, and `W` is the width of the
                          feature. The data type if float32 or float64.
816 817 818 819 820 821 822 823 824 825 826 827 828
        indices (Tensor): The indices given out by maxpooling2d which is a 4-D tensor with
                          shape [N, C, H, W]. The format of input tensor is `"NCHW"` , 
                          where `N` is batch size, `C` is the number of channels,
                          `H` is the height of the feature, and `W` is the width of the
                          feature. The data type if float32 or float64.
        kernel_size (int|list|tuple): The unpool kernel size. If unpool kernel size is a tuple or list,
            it must contain an integer.
        stride (int|list|tuple): The unpool stride size. If unpool stride size is a tuple or list,
            it must contain an integer.
        padding (int | tuple): Padding that was added to the input.
        output_size(list|tuple, optional): The target output size. If output_size is not specified, 
                           the actual output shape will be automatically calculated by (input_shape,
                           kernel_size, padding).
829 830 831
        name(str, optional): For detailed information, please refer
                             to :ref:`api_guide_Name`. Usually name is no need to set and
                             None by default.
832

833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855

        - Input: :math:`(N, C, H_{in}, W_{in})`
        - Output: :math:`(N, C, H_{out}, W_{out})`, where

          .. math::
            H_{out} = (H_{in} - 1) \times \text{stride[0]} - 2 \times \text{padding[0]} + \text{kernel\_size[0]}

          .. math::
            W_{out} = (W_{in} - 1) \times \text{stride[1]} - 2 \times \text{padding[1]} + \text{kernel\_size[1]}

          or as given by :attr:`output_size` in the call operator

        Returns:
            Tensor: The output tensor of unpooling result. 

        Raises:
            ValueError: If the input is not a 4-D tensor.
            ValueError: If indeces shape is not equal input shape.
            

        Examples:
            .. code-block:: python
          
C
Chen Long 已提交
856 857
            import paddle
            import paddle.nn.functional as F
858

859
            data = paddle.rand(shape=[1,1,6,6])
860 861 862 863 864 865 866 867 868
            pool_out, indices = F.max_pool2d(data, kernel_size=2, stride=2, padding=0, return_mask=True)
            # pool_out shape: [1, 1, 3, 3],  indices shape: [1, 1, 3, 3]
            unpool_out = F.max_unpool2d(pool_out, indices, kernel_size=2, padding=0)
            # unpool_out shape: [1, 1, 6, 6]

            # specify a different output size than input size 
            unpool_out = F.max_unpool2d(pool_out, indices, kernel_size=2, padding=0, output_size=[7,7])
            # unpool_out shape: [1, 1, 7, 7] 

869 870
    """
    kernel_size = utils.convert_to_list(kernel_size, 2, 'pool_size')
871 872 873 874 875 876 877 878 879 880 881 882 883
    if stride is None:
        stride = kernel_size
    else:
        stride = utils.convert_to_list(stride, 2, 'pool_stride')
    padding = utils.convert_to_list(padding, 2, 'padding')

    if data_format not in ["NCHW"]:
        raise ValueError("Attr(data_format) should be 'NCHW'. Received "
                         "Attr(data_format): %s." % str(data_format))

    output_size = _unpool_output_size(x, kernel_size, stride, padding,
                                      output_size)

X
xiaoting 已提交
884
    if in_dygraph_mode():
885 886
        output = _C_ops.unpool(x, indices, kernel_size, stride, padding,
                               output_size, data_format)
887
        return output
X
xiaoting 已提交
888
    elif in_dynamic_mode():
889 890 891 892
        output = _legacy_C_ops.unpool(x, indices, 'unpooling_type', 'max',
                                      'ksize', kernel_size, 'strides', stride,
                                      'paddings', padding, "output_size",
                                      output_size, "data_format", data_format)
893 894 895 896 897 898 899
        return output

    op_type = "unpool"
    helper = LayerHelper(op_type, **locals())
    dtype = helper.input_dtype(input_param_name="x")
    unpool_out = helper.create_variable_for_type_inference(dtype)

900 901 902 903 904 905 906 907 908 909 910 911 912
    helper.append_op(type=op_type,
                     inputs={
                         "X": x,
                         "Indices": indices
                     },
                     outputs={"Out": unpool_out},
                     attrs={
                         "unpooling_type": "max",
                         "ksize": kernel_size,
                         "strides": stride,
                         "paddings": padding,
                         "output_size": output_size
                     })
913 914 915
    return unpool_out


916 917 918 919 920 921 922 923
def max_unpool3d(x,
                 indices,
                 kernel_size,
                 stride=None,
                 padding=0,
                 data_format="NCDHW",
                 output_size=None,
                 name=None):
924
    r"""
925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000
    This API implements max unpooling 3d opereation.
    `max_unpool3d` accepts the output of `max_pool3d` as input, 
    including the indices of the maximum value and calculate the partial inverse. 
    All non-maximum values ​​are set to zero.

    - Input: :math:`(N, C, D_{in}, H_{in}, W_{in})`
    - Output: :math:`(N, C, D_{out}, H_{out}, W_{out})`, where
    
    .. math::
        D_{out} = (D_{in} - 1) * stride[0] - 2 * padding[0] + kernel\_size[0]

    .. math::
        H_{out} = (H_{in} - 1) * stride[1] - 2 * padding[1] + kernel\_size[1]

    .. math::
        W_{out} = (W_{in} - 1) * stride[2] - 2 * padding[2] + kernel\_size[2]

    or as given by :attr:`output_size` in the call operator


    Args:
        x (Tensor): The input tensor of unpooling operator which is a 5-D tensor with
                          shape [N, C, D, H, W]. The format of input tensor is `"NCDHW"`, 
                          where `N` is batch size, `C` is the number of channels, `D` is
                          the depth of the feature, `H` is the height of the feature, 
                          and `W` is the width of the feature. The data type is float32 or float64.
        indices (Tensor): The indices given out by maxpooling3d which is a 5-D tensor with
                          shape [N, C, D, H, W]. The format of input tensor is `"NCDHW"` , 
                          where `N` is batch size, `C` is the number of channels, `D` is
                          the depth of the feature, `H` is the height of the feature, 
                          and `W` is the width of the feature. The data type is float32 or float64.
        kernel_size (int|list|tuple): The unpool kernel size. If unpool kernel size is a tuple or list,
            it must contain an integer.
        stride (int|list|tuple): The unpool stride size. If unpool stride size is a tuple or list,
            it must contain an integer.
        padding (int | tuple): Padding that was added to the input.
        output_size(list|tuple, optional): The target output size. If output_size is not specified, 
                           the actual output shape will be automatically calculated by (input_shape,
                           kernel_size, stride, padding).
        data_format (string): The data format of the input and output data.
                        The default is `"NCDHW"`. When it is `"NCDHW"`, the data is stored in the order of:
                        `[batch_size, input_channels, input_depth, input_height, input_width]`.
        name(str, optional): For detailed information, please refer
                             to :ref:`api_guide_Name`. Usually name is no need to set and
                             None by default.

