elementwise_op_function.h 11.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

   Licensed under the Apache License, Version 2.0 (the "License");
   you may not use this file except in compliance with the License.
   You may obtain a copy of the License at

   http://www.apache.org/licenses/LICENSE-2.0

   Unless required by applicable law or agreed to in writing, software
   distributed under the License is distributed on an "AS IS" BASIS,
   WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
   See the License for the specific language governing permissions and
   limitations under the License. */

#pragma once
#include "paddle/framework/eigen.h"
17
#include "paddle/framework/op_registry.h"
18
#include "paddle/framework/operator.h"
C
chengduoZH 已提交
19
#include "paddle/platform/transform.h"
20

C
chengduoZH 已提交
21 22 23 24
#ifdef __NVCC__
#include <thrust/iterator/iterator_adaptor.h>
#endif

25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61
#include "paddle/operators/math/math_function.h"

namespace paddle {
namespace operators {

/*
 * Out = X ⊙ Y
 * If Y's shape does not match X' shape, they will be reshaped.
 * For example:
 * 1. shape(X) = (2, 3, 4, 5), shape(Y) = (3, 4), with axis=1
 *    pre=2, n=3*4, post=5
 *    x.shape(2, 12, 5) * y.shape(1,12,1).broadcast(2,12,5)
 * 2. shape(X) = (2, 3, 4, 5), shape(Y) = (4,5)
 *    pre=2*3, n=4*5, post=1
 *    x.shape(2, 3, 20) * y.shape(1,1,20).broadcast(2,3,20)
 */
inline void get_mid_dims(const framework::DDim& x_dims,
                         const framework::DDim& y_dims, const int axis,
                         int& pre, int& n, int& post) {
  pre = 1;
  n = 1;
  post = 1;
  for (int i = 0; i < axis; ++i) {
    pre *= x_dims[i];
  }

  for (int i = 0; i < y_dims.size(); ++i) {
    PADDLE_ENFORCE_EQ(x_dims[i + axis], y_dims[i],
                      "Broadcast dimension mismatch.");
    n *= y_dims[i];
  }

  for (int i = axis + y_dims.size(); i < x_dims.size(); ++i) {
    post *= x_dims[i];
  }
}

C
chengduoZH 已提交
62
template <typename T, typename Place>
C
chengduoZH 已提交
63
class RowwiseTransformIterator;
C
chengduoZH 已提交
64
template <typename T, typename Place>
C
chengduoZH 已提交
65
class MidWiseTransformIterator;
C
chengduoZH 已提交
66 67

template <typename T>
C
chengduoZH 已提交
68 69
class RowwiseTransformIterator<T, platform::CPUPlace> {
 public:
C
chengduoZH 已提交
70 71 72 73
  RowwiseTransformIterator(const T* ptr, int n) : ptr_(ptr), i_(0), n_(n) {}

  RowwiseTransformIterator<T, platform::CPUPlace>& operator++() {
    ++i_;
C
chengduoZH 已提交
74 75 76
    if (UNLIKELY(i_ == n_)) {
      i_ = 0;
    }
C
chengduoZH 已提交
77 78 79 80 81
    return *this;
  }

  bool operator==(
      const RowwiseTransformIterator<T, platform::CPUPlace>& rhs) const {
C
chengduoZH 已提交
82
    return (ptr_ + i_) == &(*rhs);
C
chengduoZH 已提交
83 84 85 86
  }

  bool operator!=(
      const RowwiseTransformIterator<T, platform::CPUPlace>& rhs) const {
C
chengduoZH 已提交
87
    return (ptr_ + i_) != &(*rhs);
C
chengduoZH 已提交
88 89 90 91
  }

  const T& operator*() { return ptr_[i_]; }

C
chengduoZH 已提交
92
 private:
C
chengduoZH 已提交
93 94
  const T* ptr_;
  int i_;
C
chengduoZH 已提交
95
  int64_t n_;
C
chengduoZH 已提交
96 97 98
};

template <typename T>
C
chengduoZH 已提交
99 100
class MidWiseTransformIterator<T, platform::CPUPlace> {
 public:
C
chengduoZH 已提交
101 102 103 104
  MidWiseTransformIterator(const T* ptr, int n, int post)
      : ptr_(ptr), i_(0), j_(0), n_(n), post_(post) {}

