elementwise_op_function.h 13.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

   Licensed under the Apache License, Version 2.0 (the "License");
   you may not use this file except in compliance with the License.
   You may obtain a copy of the License at

   http://www.apache.org/licenses/LICENSE-2.0

   Unless required by applicable law or agreed to in writing, software
   distributed under the License is distributed on an "AS IS" BASIS,
   WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
   See the License for the specific language governing permissions and
   limitations under the License. */

#pragma once
#include "paddle/framework/eigen.h"
17
#include "paddle/framework/op_registry.h"
18
#include "paddle/framework/operator.h"
C
chengduoZH 已提交
19
#include "paddle/platform/transform.h"
20

C
chengduoZH 已提交
21 22 23 24
#ifdef __NVCC__
#include <thrust/iterator/iterator_adaptor.h>
#endif

25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61
#include "paddle/operators/math/math_function.h"

namespace paddle {
namespace operators {

/*
 * Out = X ⊙ Y
 * If Y's shape does not match X' shape, they will be reshaped.
 * For example:
 * 1. shape(X) = (2, 3, 4, 5), shape(Y) = (3, 4), with axis=1
 *    pre=2, n=3*4, post=5
 *    x.shape(2, 12, 5) * y.shape(1,12,1).broadcast(2,12,5)
 * 2. shape(X) = (2, 3, 4, 5), shape(Y) = (4,5)
 *    pre=2*3, n=4*5, post=1
 *    x.shape(2, 3, 20) * y.shape(1,1,20).broadcast(2,3,20)
 */
inline void get_mid_dims(const framework::DDim& x_dims,
                         const framework::DDim& y_dims, const int axis,
                         int& pre, int& n, int& post) {
  pre = 1;
  n = 1;
  post = 1;
  for (int i = 0; i < axis; ++i) {
    pre *= x_dims[i];
  }

  for (int i = 0; i < y_dims.size(); ++i) {
    PADDLE_ENFORCE_EQ(x_dims[i + axis], y_dims[i],
                      "Broadcast dimension mismatch.");
    n *= y_dims[i];
  }

  for (int i = axis + y_dims.size(); i < x_dims.size(); ++i) {
    post *= x_dims[i];
  }
}

Q
QI JUN 已提交
62
template <typename T, typename DeviceContext>
C
chengduoZH 已提交
63
class RowwiseTransformIterator;
Q
QI JUN 已提交
64
template <typename T, typename DeviceContext>
C
chengduoZH 已提交
65
class MidWiseTransformIterator;
C
chengduoZH 已提交
66 67

template <typename T>
Q
QI JUN 已提交
68
class RowwiseTransformIterator<T, platform::CPUDeviceContext> {
C
chengduoZH 已提交
69
 public:
C
chengduoZH 已提交
70 71
  RowwiseTransformIterator(const T* ptr, int n) : ptr_(ptr), i_(0), n_(n) {}

Q
QI JUN 已提交
72
  RowwiseTransformIterator<T, platform::CPUDeviceContext>& operator++() {
C
chengduoZH 已提交
73
    ++i_;
C
chengduoZH 已提交
74 75 76
    if (UNLIKELY(i_ == n_)) {
      i_ = 0;
    }
C
chengduoZH 已提交
77 78 79
    return *this;
  }

Q
QI JUN 已提交
80 81
  bool operator==(const RowwiseTransformIterator<T, platform::CPUDeviceContext>&
                      rhs) const {
C
chengduoZH 已提交
82
    return (ptr_ + i_) == &(*rhs);
C
chengduoZH 已提交
83 84
  }

Q
QI JUN 已提交
85 86
  bool operator!=(const RowwiseTransformIterator<T, platform::CPUDeviceContext>&
                      rhs) const {
C
chengduoZH 已提交
87
    return (ptr_ + i_) != &(*rhs);
C
chengduoZH 已提交
88 89 90 91
  }

  const T& operator*() { return ptr_[i_]; }

C
chengduoZH 已提交
92
 private:
C
chengduoZH 已提交
93 94
  const T* ptr_;
  int i_;
C
chengduoZH 已提交
95
  int64_t n_;
C
chengduoZH 已提交
96 97 98
};

template <typename T>
Q
QI JUN 已提交
99
class MidWiseTransformIterator<T, platform::CPUDeviceContext> {
C
chengduoZH 已提交
100
 public:
C
chengduoZH 已提交
101 102 103
  MidWiseTransformIterator(const T* ptr, int n, int post)
      : ptr_(ptr), i_(0), j_(0), n_(n), post_(post) {}

Q
QI JUN 已提交
104
  MidWiseTransformIterator<T, platform::CPUDeviceContext>& operator++() {
C
chengduoZH 已提交
105 106 107 108 109 110
    ++j_;
    i_ = j_ / post_;
    if (UNLIKELY(i_ == n_)) {
      j_ = 0;
      i_ = 0;
    }
C
chengduoZH 已提交
111 112 113
    return *this;
  }