    Returns:
        Tensor: The output tensor of unpooling result. 

    Examples:
        .. code-block:: python
        
            import paddle
            import paddle.nn.functional as F

            data = paddle.rand(shape=[1, 1, 4, 4, 6])
            pool_out, indices = F.max_pool3d(data, kernel_size=2, stride=2, padding=0, return_mask=True)
            # pool_out shape: [1, 1, 2, 2, 3],  indices shape: [1, 1, 2, 2, 3]
            unpool_out = F.max_unpool3d(pool_out, indices, kernel_size=2, padding=0)
            # unpool_out shape: [1, 1, 4, 4, 6]

    """
    kernel_size = utils.convert_to_list(kernel_size, 3, 'pool_size')
    if stride is None:
        stride = kernel_size
    else:
        stride = utils.convert_to_list(stride, 3, 'pool_stride')
    padding = utils.convert_to_list(padding, 3, 'padding')

    if data_format not in ["NCDHW"]:
        raise ValueError("Attr(data_format) should be 'NCDHW'. Received "
                         "Attr(data_format): %s." % str(data_format))

    output_size = _unpool_output_size(x, kernel_size, stride, padding,
                                      output_size)

X
xiaoting 已提交
1001
    if in_dygraph_mode():
1002 1003
        output = _C_ops.unpool3d(x, indices, kernel_size, stride, padding,
                                 output_size, data_format)
1004
        return output
X
xiaoting 已提交
1005
    elif in_dynamic_mode():
1006 1007 1008 1009
        output = _legacy_C_ops.unpool3d(x, indices, 'unpooling_type', 'max',
                                        'ksize', kernel_size, 'strides', stride,
                                        'paddings', padding, "output_size",
                                        output_size, "data_format", data_format)
1010 1011 1012 1013 1014 1015 1016
        return output

    op_type = "unpool3d"
    helper = LayerHelper(op_type, **locals())
    dtype = helper.input_dtype(input_param_name="x")
    unpool_out = helper.create_variable_for_type_inference(dtype)

1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029
    helper.append_op(type=op_type,
                     inputs={
                         "X": x,
                         "Indices": indices
                     },
                     outputs={"Out": unpool_out},
                     attrs={
                         "unpooling_type": "max",
                         "ksize": kernel_size,
                         "strides": stride,
                         "paddings": padding,
                         "output_size": output_size
                     })
1030 1031 1032
    return unpool_out


1033 1034 1035 1036 1037 1038 1039 1040
def max_pool2d(x,
               kernel_size,
               stride=None,
               padding=0,
               return_mask=False,
               ceil_mode=False,
               data_format="NCHW",
               name=None):
W
Wei Shengyu 已提交
1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098
    """
    This API implements max pooling 2d operation.
    See more details in :ref:`api_nn_pooling_MaxPool2d` .
    Args:
        x (Tensor): The input tensor of pooling operator which is a 4-D tensor with
                          shape [N, C, H, W]. The format of input tensor is `"NCHW"` or
                          `"NHWC"`, where `N` is batch size, `C` is the number of channels,
                          `H` is the height of the feature, and `W` is the width of the
                          feature. The data type if float32 or float64.
        kernel_size (int|list|tuple): The pool kernel size. If pool kernel size is a tuple or list,
            it must contain two integers, (kernel_size_Height, kernel_size_Width).
            Otherwise, the pool kernel size will be a square of an int.
        stride (int|list|tuple): The pool stride size. If pool stride size is a tuple or list,
            it must contain two integers, (stride_Height, stride_Width).
            Otherwise, the pool stride size will be a square of an int.
        padding (string|int|list|tuple): The padding size. Padding could be in one of the following forms.
            1. A string in ['valid', 'same'].
            2. An int, which means the feature map is zero padded by size of `padding` on every sides.
            3. A list[int] or tuple(int) whose length is 2, [pad_height, pad_weight] whose value means the padding size of each dimension.
            4. A list[int] or tuple(int) whose length is 4. [pad_height_top, pad_height_bottom, pad_width_left, pad_width_right] whose value means the padding size of each side.
            5. A list or tuple of pairs of integers. It has the form [[pad_before, pad_after], [pad_before, pad_after], ...]. Note that, the batch dimension and channel dimension should be [0,0] or (0,0).
            The default value is 0.
        ceil_mode (bool): when True, will use `ceil` instead of `floor` to compute the output shape
        return_mask (bool): Whether to return the max indices along with the outputs. Default False, only support `"NCHW"` data format
        data_format (string): The data format of the input and output data. An optional string from: `"NCHW"`, `"NHWC"`.
                        The default is `"NCHW"`. When it is `"NCHW"`, the data is stored in the order of:
                        `[batch_size, input_channels, input_height, input_width]`.
        name(str, optional): For detailed information, please refer
                             to :ref:`api_guide_Name`. Usually name is no need to set and
                             None by default.
    Returns:
        Tensor: The output tensor of pooling result. The data type is same as input tensor.

   Raises:
        ValueError: If `padding` is a string, but not "SAME" or "VALID".
        ValueError: If `padding` is "VALID", but `ceil_mode` is True.
        ShapeError: If the output's shape calculated is not greater than 0.