  MidWiseTransformIterator<T, platform::CPUPlace>& operator++() {
C
chengduoZH 已提交
105 106 107 108 109 110
    ++j_;
    i_ = j_ / post_;
    if (UNLIKELY(i_ == n_)) {
      j_ = 0;
      i_ = 0;
    }
C
chengduoZH 已提交
111 112 113 114 115
    return *this;
  }

  bool operator==(
      const MidWiseTransformIterator<T, platform::CPUPlace>& rhs) const {
C
chengduoZH 已提交
116
    return (ptr_ + i_) == &(*rhs);
C
chengduoZH 已提交
117 118 119 120
  }

  bool operator!=(
      const MidWiseTransformIterator<T, platform::CPUPlace>& rhs) const {
C
chengduoZH 已提交
121
    return (ptr_ + i_) != &(*rhs);
C
chengduoZH 已提交
122 123 124 125
  }

  const T& operator*() { return ptr_[i_]; }

C
chengduoZH 已提交
126
 private:
C
chengduoZH 已提交
127 128
  const T* ptr_;
  int i_;
C
chengduoZH 已提交
129 130
  int64_t j_;
  int64_t n_;
C
chengduoZH 已提交
131 132 133
  int post_;
};

C
chengduoZH 已提交
134 135
#ifdef __NVCC__
template <typename T>
C
chengduoZH 已提交
136
class RowwiseTransformIterator<T, platform::GPUPlace>
C
chengduoZH 已提交
137 138 139 140 141 142
    : public thrust::iterator_adaptor<
          RowwiseTransformIterator<T, platform::GPUPlace>, const T*> {
 public:
  typedef thrust::iterator_adaptor<
      RowwiseTransformIterator<T, platform::GPUPlace>, const T*>
      super_t;
C
chengduoZH 已提交
143
  HOSTDEVICE RowwiseTransformIterator(const T* x, int n)
C
chengduoZH 已提交
144 145 146 147 148 149
      : super_t(x), begin_(x), n_(n){};
  friend class thrust::iterator_core_access;

 private:
  unsigned int n_;
  const T* begin_;
C
chengduoZH 已提交
150
  HOSTDEVICE typename super_t::reference dereference() const {
C
chengduoZH 已提交
151 152 153 154 155
    return *(begin_ + (this->base() - begin_) % n_);
  }
};

template <typename T>
C
chengduoZH 已提交
156
class MidWiseTransformIterator<T, platform::GPUPlace>
C
chengduoZH 已提交
157 158 159 160 161 162
    : public thrust::iterator_adaptor<
          MidWiseTransformIterator<T, platform::GPUPlace>, const T*> {
 public:
  typedef thrust::iterator_adaptor<
      MidWiseTransformIterator<T, platform::GPUPlace>, const T*>
      super_t;
C
chengduoZH 已提交
163
  HOSTDEVICE MidWiseTransformIterator(const T* x, int n, int post)
C
chengduoZH 已提交
164 165 166 167 168 169 170
      : super_t(x), begin_(x), n_(n), post_(post){};
  friend class thrust::iterator_core_access;

 private:
  unsigned int post_;
  unsigned int n_;
  const T* begin_;
C
chengduoZH 已提交
171
  HOSTDEVICE typename super_t::reference dereference() const {
C
chengduoZH 已提交
172 173 174 175 176
    return *(begin_ + (((this->base() - begin_) / post_) % n_));
  }
};
#endif