Q
QI JUN 已提交
114 115
  bool operator==(const MidWiseTransformIterator<T, platform::CPUDeviceContext>&
                      rhs) const {
C
chengduoZH 已提交
116
    return (ptr_ + i_) == &(*rhs);
C
chengduoZH 已提交
117 118
  }

Q
QI JUN 已提交
119 120
  bool operator!=(const MidWiseTransformIterator<T, platform::CPUDeviceContext>&
                      rhs) const {
C
chengduoZH 已提交
121
    return (ptr_ + i_) != &(*rhs);
C
chengduoZH 已提交
122 123 124 125
  }

  const T& operator*() { return ptr_[i_]; }

C
chengduoZH 已提交
126
 private:
C
chengduoZH 已提交
127 128
  const T* ptr_;
  int i_;
C
chengduoZH 已提交
129 130
  int64_t j_;
  int64_t n_;
C
chengduoZH 已提交
131 132 133
  int post_;
};

C
chengduoZH 已提交
134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188
template <typename T, typename Place>
class ElementIterator;

// Fixed(zcd) : Only support 2D
template <typename T>
class ElementIterator<T, platform::CPUDeviceContext> {
 public:
  ElementIterator(const T* ptr, int t_m, int t_n, int m, int n)
      : ptr_(ptr),
        index_(0),
        i_(0),
        j_(0),
        t_m_(t_m),
        t_n_(t_n),
        m_(m),
        n_(n) {}

  ElementIterator<T, platform::CPUDeviceContext>& operator++() {
    ++j_;

    if ((j_ == n_)) {
      j_ = 0;
      ++i_;
    }
    int t_i = (t_m_ == 1) ? 0 : i_;
    int t_j = (t_n_ == 1) ? 0 : j_;
    index_ = t_i * t_n_ + t_j;

    return *this;
  }

  bool operator==(
      const ElementIterator<T, platform::CPUDeviceContext>& rhs) const {
    return (ptr_ + index_) == &(*rhs);
  }

  bool operator!=(
      const ElementIterator<T, platform::CPUDeviceContext>& rhs) const {
    return (ptr_ + index_) != &(*rhs);
  }

  const T& operator*() { return ptr_[index_]; }

 private:
  // t_m_ == m_ || t_n_ == n_ || (t_m_ == 1 && t_m_ == 1)
  const T* ptr_;
  int index_;
  int i_;
  int j_;
  int64_t t_m_;
  int64_t t_n_;
  int64_t m_;
  int64_t n_;
};

C
chengduoZH 已提交
189 190
#ifdef __NVCC__
template <typename T>
Q
QI JUN 已提交
191
class RowwiseTransformIterator<T, platform::CUDADeviceContext>
C
chengduoZH 已提交
192
    : public thrust::iterator_adaptor<
Q
QI JUN 已提交
193
          RowwiseTransformIterator<T, platform::CUDADeviceContext>, const T*> {
C
chengduoZH 已提交
194 195
 public:
  typedef thrust::iterator_adaptor<
Q
QI JUN 已提交
196
      RowwiseTransformIterator<T, platform::CUDADeviceContext>, const T*>
C
chengduoZH 已提交
197
      super_t;
C
chengduoZH 已提交
198
  HOSTDEVICE RowwiseTransformIterator(const T* x, int n)
C
chengduoZH 已提交
199 200 201 202 203 204
      : super_t(x), begin_(x), n_(n){};
  friend class thrust::iterator_core_access;

 private:
  unsigned int n_;
  const T* begin_;
C
chengduoZH 已提交
205
  HOSTDEVICE typename super_t::reference dereference() const {
C
chengduoZH 已提交
206 207 208 209 210
    return *(begin_ + (this->base() - begin_) % n_);
  }
};

template <typename T>
Q
QI JUN 已提交
211
class MidWiseTransformIterator<T, platform::CUDADeviceContext>
C
chengduoZH 已提交
212
    : public thrust::iterator_adaptor<
Q
QI JUN 已提交
213
          MidWiseTransformIterator<T, platform::CUDADeviceContext>, const T*> {
C
chengduoZH 已提交
214 215
 public:
  typedef thrust::iterator_adaptor<
Q
QI JUN 已提交
216
      MidWiseTransformIterator<T, platform::CUDADeviceContext>, const T*>
C
chengduoZH 已提交
217
      super_t;
C
chengduoZH 已提交
218
  HOSTDEVICE MidWiseTransformIterator(const T* x, int n, int post)
C
chengduoZH 已提交
219 220 221 222 223 224 225
      : super_t(x), begin_(x), n_(n), post_(post){};
  friend class thrust::iterator_core_access;

 private:
  unsigned int post_;
  unsigned int n_;
  const T* begin_;
C
chengduoZH 已提交
226
  HOSTDEVICE typename super_t::reference dereference() const {
C
chengduoZH 已提交
227 228 229 230 231
    return *(begin_ + (((this->base() - begin_) / post_) % n_));
  }
};
#endif