    Examples:
        .. code-block:: python
            import paddle
            import paddle.nn.functional as F
            import numpy as np

            # max pool2d
            x = paddle.to_tensor(np.random.uniform(-1, 1, [1, 3, 32, 32]).astype(np.float32))
            out = F.max_pool2d(x,
                                  kernel_size=2,
                                  stride=2, padding=0)
            # output.shape [1, 3, 16, 16]
            # for return_mask=True
            out, max_indices = F.max_pool2d(x,
                                               kernel_size=2,
                                               stride=2,
                                               padding=0,
                                               return_mask=True)
            # out.shape [1, 3, 16, 16], max_indices.shape [1, 3, 16, 16],
    """
1099
    kernel_size = utils.convert_to_list(kernel_size, 2, 'pool_size')
1100 1101 1102 1103 1104 1105 1106 1107 1108
    if stride is None:
        stride = kernel_size
    else:
        stride = utils.convert_to_list(stride, 2, 'pool_stride')

    if data_format not in ["NCHW", "NHWC"]:
        raise ValueError(
            "Attr(data_format) should be 'NCHW' or 'NHWC'. Received "
            "Attr(data_format): %s." % str(data_format))
1109 1110 1111

    channel_last = True if data_format == "NHWC" else False

1112 1113 1114 1115
    padding, padding_algorithm = _update_padding_nd(padding,
                                                    num_dims=2,
                                                    channel_last=channel_last,
                                                    ceil_mode=ceil_mode)
1116

1117
    if data_format == "NHWC" and return_mask:
D
Double_V 已提交
1118
        raise ValueError(
1119
            "When setting return_mask to true, data_format must be set to NCHW in API:max_pool2d"
D
Double_V 已提交
1120 1121
        )

F
From00 已提交
1122 1123
    if in_dygraph_mode():
        if return_mask:
1124 1125
            output = _C_ops.max_pool2d_with_index(x, kernel_size, stride,
                                                  padding, False, False)
F
From00 已提交
1126 1127
            return output if return_mask else output[0]
        else:
1128 1129 1130
            return _C_ops.pool2d(x, kernel_size, stride, padding, ceil_mode,
                                 True, data_format, 'max', False, False,
                                 padding_algorithm)
F
From00 已提交
1131 1132

    if _in_legacy_dygraph():
1133
        if return_mask:
1134
            output = _legacy_C_ops.max_pool2d_with_index(
D
Double_V 已提交
1135 1136 1137 1138 1139
                x, 'ksize', kernel_size, 'global_pooling', False, 'strides',
                stride, 'paddings', padding, 'padding_algorithm',
                padding_algorithm, 'use_cudnn', True, 'ceil_mode', ceil_mode,
                'use_mkldnn', False, 'exclusive', True, 'data_format',
                data_format)
1140
            return output if return_mask else output[0]
D
Double_V 已提交
1141
        else:
1142 1143 1144 1145 1146 1147
            output = _legacy_C_ops.pool2d(
                x, 'pooling_type', 'max', 'ksize', kernel_size,
                'global_pooling', False, 'padding_algorithm', padding_algorithm,
                'strides', stride, 'paddings', padding, 'use_cudnn', True,
                'ceil_mode', ceil_mode, 'use_mkldnn', False, 'exclusive', True,
                'data_format', data_format)
D
Double_V 已提交
1148
            return output
1149

1150
    op_type = 'max_pool2d_with_index' if return_mask else "pool2d"
1151
    helper = LayerHelper(op_type, **locals())
1152 1153
    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'],
                             'max_pool2d')
1154
    dtype = helper.input_dtype(input_param_name='x')
1155
    pool_out = helper.create_variable_for_type_inference(dtype)
1156
    mask = helper.create_variable_for_type_inference("int32")
1157
    outputs = {"Out": pool_out, "Mask": mask}
1158

1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174
    helper.append_op(type=op_type,
                     inputs={"X": x},
                     outputs=outputs,
                     attrs={
                         "pooling_type": 'max',
                         "ksize": kernel_size,
                         "global_pooling": False,
                         "strides": stride,
                         "paddings": padding,
                         "padding_algorithm": padding_algorithm,
                         "use_cudnn": True,
                         "ceil_mode": ceil_mode,
                         "use_mkldnn": False,
                         "exclusive": True,
                         "data_format": data_format,
                     })
1175

1176
    return (pool_out, mask) if return_mask else pool_out
1177 1178 1179 1180 1181 1182


def max_pool3d(x,
               kernel_size,
               stride=None,
               padding=0,
1183
               return_mask=False,
1184 1185 1186 1187
               ceil_mode=False,
               data_format="NCDHW",
               name=None):
    """
1188 1189
    This API implements max pooling 2d operation.
    See more details in :ref:`api_nn_pooling_MaxPool3d` .
1190 1191
    Args:
        x (Tensor): The input tensor of pooling operator, which is a 5-D tensor with
D
Double_V 已提交
1192
                          shape [N, C, D, H, W]. The format of input tensor is `"NCDHW"` or `"NDHWC"`, where N represents batch size, C represents the number of channels, D, H and W represent the depth, height and width of the feature respectively.
1193
        kernel_size (int|list|tuple): The pool kernel size. If the kernel size
1194
            is a tuple or list, it must contain three integers,
1195
            (kernel_size_Depth, kernel_size_Height, kernel_size_Width).
1196
            Otherwise, the pool kernel size will be the cube of an int.
1197 1198
        stride (int|list|tuple): The pool stride size. If pool stride size is a tuple or list,
            it must contain three integers, [stride_Depth, stride_Height, stride_Width).
1199
            Otherwise, the pool stride size will be a cube of an int.
1200 1201 1202 1203 1204 1205 1206
        padding (string|int|list|tuple): The padding size. Padding could be in one of the following forms.
            1. A string in ['valid', 'same'].
            2. An int, which means the feature map is zero padded by size of `padding` on every sides.
            3. A list[int] or tuple(int) whose length is 3, [pad_depth, pad_height, pad_weight] whose value means the padding size of each dimension.
            4. A list[int] or tuple(int) whose length is 6. [pad_depth_front, pad_depth_back, pad_height_top, pad_height_bottom, pad_width_left, pad_width_right] whose value means the padding size of each side.
            5. A list or tuple of pairs of integers. It has the form [[pad_before, pad_after], [pad_before, pad_after], ...]. Note that, the batch dimension and channel dimension should be [0,0] or (0,0).
            The default value is 0.
1207
        ceil_mode (bool): ${ceil_mode_comment}
1208
        return_mask (bool): Whether to return the max indices along with the outputs. Default False. Only support "NDCHW" data_format.
1209 1210 1211 1212 1213 1214
        data_format (string): The data format of the input and output data. An optional string from: `"NCDHW"`, `"NDHWC"`.
                        The default is `"NCDHW"`. When it is `"NCDHW"`, the data is stored in the order of:
                        `[batch_size, input_channels, input_depth, input_height, input_width]`.
        name(str, optional): For detailed information, please refer
                             to :ref:`api_guide_Name`. Usually name is no need to set and
                             None by default.
C
Chen Long 已提交
1215
    