C
chengduoZH 已提交
177
template <typename Functor, typename T, typename Place>
C
chengduoZH 已提交
178 179
class TransformFunctor {
 public:
C
chengduoZH 已提交
180
  TransformFunctor(const framework::Tensor* x, const framework::Tensor* y,
C
chengduoZH 已提交
181
                   framework::Tensor* z, const platform::DeviceContext& ctx,
C
chengduoZH 已提交
182 183 184 185 186 187 188 189 190 191
                   Functor func)
      : x_(x->data<T>()),
        y_(y->data<T>()),
        z_(z->mutable_data<T>(ctx.GetPlace())),
        nx_(x->numel()),
        ctx_(ctx),
        func_(func) {}

  inline void Run() const {
    platform::Transform<Place> trans;
C
chengduoZH 已提交
192
    trans(ctx_, x_, x_ + nx_, y_, z_, func_);
C
chengduoZH 已提交
193 194 195 196
  }

  inline void RunRowWise(int n, int pre) const {
    platform::Transform<Place> trans;
C
chengduoZH 已提交
197 198
    trans(ctx_, x_, x_ + nx_, RowwiseTransformIterator<T, Place>(y_, n), z_,
          func_);
C
chengduoZH 已提交
199 200 201 202
  }

  inline void RunMidWise(int n, int pre, int post) const {
    platform::Transform<Place> trans;
C
chengduoZH 已提交
203 204
    trans(ctx_, x_, x_ + nx_, MidWiseTransformIterator<T, Place>(y_, n, post),
          z_, func_);
C
chengduoZH 已提交
205 206
  }

C
chengduoZH 已提交
207
 private:
C
chengduoZH 已提交
208 209 210 211
  const T* x_;
  const T* y_;
  T* z_;
  int64_t nx_;
C
chengduoZH 已提交
212
  const platform::DeviceContext& ctx_;
C
chengduoZH 已提交
213 214 215
  Functor func_;
};

216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267
#define EIGEN_FUNCTOR(name, eigen_op)                                          \
  struct Eigen##name##Functor {                                                \
    template <typename Place, typename T>                                      \
    inline void Run(const framework::Tensor* x, const framework::Tensor* y,    \
                    framework::Tensor* z,                                      \
                    const framework::ExecutionContext& ctx) {                  \
      auto x_e = framework::EigenVector<T>::Flatten(*x);                       \
      auto y_e = framework::EigenVector<T>::Flatten(*y);                       \
      auto z_e = framework::EigenVector<T>::Flatten(*z);                       \
      z_e.device(ctx.GetEigenDevice<Place>()) = eigen_op(x_e, y_e);            \
    }                                                                          \
    template <typename Place, typename T>                                      \
    inline void RunBroadCast(const framework::Tensor* x,                       \
                             const framework::Tensor* y, framework::Tensor* z, \
                             const framework::ExecutionContext& ctx, int pre,  \
                             int n) {                                          \
      auto x_e = framework::EigenVector<T>::Flatten(*x);                       \
      auto y_e = framework::EigenVector<T>::Flatten(*y);                       \
      auto z_e = framework::EigenVector<T>::Flatten(*z);                       \
      auto y_bcast = y_e.reshape(Eigen::DSizes<int, 2>(1, n))                  \
                         .broadcast(Eigen::DSizes<int, 2>(pre, 1))             \
                         .reshape(Eigen::DSizes<int, 1>(x_e.size()));          \
      z_e.device(ctx.GetEigenDevice<Place>()) = eigen_op(x_e, y_bcast);        \
    }                                                                          \
    template <typename Place, typename T>                                      \
    inline void RunBroadCast2(const framework::Tensor* x,                      \
                              const framework::Tensor* y,                      \
                              framework::Tensor* z,                            \
                              const framework::ExecutionContext& ctx, int pre, \
                              int n, int post) {                               \
      auto x_e = framework::EigenVector<T>::Flatten(*x);                       \
      auto y_e = framework::EigenVector<T>::Flatten(*y);                       \
      auto z_e = framework::EigenVector<T>::Flatten(*z);                       \
      auto y_bcast = y_e.reshape(Eigen::DSizes<int, 3>(1, n, 1))               \
                         .broadcast(Eigen::DSizes<int, 3>(pre, 1, post))       \
                         .reshape(Eigen::DSizes<int, 1>(x_e.size()));          \
      z_e.device(ctx.GetEigenDevice<Place>()) = eigen_op(x_e, y_bcast);        \
    }                                                                          \
  }