Q
QI JUN 已提交
232
template <typename Functor, typename T, typename DeviceContext>
C
chengduoZH 已提交
233 234
class TransformFunctor {
 public:
C
chengduoZH 已提交
235
  TransformFunctor(const framework::Tensor* x, const framework::Tensor* y,
Q
QI JUN 已提交
236
                   framework::Tensor* z, const DeviceContext& ctx, Functor func)
C
chengduoZH 已提交
237 238 239 240 241 242 243 244
      : x_(x->data<T>()),
        y_(y->data<T>()),
        z_(z->mutable_data<T>(ctx.GetPlace())),
        nx_(x->numel()),
        ctx_(ctx),
        func_(func) {}

  inline void Run() const {
Q
QI JUN 已提交
245
    platform::Transform<DeviceContext> trans;
C
chengduoZH 已提交
246
    trans(ctx_, x_, x_ + nx_, y_, z_, func_);
C
chengduoZH 已提交
247 248 249
  }

  inline void RunRowWise(int n, int pre) const {
Q
QI JUN 已提交
250 251 252
    platform::Transform<DeviceContext> trans;
    trans(ctx_, x_, x_ + nx_, RowwiseTransformIterator<T, DeviceContext>(y_, n),
          z_, func_);
C
chengduoZH 已提交
253 254 255
  }

  inline void RunMidWise(int n, int pre, int post) const {
Q
QI JUN 已提交
256 257 258
    platform::Transform<DeviceContext> trans;
    trans(ctx_, x_, x_ + nx_,
          MidWiseTransformIterator<T, DeviceContext>(y_, n, post), z_, func_);
C
chengduoZH 已提交
259 260
  }

C
chengduoZH 已提交
261
 private:
C
chengduoZH 已提交
262 263 264 265
  const T* x_;
  const T* y_;
  T* z_;
  int64_t nx_;
Q
QI JUN 已提交
266
  const DeviceContext& ctx_;
C
chengduoZH 已提交
267 268 269
  Functor func_;
};

270 271
#define EIGEN_FUNCTOR(name, eigen_op)                                          \
  struct Eigen##name##Functor {                                                \
Q
QI JUN 已提交
272
    template <typename DeviceContext, typename T>                              \
273 274 275 276 277 278
    inline void Run(const framework::Tensor* x, const framework::Tensor* y,    \
                    framework::Tensor* z,                                      \
                    const framework::ExecutionContext& ctx) {                  \
      auto x_e = framework::EigenVector<T>::Flatten(*x);                       \
      auto y_e = framework::EigenVector<T>::Flatten(*y);                       \
      auto z_e = framework::EigenVector<T>::Flatten(*z);                       \
Q
QI JUN 已提交
279 280 281
      z_e.device(                                                              \
          *ctx.template device_context<DeviceContext>().eigen_device()) =      \
          eigen_op(x_e, y_e);                                                  \
282
    }                                                                          \
Q
QI JUN 已提交
283
    template <typename DeviceContext, typename T>                              \
284 285 286 287 288 289 290 291 292 293
    inline void RunBroadCast(const framework::Tensor* x,                       \
                             const framework::Tensor* y, framework::Tensor* z, \
                             const framework::ExecutionContext& ctx, int pre,  \
                             int n) {                                          \
      auto x_e = framework::EigenVector<T>::Flatten(*x);                       \
      auto y_e = framework::EigenVector<T>::Flatten(*y);                       \
      auto z_e = framework::EigenVector<T>::Flatten(*z);                       \
      auto y_bcast = y_e.reshape(Eigen::DSizes<int, 2>(1, n))                  \
                         .broadcast(Eigen::DSizes<int, 2>(pre, 1))             \
                         .reshape(Eigen::DSizes<int, 1>(x_e.size()));          \
Q
QI JUN 已提交
294 295 296
      z_e.device(                                                              \
          *ctx.template device_context<DeviceContext>().eigen_device()) =      \
          eigen_op(x_e, y_bcast);                                              \
297
    }                                                                          \
Q
QI JUN 已提交
298
    template <typename DeviceContext, typename T>                              \
299 300 301 302 303 304 305 306 307 308 309
    inline void RunBroadCast2(const framework::Tensor* x,                      \
                              const framework::Tensor* y,                      \
                              framework::Tensor* z,                            \
                              const framework::ExecutionContext& ctx, int pre, \
                              int n, int post) {                               \
      auto x_e = framework::EigenVector<T>::Flatten(*x);                       \
      auto y_e = framework::EigenVector<T>::Flatten(*y);                       \
      auto z_e = framework::EigenVector<T>::Flatten(*z);                       \
      auto y_bcast = y_e.reshape(Eigen::DSizes<int, 3>(1, n, 1))               \
                         .broadcast(Eigen::DSizes<int, 3>(pre, 1, post))       \
                         .reshape(Eigen::DSizes<int, 1>(x_e.size()));          \
Q
QI JUN 已提交
310 311 312
      z_e.device(                                                              \
          *ctx.template device_context<DeviceContext>().eigen_device()) =      \
          eigen_op(x_e, y_bcast);                                              \
313 314 315
    }                                                                          \
  }