1216 1217
    Returns:
        Tensor: The output tensor of pooling result. The data type is same as input tensor.
C
Chen Long 已提交
1218
    
1219 1220 1221 1222
    Raises:
        ValueError: If `padding` is a string, but not "SAME" or "VALID".
        ValueError: If `padding` is "VALID", but `ceil_mode` is True.
        ShapeError: If the output's shape calculated is not greater than 0.
C
Chen Long 已提交
1223
    
1224 1225
    Examples:
        .. code-block:: python
1226

C
Chen Long 已提交
1227 1228
            import paddle
            import paddle.nn.functional as F
1229

C
Chen Long 已提交
1230
            # max pool3d
1231 1232
            x = paddle.uniform([1, 3, 32, 32, 32])
            output = F.max_pool3d(x,
C
Chen Long 已提交
1233 1234
                                  kernel_size=2,
                                  stride=2, padding=0)
1235
            # output.shape [1, 3, 16, 16, 16]
C
Chen Long 已提交
1236
            # for return_mask=True
1237
            x = paddle.uniform([1, 3, 32, 32, 32])
C
Chen Long 已提交
1238 1239 1240 1241 1242
            output, max_indices = paddle.nn.functional.max_pool3d(x,
                                          kernel_size = 2,
                                          stride = 2,
                                          padding=0,
                                          return_mask=True)
1243
            # output.shape [1, 3, 16, 16, 16], max_indices.shape [1, 3, 16, 16, 16]
1244 1245 1246 1247 1248 1249 1250
    """
    kernel_size = utils.convert_to_list(kernel_size, 3, 'pool_size')
    if stride is None:
        stride = kernel_size
    else:
        stride = utils.convert_to_list(stride, 3, 'pool_stride')

1251
    channel_last = _channel_last(data_format, 3)
1252

1253 1254 1255 1256
    padding, padding_algorithm = _update_padding_nd(padding,
                                                    3,
                                                    channel_last=channel_last,
                                                    ceil_mode=ceil_mode)
1257

1258
    if data_format == "NDHWC" and return_mask:
D
Double_V 已提交
1259
        raise ValueError(
1260
            "When setting return_mask to true, data_format must be set to NCDHW in API:max_pool3d"
D
Double_V 已提交
1261 1262
        )

F
From00 已提交
1263 1264
    if in_dygraph_mode():
        if return_mask:
1265 1266
            output = _C_ops.max_pool3d_with_index(x, kernel_size, stride,
                                                  padding, False, False)
F
From00 已提交
1267 1268
            return output if return_mask else output[0]
        else:
1269 1270
            return _C_ops.pool3d(x, kernel_size, stride, padding, ceil_mode,
                                 True, data_format, 'max', False, False,
1271
                                 padding_algorithm, True)
F
From00 已提交
1272 1273

    if _in_legacy_dygraph():
1274
        if return_mask:
1275
            output = _legacy_C_ops.max_pool3d_with_index(
D
Double_V 已提交
1276 1277 1278 1279 1280
                x, 'pooling_type', 'max', 'ksize', kernel_size, 'strides',
                stride, 'paddings', padding, 'global_pooling', False,
                'padding_algorithm', padding_algorithm, 'use_cudnn', True,
                'ceil_mode', ceil_mode, 'use_mkldnn', False, 'exclusive', True,
                'data_format', data_format)
1281
            return output if return_mask else output[0]
D
Double_V 已提交
1282
        else:
1283 1284 1285 1286 1287 1288
            output = _legacy_C_ops.pool3d(
                x, 'pooling_type', 'max', 'ksize', kernel_size,
                'global_pooling', False, 'padding_algorithm', padding_algorithm,
                'strides', stride, 'paddings', padding, 'use_cudnn', True,
                'ceil_mode', ceil_mode, 'use_mkldnn', False, 'exclusive', True,
                'data_format', data_format)
D
Double_V 已提交
1289
            return output
1290

1291
    op_type = "max_pool3d_with_index" if return_mask else "pool3d"
1292
    helper = LayerHelper(op_type, **locals())
1293
    check_variable_and_dtype(x, 'x', ['float32', 'float64'], 'max_pool3d')
1294
    dtype = helper.input_dtype(input_param_name='x')
1295
    pool_out = helper.create_variable_for_type_inference(dtype)
1296
    mask = helper.create_variable_for_type_inference('int32')
1297 1298
    outputs = {"Out": pool_out, "Mask": mask}

1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314
    helper.append_op(type=op_type,
                     inputs={"X": x},
                     outputs=outputs,
                     attrs={
                         "pooling_type": 'max',
                         "ksize": kernel_size,
                         "global_pooling": False,
                         "strides": stride,
                         "paddings": padding,
                         "padding_algorithm": padding_algorithm,
                         "use_cudnn": True,
                         "ceil_mode": ceil_mode,
                         "use_mkldnn": False,
                         "exclusive": False,
                         "data_format": data_format,
                     })
1315

1316
    return (pool_out, mask) if return_mask else pool_out
1317 1318


1319
def adaptive_avg_pool1d(x, output_size, name=None):
1320
    """
1321 1322 1323 1324
    Adaptive average pooling 1d operation on :attr:`x` according to :attr:`output_size`. 
    
    Notes:
        See more details in :ref:`api_nn_pooling_AdaptiveAvgPool1d` .
D
Double_V 已提交
1325

1326
    Args:
1327 1328 1329
        x (Tensor): The input Tensor of pooling, which is a 3-D tensor with shape :math:`[N, C, L]`, where :math:`N` is batch size, :math:`C` is the number of channels and :math:`L` is the length of the feature. The data type is float32 or float64.
        output_size (int): The target output size. Its data type must be int.
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
1330
    
1331
    Returns:
1332
        Tensor: The result of 1D adaptive average pooling. Its data type is same as input.
1333
    
1334 1335
    Examples:
        .. code-block:: python
1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354