template <class functor, typename Place, typename T>
void ElementwiseCompute(const framework::ExecutionContext& ctx) {
  using Tensor = framework::Tensor;

  auto* x = ctx.Input<Tensor>("X");
  auto* y = ctx.Input<Tensor>("Y");
  auto* z = ctx.Output<Tensor>("Out");
  z->mutable_data<T>(ctx.GetPlace());

  auto x_dims = x->dims();
  auto y_dims = y->dims();
  PADDLE_ENFORCE_GE(x_dims.size(), y_dims.size(),
268
                    "Rank of first input must >= rank of second input.");
269

Q
qijun 已提交
270
  if (x_dims == y_dims) {
271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353
    functor f;
    f.template Run<Place, T>(x, y, z, ctx);
    return;
  }

  int axis = ctx.Attr<int>("axis");
  axis = (axis == -1 ? x_dims.size() - y_dims.size() : axis);
  PADDLE_ENFORCE(axis >= 0 && axis < x_dims.size(),
                 "Axis should be in range [0, x_dims)");

  int pre, n, post;
  get_mid_dims(x_dims, y_dims, axis, pre, n, post);
  if (post == 1) {
    functor f;
    f.template RunBroadCast<Place, T>(x, y, z, ctx, pre, n);
    return;
  } else {
    functor f;
    f.template RunBroadCast2<Place, T>(x, y, z, ctx, pre, n, post);
    return;
  }
}

#define EIGEN_ADD(x, y) ((x) + (y))
EIGEN_FUNCTOR(Add, EIGEN_ADD);

#define EIGEN_SUB(x, y) ((x) - (y))
EIGEN_FUNCTOR(Sub, EIGEN_SUB);

#define EIGEN_MUL(x, y) ((x) * (y))
EIGEN_FUNCTOR(Mul, EIGEN_MUL);

#define EIGEN_DIV(x, y) ((x) / (y))
EIGEN_FUNCTOR(Div, EIGEN_DIV);

template <typename Place, typename T, typename functor, typename functor1,
          typename broadcastfunctor, typename broadcast2functor>
void ElementwiseGradCompute(const framework::ExecutionContext& ctx) {
  using Tensor = framework::Tensor;

  auto* x = ctx.Input<Tensor>("X");
  auto* y = ctx.Input<Tensor>("Y");
  auto* out = ctx.Input<Tensor>("Out");
  auto* dout = ctx.Input<Tensor>(framework::GradVarName("Out"));

  auto place = ctx.GetEigenDevice<Place>();

  auto x_dims = x->dims();
  auto y_dims = y->dims();

  auto* dx = ctx.Output<Tensor>(framework::GradVarName("X"));
  auto* dy = ctx.Output<Tensor>(framework::GradVarName("Y"));
  if (dx) {
    dx->mutable_data<T>(ctx.GetPlace());
  }
  if (dy) {
    dy->mutable_data<T>(ctx.GetPlace());
  }

  if (x_dims == y_dims) {
    functor f;
    f(place, x, y, out, dx, dy, dout);
    return;
  }

  int axis = ctx.Attr<int>("axis");
  axis = (axis == -1 ? x_dims.size() - y_dims.size() : axis);

  int pre, n, post;
  get_mid_dims(x_dims, y_dims, axis, pre, n, post);

  if (post == 1) {
    broadcastfunctor f;
    f(place, x, y, out, dx, dy, dout, pre, n);
    return;
  } else {
    broadcast2functor f;
    f(place, x, y, out, dx, dy, dout, pre, n, post);
    return;
  }
}
}  // namespace operators
}  // namespace paddle