Q
QI JUN 已提交
316
template <class functor, typename DeviceContext, typename T>
317 318 319 320 321 322 323 324 325 326 327
void ElementwiseCompute(const framework::ExecutionContext& ctx) {
  using Tensor = framework::Tensor;

  auto* x = ctx.Input<Tensor>("X");
  auto* y = ctx.Input<Tensor>("Y");
  auto* z = ctx.Output<Tensor>("Out");
  z->mutable_data<T>(ctx.GetPlace());

  auto x_dims = x->dims();
  auto y_dims = y->dims();
  PADDLE_ENFORCE_GE(x_dims.size(), y_dims.size(),
328
                    "Rank of first input must >= rank of second input.");
329

Q
qijun 已提交
330
  if (x_dims == y_dims) {
331
    functor f;
Q
QI JUN 已提交
332
    f.template Run<DeviceContext, T>(x, y, z, ctx);
333 334 335 336 337 338 339 340 341 342 343 344
    return;
  }

  int axis = ctx.Attr<int>("axis");
  axis = (axis == -1 ? x_dims.size() - y_dims.size() : axis);
  PADDLE_ENFORCE(axis >= 0 && axis < x_dims.size(),
                 "Axis should be in range [0, x_dims)");

  int pre, n, post;
  get_mid_dims(x_dims, y_dims, axis, pre, n, post);
  if (post == 1) {
    functor f;
Q
QI JUN 已提交
345
    f.template RunBroadCast<DeviceContext, T>(x, y, z, ctx, pre, n);
346 347 348
    return;
  } else {
    functor f;
Q
QI JUN 已提交
349
    f.template RunBroadCast2<DeviceContext, T>(x, y, z, ctx, pre, n, post);
350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365
    return;
  }
}

#define EIGEN_ADD(x, y) ((x) + (y))
EIGEN_FUNCTOR(Add, EIGEN_ADD);

#define EIGEN_SUB(x, y) ((x) - (y))
EIGEN_FUNCTOR(Sub, EIGEN_SUB);

#define EIGEN_MUL(x, y) ((x) * (y))
EIGEN_FUNCTOR(Mul, EIGEN_MUL);

#define EIGEN_DIV(x, y) ((x) / (y))
EIGEN_FUNCTOR(Div, EIGEN_DIV);

Q
QI JUN 已提交
366 367 368
template <typename DeviceContext, typename T, typename functor,
          typename functor1, typename broadcastfunctor,
          typename broadcast2functor>
369 370 371 372 373 374 375 376
void ElementwiseGradCompute(const framework::ExecutionContext& ctx) {
  using Tensor = framework::Tensor;

  auto* x = ctx.Input<Tensor>("X");
  auto* y = ctx.Input<Tensor>("Y");
  auto* out = ctx.Input<Tensor>("Out");
  auto* dout = ctx.Input<Tensor>(framework::GradVarName("Out"));

Q
QI JUN 已提交
377
  auto& place = *ctx.template device_context<DeviceContext>().eigen_device();
378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414

  auto x_dims = x->dims();
  auto y_dims = y->dims();

  auto* dx = ctx.Output<Tensor>(framework::GradVarName("X"));
  auto* dy = ctx.Output<Tensor>(framework::GradVarName("Y"));
  if (dx) {
    dx->mutable_data<T>(ctx.GetPlace());
  }
  if (dy) {
    dy->mutable_data<T>(ctx.GetPlace());
  }

  if (x_dims == y_dims) {
    functor f;
    f(place, x, y, out, dx, dy, dout);
    return;
  }

  int axis = ctx.Attr<int>("axis");
  axis = (axis == -1 ? x_dims.size() - y_dims.size() : axis);

  int pre, n, post;
  get_mid_dims(x_dims, y_dims, axis, pre, n, post);

  if (post == 1) {
    broadcastfunctor f;
    f(place, x, y, out, dx, dy, dout, pre, n);
    return;
  } else {
    broadcast2functor f;
    f(place, x, y, out, dx, dy, dout, pre, n, post);
    return;
  }
}
}  // namespace operators
}  // namespace paddle