            # average adaptive pool1d
            # suppose input data in shape of [N, C, L], `output_size` is m or [m],
            # output shape is [N, C, m], adaptive pool divide L dimension
            # of input data into m grids averagely and performs poolings in each
            # grid to get output.
            # adaptive max pool performs calculations as follow:
            #
            #     for i in range(m):
            #         lstart = floor(i * L / m)
            #         lend = ceil((i + 1) * L / m)
            #         output[:, :, i] = sum(input[:, :, lstart: lend])/(lstart - lend)
            #
            import paddle
            import paddle.nn.functional as F

            data = paddle.uniform([1, 3, 32])
            pool_out = F.adaptive_avg_pool1d(data, output_size=16)
            # pool_out shape: [1, 3, 16])
1355 1356
    """
    pool_type = 'avg'
Z
zhiboniu 已提交
1357
    if not in_dynamic_mode():
1358 1359 1360
        check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'],
                                 'adaptive_pool2d')
        check_type(output_size, 'pool_size', (int), 'adaptive_pool1d')
1361 1362
    _check_input(x, 3)
    pool_size = [1] + utils.convert_to_list(output_size, 1, 'pool_size')
1363

1364
    x = unsqueeze(x, [2])
Z
zhiboniu 已提交
1365
    if in_dynamic_mode():
1366 1367
        pool_out = _legacy_C_ops.pool2d(x, 'pooling_type', pool_type, 'ksize',
                                        pool_size, 'adaptive', True)
1368
        return squeeze(pool_out, [2])
1369

1370 1371
    l_type = "pool2d"

1372
    helper = LayerHelper(l_type, **locals())
1373
    dtype = helper.input_dtype(input_param_name='x')
1374 1375
    pool_out = helper.create_variable_for_type_inference(dtype)

1376
    outputs = {"Out": pool_out}
1377 1378 1379 1380 1381 1382 1383 1384
    helper.append_op(type=l_type,
                     inputs={"X": x},
                     outputs=outputs,
                     attrs={
                         "pooling_type": pool_type,
                         "ksize": pool_size,
                         "adaptive": True,
                     })
1385

1386
    return squeeze(pool_out, [2])
1387 1388


1389 1390
def adaptive_avg_pool2d(x, output_size, data_format='NCHW', name=None):
    """
1391 1392 1393 1394 1395 1396 1397 1398 1399 1400
    Applies 2D adaptive avg pooling on input tensor. The h and w dimensions
    of the output tensor are determined by the parameter output_size.
    
    For avg adaptive pool2d:
    ..  math::
        hstart &= floor(i * H_{in} / H_{out})
        hend &= ceil((i + 1) * H_{in} / H_{out})
        wstart &= floor(j * W_{in} / W_{out})
        wend &= ceil((j + 1) * W_{in} / W_{out})
        Output(i ,j) &= \frac{\sum Input[hstart:hend, wstart:wend]}{(hend - hstart) * (wend - wstart)}
1401 1402 1403

    Args:
        x (Tensor): The input tensor of adaptive avg pool2d operator, which is a 4-D tensor.
1404
                          The data type can be float32 or float64.
1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415
        output_size (int|list|tuple): The pool kernel size. If pool kernel size is a tuple or list,
            it must contain two element, (H, W). H and W can be either a int, or None which means
            the size will be the same as that of the input.
        data_format (str): The data format of the input and output data. An optional string
            from: "NCHW", "NHWC". The default is "NCHW". When it is "NCHW", the data is stored in
            the order of: [batch_size, input_channels, input_height, input_width].
        name(str, optional): For detailed information, please refer
                             to :ref:`api_guide_Name`. Usually name is no need to set and
                             None by default.
    Returns:
        Tensor: The output tensor of avg adaptive pool2d result. The data type is same as input tensor.
1416

1417 1418
    Examples:
        .. code-block:: python
B
Bai Yifan 已提交
1419

1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436
            # adaptive avg pool2d
            # suppose input data in shape of [N, C, H, W], `output_size` is [m, n],
            # output shape is [N, C, m, n], adaptive pool divide H and W dimensions
            # of input data into m * n grids averagely and performs poolings in each
            # grid to get output.
            # adaptive avg pool performs calculations as follow:
            #
            #     for i in range(m):
            #         for j in range(n):
            #             hstart = floor(i * H / m)
            #             hend = ceil((i + 1) * H / m)
            #             wstart = floor(i * W / n)
            #             wend = ceil((i + 1) * W / n)
            #             output[:, :, i, j] = avg(input[:, :, hstart: hend, wstart: wend])
            #
            import paddle
            import numpy as np
1437

1438 1439 1440
            input_data = np.random.rand(2, 3, 32, 32)
            x = paddle.to_tensor(input_data)
            # x.shape is [2, 3, 32, 32]
1441
            out = paddle.nn.functional.adaptive_avg_pool2d(
1442 1443
                            x = x,
                            output_size=[3, 3])
1444
            # out.shape is [2, 3, 3, 3]
1445
    """
Z
zhiboniu 已提交
1446
    if not in_dynamic_mode():
1447
        check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'],
1448
                                 'adaptive_avg_pool2d')
1449
        check_type(data_format, 'data_format', str, 'adaptive_avg_pool2d')
1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463

    if data_format not in ["NCHW", "NHWC"]:
        raise ValueError(
            "Attr(data_format) should be 'NCHW' or 'NHWC'. Received "
            "Attr(data_format): %s." % str(data_format))

    if data_format == "NCHW":
        in_h, in_w = x.shape[2:4]
    else:
        in_h, in_w = x.shape[1:3]

    if isinstance(output_size, int):
        output_size = utils.convert_to_list(output_size, 2, 'output_size')
    else:
1464
        output_size = list(output_size)
1465
        if output_size[0] is None:
1466
            output_size[0] = in_h
1467
        if output_size[1] is None:
1468 1469
            output_size[1] = in_w

1470 1471 1472 1473 1474 1475 1476 1477 1478
    if _non_static_mode():
        output_size = [
            item.numpy().item(0) if isinstance(item, Variable) else item
            for item in output_size
        ]
    # output_size support Variable in static mode
    elif utils._contain_var(output_size):
        output_size = utils._convert_to_tensor_list(output_size)

F
From00 已提交
1479
    if in_dygraph_mode():
1480 1481 1482
        return _C_ops.pool2d_gpudnn_unused(x, output_size, [1, 1], [0, 0],
                                           False, True, data_format, 'avg',
                                           False, True, "EXPLICIT")
F
From00 已提交
1483 1484

    if _in_legacy_dygraph():
1485 1486 1487 1488
        return _legacy_C_ops.pool2d(x, 'pooling_type', 'avg', 'ksize',
                                    output_size, 'global_pooling', False,
                                    'adaptive', True, 'data_format',
                                    data_format)
1489 1490 1491 1492

    l_type = 'pool2d'

    helper = LayerHelper(l_type, **locals())
1493
    dtype = helper.input_dtype(input_param_name='x')
1494 1495 1496 1497
    pool_out = helper.create_variable_for_type_inference(dtype)

    outputs = {"Out": pool_out}

1498 1499 1500 1501 1502 1503 1504 1505 1506
    helper.append_op(type=l_type,
                     inputs={"X": x},
                     outputs=outputs,
                     attrs={
                         "pooling_type": "avg",
                         "ksize": output_size,
                         "adaptive": True,
                         "data_format": data_format,
                     })
1507 1508 1509 1510 1511 1512

    return pool_out


def adaptive_avg_pool3d(x, output_size, data_format='NCDHW', name=None):
    """
1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525
    This operation applies 3D adaptive avg pooling on input tensor. The h and w dimensions
    of the output tensor are determined by the parameter output_size.
    
    For avg adaptive pool3d:
    ..  math::
        dstart &= floor(i * D_{in} / D_{out})
        dend &= ceil((i + 1) * D_{in} / D_{out})
        hstart &= floor(j * H_{in} / H_{out})
        hend &= ceil((j + 1) * H_{in} / H_{out})
        wstart &= floor(k * W_{in} / W_{out})
        wend &= ceil((k + 1) * W_{in} / W_{out})
        Output(i ,j, k) &= \frac{\sum Input[dstart:dend, hstart:hend, wstart:wend]}
            {(dend - dstart) * (hend - hstart) * (wend - wstart)}
1526 1527 1528

    Args:
        x (Tensor): The input tensor of adaptive avg pool3d operator, which is a 5-D tensor.
1529
                          The data type can be float32, float64.
1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540
        output_size (int|list|tuple): The pool kernel size. If pool kernel size is a tuple or list,
            it must contain three elements, (D, H, W). D, H and W can be either a int, or None which means
            the size will be the same as that of the input.
        data_format (str): The data format of the input and output data. An optional string
            from: "NCDHW", "NDHWC". The default is "NCDHW". When it is "NCDHW", the data is stored in
            the order of: [batch_size, input_channels, input_depth, input_height, input_width].
        name(str, optional): For detailed information, please refer
                             to :ref:`api_guide_Name`. Usually name is no need to set and
                             None by default.
    Returns:
        Tensor: The output tensor of avg adaptive pool3d result. The data type is same as input tensor.
1541

1542 1543
    Examples:
        .. code-block:: python
B
Bai Yifan 已提交
1544

1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563
            # adaptive avg pool3d
            # suppose input data in shape of [N, C, D, H, W], `output_size` is [l, m, n],
            # output shape is [N, C, l, m, n], adaptive pool divide D, H and W dimensions
            # of input data into l * m * n grids averagely and performs poolings in each
            # grid to get output.
            # adaptive avg pool performs calculations as follow:
            #
            #     for i in range(l):
            #         for j in range(m):
            #             for k in range(n):
            #                 dstart = floor(i * D / l)
            #                 dend = ceil((i + 1) * D / l)
            #                 hstart = floor(j * H / m)
            #                 hend = ceil((j + 1) * H / m)
            #                 wstart = floor(k * W / n)
            #                 wend = ceil((k + 1) * W / n)
            #                 output[:, :, i, j, k] =
            #                     avg(input[:, :, dstart:dend, hstart: hend, wstart: wend])
            import paddle
1564 1565

            input_data = paddle.randn(shape=(2, 3, 8, 32, 32))
1566
            out = paddle.nn.functional.adaptive_avg_pool3d(
1567
                            x = input_data,
1568
                            output_size=[3, 3, 3])
1569
            # out.shape is [2, 3, 3, 3, 3]
1570
    """
Z
zhiboniu 已提交
1571
    if not in_dynamic_mode():
1572 1573
        check_variable_and_dtype(x, 'x', ['float32', 'float64'],
                                 'adaptive_avg_pool3d')
1574
        check_type(data_format, 'data_format', str, 'adaptive_avg_pool3d')
1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588

    if data_format not in ["NCDHW", "NDHWC"]:
        raise ValueError(
            "Attr(data_format) should be 'NCDHW' or 'NDHWC'. Received "
            "Attr(data_format): %s." % str(data_format))

    if data_format == "NCDHW":
        in_l, in_h, in_w = x.shape[2:5]
    else:
        in_l, in_h, in_w = x.shape[1:4]

    if isinstance(output_size, int):
        output_size = utils.convert_to_list(output_size, 3, 'output_size')
    else:
1589
        output_size = list(output_size)
1590
        if output_size[0] is None:
1591
            output_size[0] = in_l
1592
        if output_size[1] is None:
1593
            output_size[1] = in_h
1594
        if output_size[2] is None:
1595 1596
            output_size[2] = in_w

1597 1598 1599 1600
    if in_dygraph_mode():
        return _C_ops.pool3d(x, output_size, [1, 1, 1], [0, 0, 0], False, True,
                             data_format, 'avg', False, True, "EXPLICIT", False)
    elif _in_legacy_dygraph():
1601 1602 1603 1604
        return _legacy_C_ops.pool3d(x, 'pooling_type', 'avg', 'ksize',
                                    output_size, 'global_pooling', False,
                                    'adaptive', True, 'data_format',
                                    data_format)
1605 1606 1607 1608

    l_type = 'pool3d'

    helper = LayerHelper(l_type, **locals())
1609
    dtype = helper.input_dtype(input_param_name='x')
1610 1611 1612
    pool_out = helper.create_variable_for_type_inference(dtype)
    outputs = {"Out": pool_out}

1613 1614 1615 1616 1617 1618 1619 1620 1621
    helper.append_op(type=l_type,
                     inputs={"X": x},
                     outputs=outputs,
                     attrs={
                         "pooling_type": "avg",
                         "ksize": output_size,
                         "adaptive": True,
                         "data_format": data_format,
                     })
1622 1623

    return pool_out
1624 1625


1626
def adaptive_max_pool1d(x, output_size, return_mask=False, name=None):
1627 1628 1629 1630 1631 1632 1633 1634 1635
    """
    This API implements adaptive max pooling 1d operation.
    See more details in :ref:`api_nn_pooling_AdaptiveMaxPool1d` .

    Args:
        x (Tensor): The input tensor of pooling operator, which is a 3-D tensor
                              with shape [N, C, L].  The format of input tensor is NCL,
                              where N is batch size, C is the number of channels, L is the
                              length of the feature. The data type is float32 or float64.
1636
        output_size (int): The pool kernel size. The value should be an integer.
1637
        return_mask (bool): If true, the index of max pooling point will be returned along
1638 1639 1640 1641 1642 1643 1644 1645
                with outputs. It cannot be set in average pooling type. Default False.
        name(str, optional): For detailed information, please refer
                                 to :ref:`api_guide_Name`. Usually name is no need to set and
                                 None by default.
    Returns:
            Tensor: The output tensor of adaptive pooling result. The data type is same
                      as input tensor.
    Raises:
1646
            ValueError: 'output_size' should be an integer.
1647 1648
    Examples:
        .. code-block:: python
1649

1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663
              # max adaptive pool1d
              # suppose input data in shape of [N, C, L], `output_size` is m or [m],
              # output shape is [N, C, m], adaptive pool divide L dimension
              # of input data into m grids averagely and performs poolings in each
              # grid to get output.
              # adaptive max pool performs calculations as follow:
              #
              #     for i in range(m):
              #         lstart = floor(i * L / m)
              #         lend = ceil((i + 1) * L / m)
              #         output[:, :, i] = max(input[:, :, lstart: lend])
              #
              import paddle
              import paddle.nn.functional as F
1664

1665
              data = paddle.uniform([1, 3, 32], paddle.float32)
1666 1667
              pool_out = F.adaptive_max_pool1d(data, output_size=16)
              # pool_out shape: [1, 3, 16])
1668
              pool_out, indices = F.adaptive_max_pool1d(data, output_size=16, return_mask=True)
1669 1670 1671
              # pool_out shape: [1, 3, 16] indices  shape: [1, 3, 16]
    """
    pool_type = 'max'
Z
zhiboniu 已提交
1672
    if not in_dynamic_mode():
1673 1674 1675 1676
        check_variable_and_dtype(x, 'x', ['float32', 'float64'],
                                 'adaptive_max_pool1d')
        check_type(output_size, 'pool_size', int, 'adaptive_max_pool1d')
        check_type(return_mask, 'return_mask', bool, 'adaptive_max_pool1d')
1677 1678 1679 1680 1681
    _check_input(x, 3)

    pool_size = [1] + utils.convert_to_list(output_size, 1, 'pool_size')

    x = unsqueeze(x, [2])
1682
    if in_dygraph_mode():
1683 1684
        pool_out = _C_ops.max_pool2d_with_index(x, pool_size, [1, 1], [0, 0],
                                                False, True)
1685 1686 1687
        return (squeeze(pool_out[0], [2]), squeeze(
            pool_out[1], [2])) if return_mask else squeeze(pool_out[0], [2])
    if _in_legacy_dygraph():
1688 1689 1690 1691
        pool_out = _legacy_C_ops.max_pool2d_with_index(x, 'pooling_type',
                                                       pool_type, 'ksize',
                                                       pool_size, 'adaptive',
                                                       True)
1692
        return (squeeze(pool_out[0], [2]), squeeze(
1693
            pool_out[1], [2])) if return_mask else squeeze(pool_out[0], [2])
1694

1695 1696
    l_type = 'max_pool2d_with_index'

1697
    helper = LayerHelper(l_type, **locals())
1698
    dtype = helper.input_dtype(input_param_name='x')
1699 1700
    pool_out = helper.create_variable_for_type_inference(dtype)

1701
    mask = helper.create_variable_for_type_inference('int32')
1702 1703
    outputs = {"Out": pool_out, "Mask": mask}

1704 1705 1706 1707 1708 1709 1710 1711
    helper.append_op(type=l_type,
                     inputs={"X": x},
                     outputs=outputs,
                     attrs={
                         "pooling_type": pool_type,
                         "ksize": pool_size,
                         "adaptive": True,
                     })
1712 1713

    return (squeeze(pool_out, [2]),
1714
            squeeze(mask, [2])) if return_mask else squeeze(pool_out, [2])
1715 1716


1717
def adaptive_max_pool2d(x, output_size, return_mask=False, name=None):
1718 1719 1720
    """
        This operation applies a 2D adaptive max pooling on input tensor.
        See more details in :ref:`api_nn_pooling_AdaptiveMaxPool2d` .
1721

1722 1723 1724
        Args:
            x (Tensor): The input tensor of adaptive max pool2d operator, which is a 4-D tensor. The data type can be float16, float32, float64, int32 or int64.
            output_size (int|list|tuple): The pool kernel size. If pool kernel size is a tuple or list, it must contain two elements, (H, W). H and W can be either a int, or None which means the size will be the same as that of the input.
1725
            return_mask (bool): If true, the index of max pooling point will be returned along with outputs. Default False.
1726
            name(str, optional): For detailed information, please refer to :ref:`api_guide_Name`. Usually name is no need to set and None by default.
1727

1728 1729
        Returns:
            Tensor: The output tensor of adaptive max pool2d result. The data type is same as input tensor.
1730

1731 1732
        Examples:
            .. code-block:: python
1733

1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749
              # max adaptive pool2d
              # suppose input data in the shape of [N, C, H, W], `output_size` is [m, n]
              # output shape is [N, C, m, n], adaptive pool divide H and W dimensions
              # of input data into m*n grids averagely and performs poolings in each
              # grid to get output.
              # adaptive max pool performs calculations as follow:
              #
              #     for i in range(m):
              #         for j in range(n):
              #             hstart = floor(i * H / m)
              #             hend = ceil((i + 1) * H / m)
              #             wstart = floor(i * W / n)
              #             wend = ceil((i + 1) * W / n)
              #             output[:, :, i, j] = max(input[:, :, hstart: hend, wstart: wend])
              #
              import paddle
1750

1751
              input_data = paddle.randn(shape=(2, 3, 32, 32))
1752
              out = paddle.nn.functional.adaptive_max_pool2d(
1753
                            x = input_data,
1754 1755 1756
                            output_size=[3, 3])
              # out.shape is [2, 3, 3, 3]
    """
Z
zhiboniu 已提交
1757
    if not in_dynamic_mode():
1758 1759
        check_variable_and_dtype(x, 'x', ['float32', 'float64'],
                                 'adaptive_max_pool2d')
1760 1761
        check_type(return_mask, 'return_mask', bool, 'adaptive_max_pool2d')
        #check_type(output_size, 'pool_size', (int), 'adaptive_max_pool2d')
1762 1763 1764 1765 1766 1767
    _check_input(x, 4)

    in_h, in_w = x.shape[2:4]
    if isinstance(output_size, int):
        output_size = utils.convert_to_list(output_size, 2, 'output_size')
    else:
1768
        output_size = list(output_size)
1769 1770 1771 1772
        if output_size[0] == None:
            output_size[0] = in_h
        if output_size[1] == None:
            output_size[1] = in_w
1773
    if in_dygraph_mode():
1774 1775
        pool_out = _C_ops.max_pool2d_with_index(x, output_size, [1, 1], [0, 0],
                                                False, True)
1776 1777
        return pool_out if return_mask else pool_out[0]
    if _in_legacy_dygraph():
1778 1779 1780
        pool_out = _legacy_C_ops.max_pool2d_with_index(x, 'pooling_type', 'max',
                                                       'ksize', output_size,
                                                       'adaptive', True)
1781
        return pool_out if return_mask else pool_out[0]
1782 1783 1784 1785

    l_type = 'max_pool2d_with_index'

    helper = LayerHelper(l_type, **locals())
1786
    dtype = helper.input_dtype(input_param_name='x')
1787 1788
    pool_out = helper.create_variable_for_type_inference(dtype)

1789
    mask = helper.create_variable_for_type_inference('int32')
1790 1791
    outputs = {"Out": pool_out, "Mask": mask}

1792 1793 1794 1795 1796 1797 1798 1799
    helper.append_op(type=l_type,
                     inputs={"X": x},
                     outputs=outputs,
                     attrs={
                         "pooling_type": 'max',
                         "ksize": output_size,
                         "adaptive": True,
                     })
1800
    #return (pool_out, mask) if return_mask else pool_out
1801 1802 1803
    return pool_out


1804
def adaptive_max_pool3d(x, output_size, return_mask=False, name=None):
1805 1806 1807
    """
        This operation applies a 3D adaptive max pooling on input tensor.
        See more details in :ref:`api_nn_pooling_AdaptiveMaxPool3d` .
1808

1809 1810 1811
        Args:
            x (Tensor): The input tensor of adaptive max pool3d operator, which is a 5-D tensor. The data type can be float32, float64.
            output_size (int|list|tuple): The pool kernel size. If pool kernel size is a tuple or list, it must contain three elements, (D, H, W). D, H and W can be either a int, or None which means the size will be the same as that of the input.
1812
            return_mask (bool): If true, the index of max pooling point will be returned along with outputs. Default False.
1813
            name(str, optional): For detailed information, please refer to :ref:`api_guide_Name`. Usually name is no need to set and None by default.
1814

1815 1816
        Returns:
            Tensor: The output tensor of adaptive max pool3d result. The data type is same as input tensor.
1817

1818 1819
        Examples:
            .. code-block:: python
1820

1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839
              # adaptive max pool3d
              # suppose input data in the shape of [N, C, D, H, W], `output_size` is [l, m, n]
              # output shape is [N, C, l, m, n], adaptive pool divide D, H and W dimensions
              # of input data into m*n grids averagely and performs poolings in each
              # grid to get output.
              # adaptive max pool performs calculations as follow:
              #
              #     for i in range(l):
              #         for j in range(m):
              #             for k in range(n):
              #                 dstart = floor(i * D / l)
              #                 dend = ceil((i + 1) * D / l)
              #                 hstart = floor(i * H / m)
              #                 hend = ceil((i + 1) * H / m)
              #                 wstart = floor(i * W / n)
              #                 wend = ceil((i + 1) * W / n)
              #             output[:, :, i, j, k] = max(input[:, :, dstart: dend, hstart: hend, wstart: wend])
              #
              import paddle
1840

1841
              input_data = paddle.randn(shape=(2, 3, 8, 32, 32))
1842
              out = paddle.nn.functional.adaptive_max_pool3d(
1843
                            x = input_data,
1844 1845 1846 1847
                            output_size=[3, 3, 3])
              # out.shape is [2, 3, 3, 3, 3]
    """

Z
zhiboniu 已提交
1848
    if not in_dynamic_mode():
1849 1850
        check_variable_and_dtype(x, 'x', ['float32', 'float64'],
                                 'adaptive_max_pool3d')
1851 1852
        check_type(return_mask, 'return_mask', bool, 'adaptive_max_pool3d')
        #check_type(output_size, 'pool_size', (int), 'adaptive_max_pool3d')
1853 1854 1855 1856 1857 1858
    _check_input(x, 5)

    in_l, in_h, in_w = x.shape[2:5]
    if isinstance(output_size, int):
        output_size = utils.convert_to_list(output_size, 3, 'output_size')
    else:
1859
        output_size = list(output_size)
1860 1861 1862 1863 1864 1865 1866
        if output_size[0] == None:
            output_size[0] = in_l
        if output_size[1] == None:
            output_size[1] = in_h
        if output_size[2] == None:
            output_size[2] = in_w

Z
zhiboniu 已提交
1867
    if in_dynamic_mode():
1868 1869 1870 1871 1872 1873 1874 1875
        if in_dygraph_mode():
            # By default, strides is [1,1,1] and paddings is [0, 0, 0]
            pool_out = _C_ops.max_pool3d_with_index(x, output_size, [1, 1, 1],
                                                    [0, 0, 0], False, True)
        elif _in_legacy_dygraph():
            pool_out = _legacy_C_ops.max_pool3d_with_index(
                x, 'pooling_type', 'max', 'ksize', output_size, 'adaptive',
                True)
1876
        return pool_out if return_mask else pool_out[0]
1877 1878 1879 1880

    l_type = 'max_pool3d_with_index'

    helper = LayerHelper(l_type, **locals())
1881
    dtype = helper.input_dtype(input_param_name='x')
1882 1883
    pool_out = helper.create_variable_for_type_inference(dtype)

1884
    mask = helper.create_variable_for_type_inference('int32')
1885 1886
    outputs = {"Out": pool_out, "Mask": mask}

1887 1888 1889 1890 1891 1892 1893 1894
    helper.append_op(type=l_type,
                     inputs={"X": x},
                     outputs=outputs,
                     attrs={
                         "pooling_type": 'max',
                         "ksize": output_size,
                         "adaptive": True,
                     })
1895

1896
    return (pool_out, mask) if return_mask else pool_out